ﬁ-’ : -
TEXAS INSTRUMENTS
_ Bringing Affordable Electronics To Your Fingertips .
rr =
Graphics Programming Language
Programmer's Guide
ORIGINAL ISSUE 1 MAY 1979
Neee J/

Personal Computer Division {@

TEXAS INSTRUMENTS

GRAPHICS PROGRAMMING LANGUAGE

USER'S GUIDE

TEXAS INSTRUMENTS INCORPORATED 1979

ALL RIGHTS RESERVED

Personal Computer Division

June 1, 1979

Revised December 3, 1979

Section

Section

Section

.4

HHO SO WNHO

-
N =

WWRNHHHFHRHO
o W

TABLE OF CONTENTS
GRAPHICS PROGRAMMING LANGUAGE

GRAPHICS PROGRAMMING LANGUAGE
Overview

GPL Instruction Synopsis

GPL Timing

GPL Assembler

Software Monitor Reconfiguration
Foreign Language Screens
Applicable Documents !

SUMMARY OF SYSTEM ORGANIZATION
VDP Organization

Patterns

Pattern Name Table

Pattern Generator Sets

Pattern Color Table

Sprites

Sprite Attribute Block (SAB)
Sprite Descriptor Block (SDB)
Sprite Velocity Block. (SVB)
VDP Text Mode and Multicolor Mode
System Memory Organization

GPL INSTRUCTIONS
Addressing Memory
Immediate Field (IMM)
Global Source (GS)
Global Destination (GD)
Label

Addressing Modes
Format Types
Running GPL Programs
The Status Block
Maxmem

Data Stack
Subroutine Stack
Keyboard

Key

Joystick Y

Joystick X

Random Number

Timer

Motion

VDP Status

Status

Character Buffer
Y-Pointer

X-Pointer

The Status Byte

PAGE

MMM HEEE -
[[I R I | |

H YOV e DN - WOoONAAWWNDNNDNDEHEERF b WW NN

WWwwwwwuwwwww
I

Section

B A e I I T A A S A i e A S Y N T - T R T~ ~ Y - A SN A~ S A T~ -~~~ A - - =
- - - L L[] - - L] - . - - - . - - - . e - L] - -

. s e+ s » . % . s 8 » s & 8 s = 8 8 = ® @ .
b b e s BB BB BR BB BRBBBB BB BEREBWWLWWLUWNRODNDONMODNDODRODHEFHEFEFEHEHEEHEAERHREFHERFO
. v s . . . « s s . s e « &+ & = & .

HHOYO-JOhWUL & WoH

. -
w N = OJoumbsweoH
= o

- L -
O oo+

=
~

- L] - . -
o e
(o2 NN W, I = VU I % I Sl e]

- . - - - L .
MR-
= W o+ O woo

TABLE OF CONTENTS
Page 2

INSTRUCTION DESCRIPTIONS
Compare and Test Instructions
Text Logical High Bit

Test Arithmetic Greater Than Bit
Test Carry Bit

Test Overflow Bit

Compare Equal

Compare High

Compare Logical High or Equal
Compare Greater Than

Compare Greter Than or Equal
Compare Logical

Compare Zero

Program Control Instructions
Branch on Set

Branch on Reset

Branch

Case

Call Subroutine

Fetch

Return from Subroutine

Return from Subroutine (Save Condition)
Bit Manipulation Instructions
Reset Bit

Set Bit

Test if Bit Reset

Arithmetic and Logical Instructions
Add

Subtract

Multiply

Divide

Increment by One

Increment by Two

Decrement by One

Decrement by Two

Abosolute Value

Negate

Invert

Logical AND

Logical OR

Exclusive OR

Clear Location

Store

Exchange

Push Onto Data Stack

Pop Off of Data Stack

Block Move

Shift Left Logical

Shift Right Arithmetic

Shift Right Logical

shift Right Circular

1
HHEWODO-JOWL & W D
o

-

I
.—l
138]

L - - - - - - S S - A
I

I
o
w W

4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-21
4-21
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46

. s = . . .
L] .

HWOOJo b whH+-

o

L] . .

[T
Lot nm

Appendix A

Appendix B

Appendix C

TABLE OF CONTENTS
Page 3

Graphics and Miscellaneous Instructions 4-47

Coincidence

Load Backdrop Color

Load Screen

Formatted Block Move
Generate Random Number
Scan Keyboard

Execute Machine Language
Exit GPL

1/0 Instruction L
HOME

THE GPL ASSEMBLER
Source File Format
Assembler Directives

DATA

TITLE

END

EQU

GROM

ORG

BASE

PAGE

LIST

UNL

LISTM

UNLM
GPL MACROQOS

$END

$SEND

SWHILE

SREPEAT

SUNTIL

SFOR GD = GS TO GS BY GS

$FOR GD = GS DOWNTO GS BY GS

SIF - GOTO

SIF - THEN

SELSE

S$SELSE

SCASE

$GOTO

SCALL

COMPARI SON

AUTOMATIC SPRITE MOTION

AUTO-SOUND INSTRUCTION
Table Format
Sound Generator Chip (SGC)
Control Summary
Attenuation Control
Frequency Control
Noise Control

4-47
4-48
4-49
4-50
4-53
4-54
4-55
4-57
4-58
4-59

I { I U e R R A N I T B |
NdJdoooooanaunuiunnunununin e bl BB WWWNRPDRODNDND HE

I R IR I R NN N A R R B |

|
(]

] |
o

|
=W ww

o000 0N w :b':h‘:t':l’w)’:b3’3‘3’3’@?3’3’1’&'3’&'3’3’3’3’3’#3’»3’?3’&

TABLE OF CONTENTS
Page 4

Appendix D HANDSET/KEYBOARD INTERFACE
40-Key Keyboard
Remote Handsets
Remote Keyboard
Wired Handsets

1

t UU?UU
H NN

appendix E COINCIDENCE DETECTION
Constructing Coincidence Tables for
Mapping = 0 :
Higher Mapping Values

!
[e

Appendix F I/0 INSTRUCTION
appendix G TEXT AND MULTICOLOR MODE

Appendix H DEVICE 1/0
Monitor Functions
System Initialization
Power-Up Routines
General Subroutines Provided
by the Monitor

sefierfiieras 6;) Lo I o o |

)
WHHRE

[

Exit

Bit Reversal

Writing I/O Routines
Subroutine and DSR Calls
Interrupt Routines

mmu:nln::::n

i
S o wu e

Appendix I CASSETTE DSR
Definition
Mode of Operation
Implementation
Peripheral Access Block (PAB)

HHHH
|
LSRN Bl

Definition I-2
I/0 Opcodes I-7
Open I-8
Close I1-8
Read I-8
Write I1-9
Restore/Rewind I-9
Load I-9
Save I-10
Delete I-10
Scratch Record I-10
Verify 1-10
Error Codes I-11
Bad Device Name I-11
Illegal Operation I-11
Device Error I-11
Issuing the Command to the Cassette DSR I-1l1
Audio Gate I-12

Motor Control I-13

Appendix J

Appendix K

Appendix L

Appendix M

Glossary

TABLE OF CONTENTS
Page 5

LIST OF INSTRUCTIONS
Alphabetic
Instruction Map

FLOATING POINT OPERATIONS

CNS - Convert Number to String
INT - Greatest Integer Function
PWR - Involution Routine

SQR - Sguare Root Routine

EXP - Exponential Routine

LOG - Natural Logarithm Routine
COS - Cosine Routine

SIN - Sine Routine

TAN - Tangent Routine

ATN - Arctangent Routine

CSN - Convert String to Number

CF1 - Convert Floating Point to Integer

FADD - Floating Point Addition
FSUB - Floating Point Subtraction

FMUL - Floating Point Multiplication

FDIV - Floating Point Divide
FCOMP - Floating Point Compare
SADD - Value Stack Addition

SSUB - Value Stack Subtraction
SMUL - Value Stack Multiplication
SDIV - Value Stack Division
SCOMP - Value Stack Compare

RADIX 100 - Internal Format

9900 ASSEMBLY LANGUAGE

PROGRAMMER/PLANNER STANDARDS

Purpose

Screen Processing and Function Key
Usage

Screen Formats

Menus, Submenus

Prompts

Multi-Lingual Planning

Alphabetical Index

I
HHEWODOO-JAWULIULI & W - o

o

AAARARAAAARAAARAAARNAANR gy
i

e '

=

[|
N -

Z:FE:$ T
H \0

Figure/Table

2,

2

B W W W W W W

o o »

QG m @ ™

5

1.2

LIST OF FIGURES AND TABLES

Description

Color Nybble Assignments
Best Color Combinations
CPU RAM Memory Map

VDP RAM Memory Map
Syntax for GS, GD
Formats of Instructions
Default Character Set
VDP Registers

Command Register Values
Status Block

XML Table

Macro Expansions

Console Keyboard

2-10,2-11

2-12
3=-7

3-10,3-11
3-13
3=-15
3-16
3-21
4-56

A-8,A-9,A-10

D-4

Console Keyboard Hex-Code Assignments D-5

Handheld Unit Keyboard
Console Keyboard Mapped as
Two Handheld Units
Joystick Codes
Coincidence Testing
Coincidence Bit Table
Manually Constructing a Bit Table
Magnification Zero Table

Multicolor Mode Screen Format

D-6

LIST OF FIGURES AND TABLES

Page 2

GROM Header

Program Header

PAB Layout

I1/0 Opcodes
Instruction Map
Function Key Summary
CPU-RAM CHart

Sprite Table

Title

Screen Display

M-14
M-15
M-16
M-17

1.0 GRAPHICS PROGRAMMING LANGUAGE

The system software resident in the product consists of a
monitor and a GPL (Graphics Programming Language) processor. It
is the function of the monitor to insure that every time the
system is turned on, a new cartridge is inserted, or an existing
program terminates, that all memory and peripheral devices are
initialized. The GPL processor is an {nterpreter optimized to
execute GPL programs directly out of GROM. The GPL processor

software is coded in TMS 9900 assembly language.

1.1 OVERVIEW

GPL is a programming language specially developed by Texas
Instruments to provide the best possible tradeoff of code compac-
tion, execution speed, and ease of program development for the
target computer system. The GPL instruction set facilitates
development of programs which make use of the unique features of
the system chip set. It is byte oriented, and instructions
typically have one or two operands. The addressing scheme is such
that most instructions can access either standard
microprocessor RAM, GROM, or.the video scratchpad RAM address
space easily.

Most instruction operands can be either single or double byte
values. The addressing modes are: immediate, direct, indirect,
indexed, indexed indirect (with pre-indexing), and 'top of
stack'. Source operands and destination addresses can be in the
CPU, video RAM, or in GROM. Support for two stacks is
available; a data stack and a subroutine return address stack
(allowing arbitrary nesting of subroutines).

1-1

1.2 GPL INSTRUCTION SYNOPSIS

GPL has the following types of instructions:
*DATA TRANSFER -single or double byte transfers;
-block to block transfers
-formatted block transfers
*ARITHMETIC -add, subtract, multiply, divide,

negate, absolute value

*LLOGICAL -and, or ,exclusive or, shifting
*CONDITION TESTS -arithmetic and logical tests
*BRANCHING -unconditional and conditional
*BIT MANIPULATION -set, reset, and test
*SUBROUTINING -call, return, parameter fetching
*STACK OPERATIONS -push and pop

*MISCELLANEOQOUS -random number generation, key-

board scan, coincidence detection
pattern movement, sound control,

TMS 9900 subroutine linking, 1I/0

1.3 GPL TIMING

The GPL interpreter contains an interrupt driven service

routine which is tied to the video scan. Video symbols may be

moved about the screen automatically; also sounds may be

generated from a sequence table.

These are of the "set it and forget it" type of
instructions which free up the control program to do concurrent
decision and computational operations. The interrupt also

controls a software real time clock.

1-2

Each system will have a clock byte reserved in the console ROM at
location >000C to indicate the clock rate for that system.
Peripherals may read this byte to adjust their timing interface
to the CPU's clock combinations in different consoles. The high
nybble contains the integer frequency in megahertz and the low

nybble, the fractional frequency.

1.4 GPL ASSEMBLER

The assembler for GPL (GPLASM) is written in a mixture of
FORTRAN and assembly language and is currently available for
installation on 990/10 DS minicomputers. The assembler provides
standard features such as creation of a list file, cross
reference tables, and error flagging. A set of macros is included
to help structure GPL programs; these include statements such as:
REPEAT ... UNTIL and IF ... THEN ... ELSE. The output of the

assembler is a 990 object module.

1.5 SOFTWARE MONITOR RECONFIGURATION

The monitor code is executed whenever a system restart is
required. The system parameters and control values are
initialized to default values. A default character set is loaded
into the video pattern generator, making it immediately available
to GPL programs. This pattern set consists of 64 ASCII
characters, including the upper-case alphabet, digits, arithmetic
symbols, and punctuation symbols.

The monitor is also responsible for determining the

existing system configuration. The power-up monitor must poll

add-on I/0 peripherals and the 'SOLID STATE SOFTWARE CARTRIDGE'
to determine which program to execute.

The Home Computer system has been designed to be flexible
and expandable. Each plug-in ROM or GROM may contain power-up
procedures. These power-up procedures will all be executed
allowing for expansion of the power-up routines. A power-up
routine may also be replaced by another.

1

1.6 FOREIGN LANGUAGE SCREENS

GPL code has been included in GROM 0 to allow a plug-in
GROM to "translate" the main screen, the menu screen, and the
cassette DSR messages to alternate languages. The main screen
and the menu screen are "translated" after the screen has been
formatted in English but while the screen is turned off (only the
backgound color is visible on the screen). At this time, the
Plug-in GROM is checked for a negative version number (byte 1 of
the GROM). When a negative Qersion number is encountered, a
routine is called at >6010 for the main screen or>6013 for the
menu screen. These locations should contain unconditional
branches to the routines in the plug-in GROM that will rewrite
the screen in the desired language. These routines may use all
of the usual CPU RAM locations (>0 through >6F) and the full
facilities of the Monitor and Interpreter. The routines should

end with a RTN instruction.

1.7 APPLICABLE DOCUMENTS

3 System Monitor Specification

1-4

TMS 9918 Video Display Processor Specification

TMS 9919 Sound Generation Controller

TMS 9900 Microprocessor Specification

File Management Specification

Home Computer System Memory, CRU, and Interrupt Mapping

Specification

2.0 SUMMARY OF SYSTEM ORGANIZATION

The system, as supported by the interpreter, consists of a 9900 microprocessor with the following

peripheral devices tied to it:

*A Sound Generation Controller Chip

*A Video Display Processor Chip

*One or more GROM devices

*At least one type of keypad entry device

The sound chip interface is discussed in Appendix C. The GROM is described in System

Memory Organization below. The following is a quick summary of the VDP organization. For

more detailed information on any of the system hardware, refer to the appropriate document.

2.1 YDP ORGANIZATION

The VDP RAM contents determine what will appear on the screen. They contain several sub-
blocks, each of which is described below. The base address of each sub-block is determined by
the contents of the VDP control registers. Also shown are the most commonly used values for
these registers. These values keep all the sub-blocks within the first 4K bytes of VDP RAM., and

insure that none of the sub-blocks overlap each other.

2.1.1 PATTERNS

The active area of the screen is divided into a grid of 192 pixals

(vertical) by 256 pixels (horizontal). These pixels are then clustered into

2-1

8 x 8 pixel groups called Patterns. Thus there are 24 x 32
pattern positions on the screen in the normal mode.
There are three sub-blocks of VDP RAM associated with

displaying patterns on the screen:

e Pattern Name Table (768 bytes)- Each byte corresponds to

a pattern position on the screen, and its value is the

pattern number (0 thru 255) displayed at that location.

e Pattern Generator Sets (8 * 256 = 2048 bytes)- Each block

of 8 bytes in the Pattern Generator Set defines a pattern
(8 x 8 pixels); the first 8 bytes correspond to pattern
number 0 (as called out in the Pattern Name Table), the
last 8 to pattern number 255. Note that a pattern is not
displayed on the screen until an entry in the Pattern Name
Table calls for it. Also, a pattern can be displayed in
multiple positions on the screen by setting several entries

in the Pattern Name Table to the same pattern number.

e Pattern Color Table (32 bytes)- Each byte of the Color

Table contains in its left nybble a foreground color (l's
in the pattern) and in its right nybble a background color
(0's in the pattern). The first byte describes colors for
pattern numbers 0 thru 7, the next for numbers 8 thru 15,
egte. See Table 2.1 (page 2-4) for color nybble
assignments. Table 2.1.A (page 2-5) contains some of the

best foreground/background combinations.

2.du2. SPRITES

Sprites are objects that exist essentially in planes in
front of the pattern plane. These objects can be moved on a
pixel-by-pixel basis, providing for excellent animation capabi-
lity. Up to 32 Sprites may be on the screen at any time; however,
no more than 4 on a given horizontal pixel line are allowed
(subsequent sprites on that line will not be displayed). Three
sub-blocks of VDP RAM define the Sprites:

e Sprite Attribute Block (SAB) (4 * 32 = 128 bytes)- Each

4-byte entry in this block describes the position and color
of each Sprite:
byte 1- y-position of Sprite (>FF is top of
screen, i.e., vertical position is 1
pixel less than desired starting posi-
tion of sprite);
byte 2- x-position of Sprite (0 is left edge of
screen);
byte 3- pointer toISprite Descriptor Block
entry;
byte 4- early clock and color nybble.
The pointers to Sprite Descriptor Block entries,
when the recommended base addresses are chosen, range from
>80 to >FF if no Sprite motion is used and from >80 to >EF
if Sprite motion is used (each pointer points to a
succeeding 8-byte block in the Sprite Descrigtor Block!’.
when size . sprites (32-byte) are cnosen, the pointer value
must be an even multiple of 4 (i.e. >80, >84, >88, etc.)
and point to a 32-byte block in the Sprite Descriptor

Block. 2-3

TABLE 2.1

COLOR NYBBLE ASSIGNMENTS

NYBBLE VALUE (>)

HEOoOOQoOY>PwVvooJdJoaundWwWwNhHFHO

COLOR

Transparent
Black
Green 2
Green 1
Blue 2
Blue 1
Red 3
Cyan

Red 2
Red 1
Yellow 2
Yellow 1
Green 3
Magenta
Gray
White

When there is more than one shade of the same color, the
lowest numbered color is the lightest and the highest numbered
color is the darkest (e.g., Green 1 is the lightest, Green 2 is

medium, and Green 3 is darkest.)

TABLE 2.1.A

BEST COLOR COMBINATIONS

BEST

Black on Medium Green

Dark Green on Medium Green
Dark Blue on Light Green
Dark Green on Light Green
Black on Light Blue

Dark Blue on Light Blue
Black on Dark Red

Black on Cyan

Dark Blue on Cyan

Dark Green on Cyan

Black on Medium Red

Dark Red on Light Red
Magenta on Light Red

Dark Green on Dark Yellow
Dark Green on Light Yellow
Dark Red on Light Yellow
Medium Green on Light Yellocw
Black on Dark Green

Black on Magenta

Dark Blue on Magenta

Black on Gray

Dark Blue on Gray

Dark Red on Gray

Dark Green on Gray

Medium Green on White

Dark Blue on White

THIRD BEST

Dark Red on Medium Red
Medium Red on Light Reden
Medium Green on Dark Yellow
Light Green on Light Yellow
Dark Blue on Light Yellow
Medium Red on Light Yellow
Medium Green on Gray

Medium Red on Gray

Magenta on Gray

Black on White

Hdeciunm feaq 2on insca

Magenta on Wnite

White on Dark Red

SECOND BEST

Light Blue on Light Green
Black on Dark Blue
Black on Light Red

‘Dark Green on Light Red

Black on Dark Yellow
Black on Light Green
Black on Light Yellow
Light Blue on Gray
Light Green on White
Light Blue on White
Dark Red on White
Dark Green on White

FOURTH BEST

Light Green on Black
Light Blue on Black
Dark Red on Black

Cyan on Black

Light Red on Black
Medium Red on Light Green
Dark Red on Light Green
White on Light Blue
Magenta on Light Yellow
Cyan on White

Light Red on White

Gray on White

The MSB of byte 4 is set if you want the sprite to come in
or go off smoothly on the left side of the screen. If this
bit is not set, the sprite will come in or go off smoothly
on the right side of the screen. The right nybﬁle of this
byte is the color nybble. A >DO0 in the first byte of a
4-byte block in the Sprite Attribute Block will tell the
system to disregard all follow}ng data in the Sprite
Attribute Block. The >D0 indicates to the system that the
preceding 4-byte block is the last sprite to be displayed

on the screen.

e Sprite Descriptor Block (SDB) (32*32 = 1024 bytes if no

sprite motion is used; 32*28 = 896 bytes if sprite motion
is used since the Sprite Velocity Block begins at >780).
The SDB is similar to the Pattern Generator Set area, each
block of 8 bytes describes an 8 x 8 pixeled Sprite;
alternately, each block of 32 bytes may describe a 16 x 16
pixel Sprite (when the size bit is set to a 1 in the VDP
Command Register 1). When the size bit is set and 4
characters (32 bytes) are used to make the sprite, the
first 8 bytes are the upper left character, the next 8
bytes are the lower left character, the next 8 bytes are
the upper right character and the last 8 bytes are the
lower right character. For example, if the bytes in a

32-byte Sprite Descriptor Block area are numbered 0 through

31, this is how the characters would be displayed in a

sprite:

bytes 0-7 bytes 16-23

bytes 8-15 | bytes 24-31

When the magnification bit in the VDP Command Register (1)
is set, all sprites double their size, but keep the same
pixel dimensions (8x8 or 16x16). Each pixel doubles its
size. This expansion of size is to the right and down.
Therefore, an unmagnified sprite on the screen will keep
the same upper left corner position when the magnification

bit is set.

e Sprite Velocity Block (SVB) (4*32 = 128 bytes)-Each

4-byte entry in this block assigns motion to the
corresponding 4-byte entry in the Sprite Attribute Block:
byte 1- y-velocity of Sprite (positive
number means down, negative
number means up)
ive

bvte 2- x-velocitv of Sprite (posi

- tow

T

number means right, nega:tive

number means left)

bytes 3 and 4- reserved for system use

(must be initialized to zero).
A velocity can range from 0 to >7F in the positive direc-
tion and from >FF to >80 in the negative direction. See

Appendix B for more information on Automatic Sprite Motion.

2.1.3 VDP TEXT MODE AND MULTICOLOR MODE

The VDP Text Mode and Multicolor Mode as described in the
VDP Specification are supported to the extent described in
Appendix G.- The programmer may use Text, Multicolor and
normal mode in the same program if he chooses. The
programmer should be aware, however, that a new mapping of

VDP RAM into a screen image is created for each mode.

2.2 SYSTEM MEMORY ORGANIZATION

There are three segments of memory associated with the
basic system:

e CPU RAM: 256 bytes of high speed Read/Write random access

memory (Figure 2.2, page 2-10, 2-11). To access CPU
RAM in Asssembly Language, a bias of 8300 is added to
the address. ‘

e VDP RAM: 4K, 8K or 16K of Read/Write random access
memory (Figure 2.3, page 2-12); as discussed earlier,
this memory is segmented into subblocks whose data map
into a screen image; whatever memory is 1left over is
available for GPL programming use.

® GROM: Increments of 6K bytes located at 8K-byte boundar-
ies; this is special, medium speed, ROM; it typically
contains GPL programs and data.

Certain areas of the three segments are dedicated for
special use by the VDP hardware or the interpreter software. See
Figure 2.2 (page 2-10, 2-11) for CPU RAM segments dedicated to
the interpreter. See Figure 2.3 (page 2-12) for VDP RAM dedicated
for use by the VDP chip (note the base addresses of the
sub-blocks assume that the recommended values are loaded in the
VDP Registers). Also shown in Figure 2.3 (page 2-12) is a
sub-block that is used by the Interpreter software for
auto-motion of sprites. 1If auto-motion is not to be used in a
GPL program, this memorvy space is freed up for other use. See
appendiz B for decails on Auto-Sprite motion. GROMs have a
format protocol which they must adhere to in order to maintain
system compatibility. See the System Monitor Specification for

details. 2-9

FIGURE 2.2

DECIMAL HEX CRU RAM MEMORY MAP
0 0
16 >10
32 >20
48 >30
64 >40
80 >50 <—>4A thruw6D will be
destroyed when using
peripherals

96 >60
112 >70

STATUS BLOCK
128 >80 Default subr. stack
144 >90 Vv
160 > A0 FREE Default Data Stack
176 >B0
192 >Co

INTERRUPT

WORRSPACE
208 >D0
224 >EO0
240 >0 .

INTERPRETER R13 address of GRCM write address
WCRKSPACE R14 System flags
TO >DFF Sound timer in MSBy. Flags for
MM, Interrupt flag, and GRQM/VDP

select for sound are in LSBy.
R15 address of VDP write address

FIGURE 2.2 (Cont.)

INTERRUPT WORKSPACE

>C0:

Random Seed

>C2- C9: Remote handset debounce

>Ca:
>CC:
>CE:
> DO0:
>D2:
>D4:
>D6:
>D8:

>Da:

Console Reyboard debounce

Sourd list pointer

Number of sound bytes

Search pointers for

GROM and ROM searches

One byte - stores last VDP (1)

Screen timeout counter

Save return address for scan
routine

Save player number in scan
routine

R13..R15: Return linkage for interrupts

2-11

256

512

768

896

1024

1280

1536

1792

1920

2048

2304

2560

2816

3072

3328

3584

2840

4096

HEX
>000

>100
S 200
> 300
>380
3400
500
>600
>700
>780
>800
5900

>a00

>B00

FIGURE 2.3
VDP RAM MEMORY MAP *

PATTERN
NAME
TABLE (768 byte)

SPRITE ATTRIBUTE
LIST (128 bytes)

€——PATTERN COLOR TAELE

FREE (96 bytes) (32 bytes)
SPRITE
DESCRIPTOR
BLOCXS
(1K)
< SPRITE VELOCITY TAELE

(128 bytes)

PATTERN

(2K)

*Assumes standard values in VDP

registers.

2-12

3.0 GPL INSTRUCTIONS

The Graphics Programming Language is similar to an Assembly
Language in many respects. Commands are followed by operands
which specify addresses and immediate values. The completed
program is run through an assembler which generates, for each
instruction, the opcode followed by an encoding of the operands.
Many instructions can operate on single or double byte values. In
the instruction descriptions of Section 4, this is indicated by a
"p" prefix on the mnemonic; for example, the single-byte to
single-byte "add" instruction is an ADD, while the
double-to-double-byte add is a DADD.

The extent of graphics support is through the following:

e Almost all instructions can modify locations in VDP RAM

easily; this can cause a change in the screen image;

® Locations in the Pattern Name Table can be addressed by
specifying an X pointer and a Y pointer;

e Special instructions allow the reading and writing of
large blocks of VDP RAM quickly;

e Automatic motion of Sprites can be initiated; after
enabling auto-motion with a GPL instruction, motion of
sprites is automatically controlled until stopped by
another GPL command.

GPL instructions fall into several classes:

e Data Transfer
e Arithmetic
® Logical

@ Condition Tests

e Branching
e Bit Manipulation

e Subroutining

Stack Operations

@ Miscellaneous

3.1 ADDRESSING MEMORY

1

The addressing modes of most instructions allow operands to
reside anywhere in VDP RAM or CPU RAM. This is called "Global
Addressing™. Each address above CPU location >7F requires two
bytes to specify its address.

The next secfion is a description of all GPL instructions,
The mnemonics used for specifying the operand types required for
a given instruction are always of the following types:

GS (Global Source), GD (Global Destination), IMM (immediate
value), LABEL (GPL label). These are each described more fully

below.

e 3.1.1.IMM

An immediate field can be a numeric constant in
decimal, hexadecimal or binary format. Depending upon
the context, values can be single or double byte values.
In DATA statements double-byte values must be preceded by
a pound sign (#). The # sign is optional for double-byte
values in branches, move statements, and double
instructions.

A symbol can be used in an IMM field if it is equated
to an immediate value using the assembler EQU directive

3-2

(commonly used locations in CPU RAM and VDP RAM are often
assigned symbolic equates to improve program clarity). If
it is a label in the GPL program, it is a double-byte
value unless used in a single byte operation. 1In this

case the least significant byte is used.

To illustrate the possibilities:
FIVE EQU 5 (now the symbol FIVE can be used

wherever IMM is called for;)

51 ..decimal 51;
>33 or 033 ..hexadecimal 33;
&110011 ..binary 110011;
$LOOP ..(1f LOOP is a label in the GPL program)

The ASCII equivalent of characters can also be used for
IMM fields. The character(s) should be enclosed between
colons; e.g.

tA: is equivalent to >41

:2A: is equivalent to >3241

The FMT instruction, to be discussed later, as well

as the assembler directive DATA (in Appendix A) can use
IMM fields of arbitrary length (e.g., :ABCD1234:). Instr-
uctions that require double-byte IMM operands begin with
a "D" (e.g., DADD = Double Add) as opposed to instruct-
ions that do not (e.g., ADD = Add). The instructions D
or DIV, DEC, and DECT require single-byte IMM operands;
while DD or DDIV, DDEC, and DDECT require double-bvte IMM

operands.

3-3

e 3.1.2 GS (GLOBAL SOURCE)
Unless otherwise specified for a given instruction,

a Global Source operand can be an immediate value (i.e.
anything that fulfills requirements for IMM), or an
address with any combination of the following features in
effect:

1) Select CPU RAM or VDP RAM (select ROM in a MOVE

statement only);

2) Select direct or indirect addressing;

3) Select indexing or not.

There are two special mnemonics that can be used
wherever GS is called for: POP and TOP. POP pops the top
value off the data stack and uses this data as an
operand. TOP uses the data pointed to by the data stack
pointer, but it does not actually pop the data off the
stack. POP and TOP should not be used in double-byte
instructions. An example of the use of POP and TOP is:

ADD POP,TOP
This instruction is equivalent to the segquence:
ST *DATSTK,@TEMP
DEC @DATSTK
ADD @TEMP, *DATSTK
The next section discusses the Data Stack more
fully.

e 3.1.3 GD (GLOBAL DESTINATION)

Global Destination is exactly the same as Global

Source except that immediate values are not allowed.

e 3.1.4 LABEL

A LABEL field refers to a symbol which has been
used in front of a GPL instruction, or a symbol that has
been equated (using EQU) to an IMM. A LABEL always
generates a 2-byte immediate value (16 bits). LABEL
fields are called for in Branch instructions and
Subroutine call instructions. A long branch (B)
instruction, a CALL subroutine instruction, and a GS or
GD of ROM (#LABEL) in a MOVE statement may use labels
contained anywhere in the program, but short branch
instructions (BR, BS, or SIF-GOTO) must use labels
contained in the same 6K GROM segment as the instruction.
A special LABEL, "$", is used to represent the current
location; (e.g. "B $" will cause the GPL program to loop
forever).

LABELs can have, in addition to the symbol, an
expression of the form (symbol)+IMM or (symbol)-IMM; for
example,

BR $LAB1+3

or: BR LAB3-1

e 3.1.5 ADDRESSING MODES

Table 3.1 (page 3-7) shows the formats for the
various mode combinations with an example. 1IMM specifies
a numeric constant. If an "at sign" (3) precedes an IMM
value, it speciiies the contents stored at loccation IMM

in CPU RAM.

If a star (*) precedes an IMM value, it specifies
indirect addressing through location IMM in CPU RAM. For
example,

A EQU >02
B EQU >04
ST >60, €A
ST *A, €B
will take the data stored in CPU location >60 and store
it in CPU location >04.

A double byte value in CPU RAM can be used as an

index to a specified location. For example,
A EQU >02
B EQU >04
INDEX EQU >06
DST >000A, RINDEX
ST @A (INDEX), €B
will store the contents of CPU location >0C in CPU >04.
You would obtain the same results with:
ST ea(>06), €B
Notice that indexing takes the double-byte contents
located at the CPU RAM address in parentheses and adds
that parentheses and adds the double-byte value stored in
value to the CPU RAM address in front of the parentheses.
You do not use the @ sign with the index variable. In
the case of VDP RAM indexing, the inner parentheses

contain the index value.

TAELE 3.1
SYNTAX FOR GS, GD

SYNTAX MEANING -EXAMPLE
Tmmediate value for GS only
™M § indicates 2 bytes immediate value $ LABl, 21
C
P e IMM Direct to CPU RAM erocC, @ 30
U * MMl Indirect to and thru CPU RaM *I0C, * 31
€ IMML(IMM2) Direct indexed by and to CPU RAM, €LOCL (LOC2)
R *IMML (IMM2) Indirect indexed by, thru & to CPU RaM | LOCL (LOC2)
A CB, XPT,YPT Direct to CPU RAM at >7D, D7E, >7F XprT, B, YPT
M respectively
V RAM(IMM3) Direct to VDP RaM RAM(LOC1) ,RAM(300)
D RAMEIMML) Indirect to VRAM thru CPU RAM RAM(@LOCL)
P RAM(IMM3(IMM2)) | Direct VRAM indexed by CPU RAM RAM(LOC1 (LOC2))
RAM)@IMML (IMM2)) Indirect to VRAM thru & indexed by RAM(RLOC(LOC2))
R CFU RAM '
A DISPLAY (X=IMM, Pattern name table *
M ¥=IMM
CHAR (IMM) Pattern generator IMM = 00 to FF
TABLE (IMM) Pattern color table IMM = 00 to 1F | All direct
SPRITE (IMM) SPRITE attribute list IMM = 00 to 1F i to
FIGURE (IMM) SPRITE descriptor block IMM = 00 to 5F ! VARM
VEL (IMM) SPRITE velocity table IMM = 00 to 1F |
VDP(IMM) VDP register in VDP chip register :VDP[‘?]
GS in MOVE statement only IMM = 00,to 07!
!
GS in MOVE statement only 1
G ROM(IMB3) Direct to GRM 'RCM (#DATAL)
R ROM(EIMM2) Indirect to GRQM thru CEU RAM IRaM(@LOCL)
O ROM(IMM3(IMM2)) | DIrect to GROM indexed by CPU RAM 'FHZM(#DA'IRI(I.{I:J.))
M

|

|

;

1 byte CPU RAM adress expandable to 63K.

2 bytes accepted byut need to be one byte to address to CPU RAM.

:

1l byte CPU RAM address.

If 2 byte value is used,

is ignored.

»
|

2 bytss RAM or GRQM DDRESS.

Assumes reccmmended base address

3-7

the first byte

EXPLANATIONS FOR THE EXAMPLES

€LOC1 (LOC2) 2 byte content at IOC2 in CPU RAM will be added to
LOC1L and then addressed to CFU RAM.

*[OCl1 (LOC2) 2 byte content at LOC2 in CPU RAM will be added to
IOClL ard addressed thru that address in CPU RaM to
CPU RAM.

RAM (LOCl(LOC2)) 2 byte content at LOC2 in CPU RAM will be
added to 2 byte VDP RAM address LOCl and then
addressed to VDP RAM.

RAM (@LOCL(LOC2)) 2 byte content at LOC2 in CPU RAM will be
added to the content of CPU RAM at LOCL and then
addressed to CPU RAM to obtain 2 byte VDP RAM
address.

ROM (LOCl(LOC2)) 2 byte content of LOC2 at CPU RAM will be
added to 2 byte GROM address LOCl then addressed
to GROM.

3.2 FORMAT TYPES

In the next section you will see that instructions
get assembled into several different variations of
formats. Each instruction has a "format type" number.
Table 3.2 (page 3-9) shows all the possible formats,
listed by format type. Also shown is the op-code range
for each of the format types. The X's in the formats
represent bits that may be turned on or off according to
the opcode for the instruction. Each letter in the
format other than X is described on page 3-10 along with

the five forms of GS and GD.

TAELE 3.2

FORMAT TYFE FORMAT OP QODES

bit#¢ 7 6543210

1 1 X|X|X|XIX SiD AX, KX, (X
DX ,EX

GD
GS

bit$4 76543210

2 0]0J0IX|XIX|X X (04
IMM (1 BYTE) 1X

bit 4 76543210

3 ooo;hcxxx
[ABEL (2 BYTES) 0X,1X

bit$4 76543210

4 011X I 35 4X,5%X,6X,7X

ADIRESS, QONT'D

bit # 6543210

-
5 O[O0 |X|X|X|X|[X X, IX

bit# 76543210

6 1{0J0(X|X|X X|D 8X,9X
GS

bit$ 76543210

7 01010j0f1]0f010 08
FORMAT CODES
bit$# 76543210
8 111[10110 Fé
Gs
IMM (1 BYTE)

bit# 76543210
O

— NI IVIC'T'N
LENGTH

GD

GS

W
b
L
»s

3-10

TABLE 3.2
(Cont.)

SINGLE BYTE OPERATION
DOUBLE BYTE OPERATION

0 = GS IS NOT IMMEDIATE
1 = GS 1S IMMEDIATE (1 OR 2 BYTES DEPENDING QN D)

is
is
is
is
is
is
is
is

D= 0 =
o -
S=
O0O1RVCIN
R = 0 =GD
1=GD
v = 0 =GD
1=0GD
C = 0 = GS
l:>1=Gs
I-= 0 = GS
1 =GS
N = 0=
l:
GS, GD HAVE 5 FORMS:
I omnﬁmsas}
11! 1 0 Vv I ADDRESS
i ADDRESS (OONT'D)
| INDEX
1
IITI ({1 1V I ADDRESS
ADDRESS (CONT'D)
Iv{ 10 viI 1111
ADCRESS
ADDRESS
[
v | 1lvi 1l
| ADDRESS
' ADDRESS
| INDEX

RCM
not RM

not a VDP register
a VDP register

not RAM
RAM

not ROM addressed by CPU
RM indexed or addressed by a variable in CPJ RAM

Number of bytes moved is not immediate value
Number of bytes moved is immediate value

= DIRECT ADDRESSING TO FIRST 128 BYTES OF CFU RAM;

; V=1 SELECTS VDP RAM; 0=CFU RAM
I=1 SELECTS INDIRECT; O=DIRECT

LIKE ABOVE, EXCEPT AN INDEX VALUE IS ADDED TO THE
ADDRESS IN CPU RAM

LIKE II WITH
EXTENDED RANGE 0-63K

LIKE ABOVE III
EXTENDED ADDRESS AND INDEXED

3~11

3.3 RUNNING GPL PROGRAMS

The system Monitor performs the startup of a GPL program.
See the Monitor Specification for details on power-up and restart
sequences. It will suffice here to know the state of all RAM and
Register locations upon beginning program execution.

e A >60 is written to the VDP Command Register, which
makes the Start bit a 1; this turns the TV screen to the
background color.

e A default character set has been loaded into Pattern
Generator Sets 4 thru 11, corresponding to ASCII symbols
>20 thru >D5F; see Table 3.3. The Pattern Color Table is
initialized and all other locations are zero.

e Several locations in the "Status Block" in the CPU RAM
have been initialized to pre-defined values; these
locations are explained in Appendix H under System
Initialization.

The programmer has the responsibility of initializing the

values of the VDP Registers if default values . are not to be used.
The values in Table 3.4 are the default values. For a system

without RAM expansion, these VDP block bases are suggested.

TABLE 3.3

DEFAULT CHARACTER SET

PATTERN #

>20 BLANK >30 0 >40 @ >50 P
1 1 A G
" 2 B R
3 C S
>24 $ >34 4 >44 D >54 T
% 5 E 8]
& 6 F v
! 7 G W
> 28 (>38 8 >48 H >58 X
) 9 I Y
* J A
s o R [
>2C ’ >3C < >4C L >5C \
> N A

S/ ? 0

VDP(1) is the command register. Bit 7 is set if there is a
16K chip in the system. This bit should always be reset by the
programmer. The interpreter will set the bit if there is 16K.
Bit 6 turns the screen on when set. Bit 5 is the interrupt enable
bit. The Bit 4 tells the VDP to use text mode when it is set
and Bit 3 tells the VDP multicolor mode when it is set. Bits 3
and 4 may not be set at the same time. Bits 1 and 0 tell the
system double-size and magnified sprites, respectively, when set.
Bit 2 must always be reset.

The value in VDP(2) can range from 0 to 15. The Pattern
Name Table will begin at location VDP(2) * 1024.

The value in VDP(3) can range from 0 to>FF. The Pattern
Color Table will begin at location VDP(3) * 64.

The value in VDP(4) can range from 0 - 7. The Pattern
Generator Table will begin at location VDP(4) * >800.

The value in VDP(5) can range from 0 - >7F. The Sprite
Attribute List will begin at location VDP(5) * 128.

The value in VDP(6) can range from 0 - 7. The Sprite
Descriptor Block will begin at location (VDP(6) * >800) + >400.

The value in VDP(7) contains the only way of giving
foreground and background colors to Text mode. The most
significant nybble is the foreground color, and the least
significant nybble is the background color and also the border
color in any mode.

The value of VDP(l) will probably be the register most
often changed in a program. Taoble 3.4.A (page 3-15) lists some
of the most common values used in this command register and what

they represent.

3-14

REGISTER
NUMEER

TABLE 3.4

VDP REGI STERS

FORMAT

MEANING

RECOMMENDED

7 | 61 5[4 (3 [2]1]0

!

1 | &' sr per

16K ENB

"
l|.

T (RS PP |
| L

TXT MCM I1ZE MAG
oo
1 | I !

1

2 | [X | PNT BASE

B E—

3 | PATTERN COLOR T:TABLEBAS[E

e i

4 ; j N PAT‘GfNi

bces |

5 ><SPRJI'IE Ams. LIST BASE
i ,

Command Reg.
bits turn on/off
4R or 16K, screen

on/off, interrupt
text mode, MC mode
Sprite size & mag

Multiple of 256
to start INT at

Multiple of 64 to
to start col. table

Multiple of >800
to start pat. gen.

Multiple of 128
to start SAL,

Multiple of >800
then add >400 to
start SDB

Colors for text
mode, backdrop
color

3-15

>60-sets VDP for

4K memory, turns
screen on,enables
VDP interrupt,
puts VDP in norm-
al pattern mode
with size 0, mag
0 sprites

0-puts Pattern
Name Table at 0.

>OE-puts color

table at 380

>1l-puts pattern

generator area
at>800

>06-puts Sprite

Attribute List
at >300

0-puts Sprite
Descriptor
Blocks at >400

>F7-make text

color white,
backdrop cyan

VALUE

>61

>62

>63

>20

>70

>68

>69

>6A

> 6B

TABLE 3.4.A

COMMAND REGISTER VALUES

MEANING

4K memory, screen on, interrupt on,
single-sized magnified sprites.

4K memory, screen on, interrupt on,
double-sized unmagnified sprites

4K memory, screen on, interrupt on,
double-sized magnified sprites.

4K memory screen off (viewer sees a
blank screen the color of the
border).

4K memory, screen on, interrupt on,
text mode (40 x 24 character screen)

4K memory, screen on, interrupt on,
multicolor mode, single sized unmag-
nified sprites.

4K memory, screen on, interrupt on,
multicolor mode, single-sized magni-
fied sprites.

4K memory, screen on, interrupt on,
multicolor mode, double-sized unmag-
nified sprites.

4K memory, screen on, interrupt on,

multicolor mode, double-sized magni-
fied sprites.

3-16

The actual mechanics of writing and running a GPL program
are described in Appendix A. This describes the format of
instructions that the GPL assembler will accept.

The interpreter and the GPL program communicate with each
other through a dedicated location in CPU RAM, called the Status
Block. Table 3.5 (page 3-20) shows the fixed locations of each

Status Block variable. ,

3.3.1 THE STATUS BLOCK

If any of the bytes in the Status Block are to be accessed
from a GPL program, it is recommended that the symbols in Table
3.5 (page 3-20) be equated to the proper values as shoﬁn at the
beginning of the GPL program. The symbol can then be used as an
instruction operand.

The following is a discussion of each of the Status Block

by tes:

'@ MAXMEM - Highest available VDP memory address. For a 4K

system this would be >0FFF.

e DATSTK- Stack pointer for data; initialized to >9F by the
Monitor, the pointer always points to the last value pushed
on the data stack. The data stack is a pre-incremented,
byte-oriented stack, and grows to increasing values in CPU
RAM. 1If the user wishes, he can change the location of the
stack by doing an ST into DATSTK (e.g. 8T >92,8DATSTK).
PUSH and POP affect the pointer value, as well as the

operand POP.

SUBSTK~- Stack pointer for subroutine return addresses;
initialized to >7E by the Monitor, the pointer always
points to the last address pushed onto the stack. Addresses
are automatically pushed onto the stack by the CALL
instruction, and popped off by the RTN and RTNC
instructions. As with DATSTK, the user can change the
default address of the stack. The user should be careful
when changing this stack pointer. SUBSTK should only be
initialized with even numbers if it is changed. The MOVE

and SCAN instructions use one level of subroutine stack.

KEYBOARD, KEY,JOYY,JOYX- These locations are used for
handset, joystick and keyboard interfaces. KEYBRD is the
keyboard number, KEY is the returned keycode, JOYY and JOYX
are the returned joystick parameters. See the SCAN
instruction description for more details. Also see
Appendix D. These values are initialized to 0 by the

Monitor.

RANDOM- This location is loaded with a random number when
the RAND instruction is executed. It is initialized to a

random number generated by the Monitor.

TIMER- When the VDP Frame interrupt is enabled , this byte
gets incremented by one every 1/60 second. By clearing it
with a CLR and then using the loop
LOOP CEQ (delay),@TIMER
BR LOOP

3-18

a fixed delay in the GPL program can be implemented.

MOTION- This location, when set to a non-zero value by the
ptogrammer, represents the number of Sprites that are
included in auto-motion. For example, if it contains a
two, Sprites 0 and 1 will be put into auto-motion. See

Appendix B for details on Sprite aqtoﬁmotion.

VDPSTT- This location is a copy of the VDP Status register.
It is updated every frame interrupt (when frame interrupts

are disabled, VDPSTT is not updated).

STATUS- This byte automatically gets loaded with bits as a
result of many instructions. It contains bits representing
equality, arithmetic greater than, logical greater than,

carry and overflow. See Section 3.4 for details.

CB, YPT, XPT- These bytes, in conjunction with one another,
provide a method for writing information out to the VDP
Pattern Name Table. When the CB location is used as a
source operand in an instruction, it is first loaded with
the value of the Pattern Name Table specified by XPT and
YPT. This assumes that the Pattern Name Table base address
is 0 and the absolute VDP RAM address is calculated by
32*YPT+XPT. This provides a convenient method for reading
informazion ofi of the screen. If CB is ever found to nave
been modified by an instruction, the new value of CB is

3-19

written to the Pattern Name Table location specified by XPT
and YPT.

Some examples:

DST #0302,YPT

ST CB,@TEMP- ..causes TEMP to get loaded with the
byte from location XPT=2,YPT=3;

ST @CHRl, CB ..causes whatever is in CHRl to be
written to the screen at the
location corresponding to the
current values of XPT and

YPT.

Multicolor mode uses YPT and XPT to do mapping
automatically in range YPT = 0 to 47, XPT = 0 to 63. CB,
XPT, and YPT are predefined symbols and can be used with or

without @ sign in front of them.

TABLE 3.5

STATUS BLOX
RECCMMENDED ADDRESS IN INITIALIZED TO
SYMBOL CPU RAM (>) BY MONITOR
MAXMEM 70, 71 MAXTMUM VDP
MEMORY ADDRESS
DATSTK 72 >9F
SUBSTK &3 >7E
KEYBERD 74 0
KEY 75 0
JOYY 76 0
JOYX 77 0
RANDCM 78 0
TIMER 79 0
MOTION 7A 0
VDPSTT 7B 0
STATUS 7C 0
CB D 0
Ier 7E 0
XPT TF 0

3-21

3.4 THE STATUS BYTE

Two bytes in the STATUS BLOCK are used to indicate the VDP
and program status. Five bits in the program status byte, called
STATUS, indicate the result of operations. The format of the

STATUS byte is:

/ H / GT / COND / CARRY /OVF / 0 / O / 0 /

bit 7 6 5 4 3 2 L 0

The COND bit is most important, since the BR (Branch on
Reset) and BS (Branch on Set) instructions use this bit to decide
whether to branch or not. Many operations affect all the bits,
especially single and double operand arithmetic/logical
instructions. 1Instructions have been provided which transfer one
of the other bits into the COND bit; this makes it easy to
conditionally branch based on the results of an operation (See
instructions H, GT, CARRY, OVF). For example, to branch to the
LABEL "BR1" if the CARRY bit or the OVF bit is set, the following
sequence can be used:

CARRY

BS #BRIL

or $IF .CARRY. GOTO BRIl
OVF

BS 3BR1

or $IF .OVF. GOTO BRIl

3-22

In the instruction descriptions in the'following section,
the STATUS bits affected for each instruction are shown boxed in.
Other STATUS bits are not affected at all. Note that some
instructions like the branches always reset the COND bit.

The format of the VDP status byte, called VDPSTT, is:

/FRAME INT/5th SPRITE/SPRITE COINC/FIFTH SPRITE NUMBER /
bit 7 6 5 4 3 4 i 0

3

The MSB is a frame interrupt bit. Bit 6 is the fifth sprite
bit and is set any time there are five sprites on a line. Bit 5
is a sprite coincidence flag and is set any time there is sprite
coincidence. The last five bits are used for the number of the

fifth sprite on a line.

4.0 INSTRUCTION DESCRIPTIONS
‘ The following pages are a description of each Graphics
Language instruction.

All instruction descriptions tell how the status byte is
affected and give execution results. The symbol := represents
"takes the value of." Parentheses mean "contents of", e.g.
"Compare (A) to 48" means "Compare the contents of variable A

to 48",

4.1 COMPARE AND TEST INSTRUCTIONS H

4.1.1 TEST LOGICAL HIGH BIT

Syntax definition: H

Example: LABl H TEST THE LOGICAL HIGH BIT

Definition: Set/reset condition bit to the logical high
status bit value

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := H

Application notes: Use the H instruction to detect whether the
logical high status bit was set as a result
of the previous instruction as a prelude to
a conditional branch (BR or BS)

For example:

H

BS LABl

or SIF .H. GOTO LABl
causes a Branch to LABEL "LABl" if the
logical high bit has been set.

Op Code: >09

Format Type: 5

4.1.2 TEST ARITHMETIC GREATER THAN BIT Gl

Syntax definition: GT

Example: LABl GT TEST THE ARITHMETIC GT BIT.

Definition: Set/reset condition bit to the arithmetic greater
than status bit wvalue.

Status bits affected: / B / GT / cond / carry / OVF/
;|
Execution results: COND := GT

Application notes: Use the GT instruction to detect whether
the Arithmetic greater than status bit was
set as a result of the previous instruction
as a prelude to a conditional branch (BR or BS)

Op Code: >0a

Format type: 5

4-3

4.1.3 TEST CARRY BIT CARRY

Syntax definition: CARRY
Example: LABl CARRY TEST THE CARRY BIT
Definition: Set/reset condition bit to the carry status bit value

Status bits affected: / H / GT / cond / carry / OVF /
T

Execution results: COND := CARRY

Application notes: Use the CARRY instruction to detect whether
there was a carry out of the most significant
bit of a byte or word as a result of the pre-
vious instruction as a prelude to a condi-
tional branch (BR or BS)

Op Code: >0C

Format type 05

4.1.4 TEST OVERFLOW BIT OVF

Syntax definition: OVF

Example: LABl OVF TEST THE OVERFLOW BIT

Definition: Set/reset condition bit to the overflow status
bit value. '

Status bits affected: / H / GT / cond / carry / OVF /
]
Execution results: COND := OVF

Application notes: Use the OVF instruction to detect whether
an arithmetic overflow (the result is too
large or too small to be correctly
represented in two's complement representa-
tion) has occurred as a prelude to a condi-
tional branch (BR or BS).

Op Code: >0D

Format type: 05

4.1.5 COMPARE EQUAL

Syntax definition: CEQ GS,GD
DCEQ GS,GD
Example: LABl CEQ 48,€a
OR

LABL $IF €A .EQ. 48 THEN

Definition:

CEQ
DCEQ

COMPARE (A) TO 48 AND
SET CONDITION BIT
ON EQUAL

Compare the GD to the GS and set the condition

bit depending on the result.

Status bits affected: / H / GT / cond / carry / OVFE/

]

Execution results: (GD) = (GS)

Application Notes:

COND:
COND:

set, 1if true
reset, if false

Use the CEQ instruction to compare the GD to

the GS and set the condition bit if they are

equal.

status bits

This is used as a prelude to a condi-
tional branch (BR or BS).

The effect on the

is as if GS is subtracted from GD

and the result compared to zero.

Op Code: >D4

Format type: 1

4.1.6 COMPARE LOGICAL HIGH CH

DCH
Syntax definition: CH GS,GD
DCH Gs,GD
Example: LABl CH €A,EB COMPARE (B) TO (A)
or AND IF (B) IS LOGICALLY

HIGHER THAN (A) SET THE
CONDITION BIT
LABl $IF €B .H. €A THEN

Definition: Compare the GD to the GS and set the condition bit
if the GD is logically higher than the GS

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := (GD) H (GS)

Application Notes: Use the CH instruction to do the comparison
GD.H.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS).

Op Code: >C4

Format type: 1

4.1.7 COMPARE LOGICAL HIGH OR EQUAL CHE

DCHE

Syntax definition: CHE GS,GD
DCHE GS,GD

Example: LABIL CHE 20,@VALUE COMPARE (VALUE) TO 20
& SET CONDITION BIT IF
or (VALUE) IS LOGICALLY
HIGHER THAN OR EQUAL TO 20
$IF @VALUE .HE. 20 THEN

Definition: Compare the GD to the GS and set the condition bit
if the GD is logically higher than or equal to
the GS

Status bit affected: / H / GT / cond / carry / OVF /

o)

Execution Result: COND := (GD) HE (GS)

Application Notes: Use the CHE instruction to do the comparison
GD.HE.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS)

Op Code: >C8

Format type: 1

4.1.8 COMPARE GREATER THAN CGT

DCGT
Syntax definition: CGT GS,GD
DCGT GS,GD

Example: LABEL CGT €A,NEW COMPARE NEW TO (A) AND SET

CONDITION BIT IF NEW IS
GREATER THAN (A)

OR '

LABEL S$IF @NEW .GT. €A THEN

Definition: Compare the GD to the GS and set the condition bit
if GD is greater than (arithmetically) the GS.

Status bits affected: / H / GT / cond / carry / OVF /

?
Execution results: COND := (GD) GT (GS)

Application Notes: Use the CGT instruction to do the comparison
GD.GT.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS)

Op Code: >CC

Format type: 1

4-9

4.1.9 COMPARE GREATER THAN OR EQUAL CGE

DCGE

Syntax definition: CGE GS,GD
DCGE GS,GD

Example: LABIL CGE 82,EB COMPARE (B) TO 82 AND SET
CONDITION BIT IF (B) IS
or GREATER THAN OR EQUAL TO 82

LABl1 $IF @B .GE. 82 THEN

Definition: Compare the GD to the GS and set the condition bit
if GD is greater than or equal to the GS

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := (GD) GE (GS)

Application Notes: Use the CGE instruction to do the comparison
GD GS and set the condition bit if the
relation is true as a prelude to a conditional
branch (BR or BS)

Op Code: >DO0

Format type: 1

4.1.10 COMPARE LOGICAL CLOG
DCLOG

Syntax definition: CLOG GS,GD
DCLOG Gs,GD

Example: LABEL CLOG 86 ,@VALUE SET CONDITION IF RESULT
OF 86.AND. (VALUE)
IS ZERO

Definition: Perform the bit by bit logical AND operation between
GS and GD and set the COND bit if the result is 0.

Status bits affected: / H / GT / cond / carry / OVF /
?
Execution Results: COND := (GS) AND (GD) = 0

Application Notes: Use the CLOG instruction to set COND
if GD and GS have no 1's in same positions.

Use as a prelude to a conditional branch (BR
or BS)

Op Code: >D8

Format type: 1

4-11

4.1.11 COMPARE ZERO CZ

DCZ
Syntax definition: C2Z GD
DCZ GD
Example: LABL cZ @VALUE SET CONDITION BIT IF

(VALUE)IS EQUAL TO ZERO

Definition: Compare the GD to zero and set the condition bit
accordingly.

Status bit affected: / H / GT / cond / carry / OVF /
1

?
Execution Results: COND =: (GD) =0

Application Notes: Use the CZ instruction to do the comparison
GD = 0 and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS)

Op Code: >8E

Format type: 6

4-12

4.2 PROGRAM CONTROL INSTRUCTIONS BS

4.2.1 BRANCH ON SET

Syntax definition: BS LABEL

Example: LABEL BS HERE BRANCH TO ADDRESS OF HERE
IF CONDITION IS SET

Definition: Branch to address of the LABEL operand if the COND
bit is set. After branching the condition bit is
reset.

Status bit affected: / H / GT / cond / carry / OVF /
1
Execution results: IF (COND.EQ.set) THEN (PC):= LABEL

Application Notes: Use the BS instruction to branch to another
portion of the program depending on whether
the condition bit is set. For example if
the previous instruction was a SUB that re-
sulted in a zero result; the instruction,

BS ZERO
program execution commencing at the
instruction at label "ZERO".

NOTE: The LABEL must reside in the same
6K GROM segment as the BS instruction.

Op Code: >60

P

7

I(j
1]
S

Tormat

4-13

4.2.2 BRANCH ON RESET BR

Syntax definition: BR LABEL

Example: LABl BR HERE BRANCH TO ADDRESS "HERE" IF
CONDITION IS RESET

Definition: Branch to address of the label operand if the
condition bit is reset. After execution the
condition bit is reset,.

Status bits affected: / H / GT / cond / carry / OVF /
L]
Execution results: IF (COND.EQ.0) THEN (PC):= LABEL

Application notes: Use the BR instruction to branch to another
portion of the program depending on whether
the condition bit is reset. For example if
the previous instruction was an ADD that
resulted in a non-zero result the instruction,

BR NONZ
would result in the program commencing
at the instruction at "NONZ" in the program.

NOTE: The LABEL must reside in the same 6K
GROM segment as the BR instruction.

Op Code: >40

Format type: 4

4.2.3 BRANCH B

Syntax definition: B LABEL

Example: LABIL B HERE BRANCH TO ADDRESS OF HERE

Definition: Branch absolutely to address of the label operand.
This branch is unconditional. The condition bit
is reset after execution.

Status bits affected: / H / GT / cond / carry / OVF /
Execution results: (PC):= LABEL

Application Notes: Use the B instruction to unconditionally
transfer program control to another portion
of the program. If the label HERE is at
the address OB; the instruction,

B HERE
will replace the PC with the value OB.
The condition bit will be reset.
NOTE: The B instruction should be used

to transfer control between 6K GROM
segments.

Op Code: > 05

Format type: 3

4

id

4.2.4 CASE CASE

DCASE
Syntax definition: CASE GD
DCASE GD

Example: LABl CASE ea GOTO NEXT INSTRUCTION FOR (A)

EQUAL TO ZERO, TWO MORE IF
(A) EQUAL TO ONE, ETC

Definition: Add two times the value of the operand to the current
GROM Program Counter. Resets condition bit in status.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (PC):= 2 *(GD)+PC

Application Notes: The CASE instruction is typically followed by

a series of BR statements. Since the condition
bit resets after executing, the BR's are always
taken. (The BR is used because it is a two-
byte instruction while B is a 3-byte instruc-
tion). An example of use of the CASE statement
is:

CASE @NMBR

BR LABI1

BR LAB2

BR LAB3

If the byte at location NMBR is a 0, branch to
LABl, if a 1, branch to LAB2; if a 2, branch
to LAB3.

NOTE: All the labels have to reside in the
same 6K GROM segment as the (D) CASE instruc-
tion.

Format type: 6

4-16

4.2.5 CALL SUBROUTINE CALL

Syntax definition: CALL LABEL

Example: LABI CALL HERE CALL THE SUBROUTINE STARTING
AT THE ADDRESS OF THE LABEL HERE

Definition: Replace the PC with the address of the LABEL. Place
the old PC at the top of the call stack (pointer at
CPU RAM >73). Reset condition bit.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (SBRSTK):=(SBRSTK)+2
((SBRSTK)) :=(PC)
(PC) : =LABEL

Application Notes: Use the CALL instruction to enter a subroutine.

Op Code: > 06
Format type: 3

The following table may be used as a reference for determining
when it is more economical to use a subroutine:

Instruction Set Length Minimum Number of Times Bytes Saved
(m) in bytes Instruction Set is Used n = Times Used
3 or less ~ -
4 6 n=35
5 = 2n - 6
3 2 in -~ ©
7 3 4n - 8
8+ 2 (m=-3)n - (m+1)

4-17

4.2.6 FETCH FETCH

Syntax: FETCH GD

Example: LABl FETCH €VALL FETCH 1ST PARAMETER

Definition: Retrieves a byte of data pointed to by the return
address on the subroutine stack and increments this
return address by 1.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (((SBRSTK)))
((SBRSTK)) :=((SBRSTK))+1

Applications Note: Use the FETCH instruction to pass parameters
in line to a subroutine . For example in
this sequence,

CALL SUB
DATA 1,24

SUB FETCH @ARGl
FETCH @ARG2

The FETCH statement at SUB will place a 1 in location ARGl. The
next instruction will place a 24 in location ARG2. Upon returning
from the subroutine, execution commencences at instruction after

the 24. The FETCH instruction uses two bytes of the subroutine
stack. The FETCH instruction can only use CPU RAM as GD.

Op Code: >88

Format type: 6

4.2.7 RETURN FROM SUBROUTINE RTN

Syntax definition: RTN
Example: LABl RTN RETURN WITH 0 TO CONDITION

Definition: Replaces PC with the value at the top of the sub-
routine stack (pointer at >73 in CPU RAM). Resets
the condition bit.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (PC):= ((SBRSTK))
(SBRSTK) : =(SBRSTK) -2
COND: =reset

Applications Notes: RTN is used to return from a subroutine call
when you don't care about saving the condition
bit value. By changing the value of the top
of the subroutine call stack (pointed to by
CPU RAM location >73), the return address
may be modified.

Op Code: >00

Format type: 5

4-19

4.2.8 RETURN FROM SUBROUTINE (SAVE CONDITION) RTNC

Syntax definition: RTNC

Example: LAB1 RTNC RETURN WITH NO EFFECT ON STATUS

Definition: Replaces PC with the value at the top of the
subroutine stack (pointer at >73 in CPU RAM).
Does not affect status.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (PC):= ((SBRSTK))
(SBRSTK) :=(SBRSTK)-2

Applications Notes: see RTN

Op Code: >01

Format type: 5

4.3 BIT MANIPULATION INSTRUCTIONS

Individual bits of memory may be set, reset, or tested using
bit operations. The memory bits are numbered 76543210, with O
being the least significant and 7 the most significant bit. The
immediate operand that specifies bit number is truncated to 3
bits. The status byte is modified by these insructions.

These instructions are macro-instructions which the

assembler converts into equivalent GPL instructions.

4.3.1 RB_ GD,IMM := AND IMM;.GD

Reset the bit in memory identified by the two operands. The COND
bit is set if the resulting destination byte is zero and reset
otherwise. Note that an AND instruction is generated by the

assembler.

4.3.2 SB_GD, IMM := OR IMM;,GD

Set the bit in memory identified by the two operands. The COND
bit is always reset. This instruction is assembled as an OR

instruction.

4.3.3 TBR GD, IMM := CLOG IMM,;,GD := SIF BIT(IMM) GD .EQ. O THEN
Test the bit in memory identified by the two operands and set the
COND bit if the tested bit is a zero. Otherwise reset the COND

bit. This instruction is assembled into a CLOG statement.

4.4 ARITHMETIC & LOGICAL INSTRUCTIONS

Arithmetic operations work on operands in two's complement
form and affect the status byte. The result of an add, subtract,
increment, or decrement instruction sets the COND bit if the
result is zero, the H bit if logical high, the GT bit if
arithmetic greater than, the OVF bit on overflow, and the CARRY
bit if a carry occurs from the most significant digit. The
divide instruction sets the OVF bit if the divisor is less than
or equal to. the first byte of the dividend. The compare
instructions compare the destination operand to the source
operand. For example, a CGT instruction sets the COND bit if the
destination is greater than the source.

The address fields of these instructions contain one or two
operands. In general the first is the source operand and the
second the destination. For example, in an add operation the
first operand is added to the second and in a subtract operation

the first is subtracted from the second.

4-22

4.4.1 ADD ADD or A
| DADD or DA

Syntax definition: ADD GS,GD
DADD GS,GD

Example: LABl ADD 48,@X(ONE) ADD 48 TO (X) INDEXED
BY (ONE)

Definition: Replace GD with the sum of the GS and GD. Compare
the result to zero and set/reset status bits to
indicate this result

Status bits affected: / H / GT / cond / carry / OVF /
1] L [] 1
Execution resluts: (GD) := (GS)+(GD)

Application notes: ADD is used to add Twos complement integer.
For example, if the address labeled TABLE
contains >FE and the address labeled NO
contains a >01; the instruction

ADD €TABLE, @NO
would result in NO containing a FF and
TABLE remaining unchanged. The logical

high bit would be set and the other bits
reset.

Op Code: >a0

Format type: 1

4.4.2 SUBTRACT SUB or S

DSUB or DS
Syntax definition: SUB Gs,GD
DSUB GS,GD
Example: LABI1 SUB €A, @B SUBTRACT (A) FROM (B)

Definition: Replace GD with the GD less the GS. Compare the
result to zero and set/reset status bits to indicate
this result.

Status bits affected: / H / GT / cond / carry / OVF /
1 T 1 i]
Execution results: (GD) := (GD) - (GS)

Application notes: Use the SUB instruction to subtract signed
integer values. For example, if the location
NEW contains a value of ©6F and memory
location OLD contains a value of =-1; the
instruction,

SUB @OLD, @NEW
results in the contents of NEW changing to

>70. The logical high, greater than status
bits set, the others reset.

Op Code: >Ad

Format type: 1

4.4.3 MULTIPLY MUL or M
DMUL or DM

Syntax definition: MUL GS,GD
DMUL GS,GD

Example: LABl MUL >4,8A MULTIPLY >4 TIMES (A&)

Definition: Multiply the GD by the GS. 1In the single byte MUL,
both operands are single byte values but the result
is stored in a double byte location at GD. The 8
most significant bits are stored in the GD. 1In the
double byte DMUL, both operands are double byte
values and the result is a four byte value at GD.
No status bits are affected. The multiply is an

unsigned type.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: MUL : (GD,GD+l) :=(GS)*(GD)
DMUL : (GD,GD+1,GD+2,GD+3):= (GS, GS+1) *
(GD, GD+1)

Application notes: 1In the single MUL the GS & GD are 8-bit
values. The result is a 1l6-bit wvalue. 1In
the double DMUL, the GS and GD are l6-bit
values. The result is a 32-bit value. For
example, if location A contains a >F3 and
location B contains a >82, the instruction

MUL €A,@B
would result in location A being unchanged &

location B containing >7B, and location (B+1l)
containing >66. Status bits are unchanged.

op Code: >A3

Format type: 1

4.4.4 DIVIDE DIVor D

DDIV or DD
Syntax definition: DIV GS,GD
DDIV GS,GD
Example: LAB1 DIV >08,@VALUE DIVIDE TWO BYTES STARTING AT

VALUE BY >08

Definition: Replace the GD with the quotient and remainder of GD
divided by GS. Compare the result to zero and set/
reset status bits to indicate the result.

The divide is of the signed type.

Status bits affected: / H / GT / ¢cond / carry / OVF /

Execution results:

DIV: (GD):= (GD,GD+1)/(GS) ;(GD+1l):= remainder;
DDIV: (GD,GD+1):= (GD,GD+1,GD+2,GD+3)/(GS,GS+1):;
(GD+2,GD+3):= remainder.

Application Note: If the DIV instruction is a single byte
instruction, the single byte GS is divided
into the double byte GD and the quotient is
put in the GD. If the DDIV instruction is
used, the two byte GS is divided into the four
byte GD and the quotient is put into the two
bytes at GD; the remainder is placed in two
bytes at GD+2.

Op Code: >AC

Format type: 1

4.4.5 INCREMENT BY ONE INC

DINC

Syntax definition: INC GD
DINC GD

Example: LAB1 INC €a INCREMENT (A) BY 1

Definition: Replace the GD with the GD plus one. The result is
compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /
L L (]] 1

Execution results: (GD) := (GD)+1

Application notes: Use the INC instruction to count and index
byte arrays, add a value of one to an
addressable memory location, or set flags.
For example, if COUNT contains a zero, the
instruction

INC @COUNT
places a >01 in COUNT and sets the logical
high, and arithmetic greater than status

bits, while the condition, carry and overflow
status bits are reset.

Op Code: >90

Format type: 6

4.4.6 INCREMENT BY TWO INCT

DINCT

Syntax definition: INCT GD
DINCT GD

Example: LABl INCT ea INCREMENT (A) BY 2

Definition: Replace the GD with the GD plus two. The result is

compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /

Execution Results: (GD) := (GD)+2

Application notes: Use the INCT instruction to count and index
double byte arrays and add a value of two to
an addressable memory location. For example,
if TEMP contains the address >00 (i.e. points
to the first temporary two byte location in
CPU RAM; the instruction,

INCT @TEMP

places a 0002 in TEMP (so that it now points
to the next two bytes of temporary byte CPU RAM).

Op Code: >94

Format type: 6

4.4.7 DECREMENT BY ONE DEC

DDEC

Syntax definition: DEC GD
DDEC GD

Example: LABI DEC @A DECREMENT (A) BY 1

Definition: Replace the GD with the GD minus one. The result is
compared with zero & the status bits are set/reset to
indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /
] Ll L} L}]

Execution results: (GD) := (GD)-1

Application notes: Use the DEC instruction to subtract a value
of one from any addressable operand. The DEC
instruction is also useful in counting and
indexing byte arrays. For example, if COUNT
contains a value of 1, then

DEC @COUNT
results in a value of zero in location COUNT &
sets the condition and carry status bits while

resetting the logical high, arithmetic greater
than, and overflow status bits.

Op Code: >92

Format type: 6

4.4.8 DECREMENT BY TWO DECT

DDECT

Syntax definition: DECT GD
DDECT GD

Example: LAB1 DECT €A DECREMENT (A) BY 2

Definition: Replace the GD with the GD minus two. The result is
compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /
1] 1 1 1

Execution results: (GD) := (GD)-2

Application notes: The DECT instruction is useful in counting &
indexing two byte arrays. Also, use the DECT
instruction to subtract a value of two from
any addressable operand. For example, if
COLOR contains the value >0A the instruction

DECT @COLOR

would result in the value >08 being stored in
COLOR .

Op Code: >96

Format type: 6

4-30

4.4.9 ABSOLUTE VALUE ABS
DABS

Syntax definition: ABS GD

Example: LABl ABS E€DX(INDEX) ABSOLUTE VALUE OF (DX)
INDEXED BY (INDEX)

Definition: Replace the GD with the absolute value of the GD.
Does not affect status bits.

Status bits affected: / GT / H / cond / carry / OVF /

Execution results: (GD) := ABS(GD)

Application notes: Use the ABS instruction to take the absolute
value of an operand. For example if the
location >76 (joystick ¥Y) contains -4 then

ABS @ 76

will result in a +4 at >76.

Op Code: >80

Format type: 6

4.4.10 NEGATE

NEG
DNEG

Syntax definition: NEG GD
DNEG GD

Example: LABl DNEG €B NEGATE TWO BYTES AT B

Definition: Replace the GD with its two's complement value.
Does not affect status bits

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := -(GD)

Applications notes: Use the NEG instruction to make the contents

of an addressable memory location its additive
inverse.

For example if TEMP contains the
value of 1, the instruction,

NEG @TEMP

would result in the value >FF being stored
in TEMP.

Op Code: >82

Format type: 6

4-32

4.4.11 INVERT INV

DINV
Syntax definition: INV GD
DINV GD
Example: LABl INV €A INVERT (A)

Definition: Replace the GD with its one's complement value.
Does not affect status bits.

Status bits affected: / GT / H / cond / carry / OVF /

Execution results: (GD) := LOGICAL INVERSION (GD)

Application notes: Use the INV instruction to complement an
operand. For example if location COUNT
contained a zero; the instruction

INV @COUNT

will result in a >FF being stored in COUNT.

Op Code: >84

Format type: 6

4.4.12 LOGICAL AND AND

DAND
Syntax definition: AND GS,GD
DAND GS,GD
Example: LABl AND >FO0,@Y SET 4 LSB OF (Y) TO ZERO

Definition: Perform a bit-by-bit AND operation of the 8 (16)
bits in GS with the GD and store the result in the
GD. The result is compared to zero and the status
bits are set/reset to indicate the result.

Status bits affected: / H / GT / cond / carry / OVF /
1 1]] L
Execution results: (GD) := (GS) AND (GD)

Application notes: Use the AND instruction to perform a logical
AND operation between a GS and GD. The AND
operation is useful in masking out bits befcre
a comparison. If location X contains a >66
and location Y contains a >0F; the instruction

AND @Y ,@X
would result in X containing a 06. The GT

and H status bits will be set and all other
status bits reset.

Op Code: >BO

Format type: 1

4.4.13 LOGICAL OR OR
DOR

Syntax definition: OR GS,GD
DOR GS,GD

Example: LABl DOR FFFE,@VALUE "OR" THE DOUBLE BYTE
IMMEDIATE VALUE FFFE WITH
(VALUE)

3

Definition: Replace the GD with the GD OR'd with the GS. Compare
the result to zero & set/reset the status bits to
indicate this result.

Status Bits Affected: / H / GT / cond / carry / OVF /
1 1 [} [] 1
Execution results: (GD) := (GS) OR (GD)

Application notes: Use the OR instruction to perform a logical OR
between the GS and GD. If location A contains
>F6 and location B contains a >68 the instruction
OR €a,E€B
would result in location B changing to >FE.

The logical high status bit will be set, the
rest will be reset.

Op Code: >B4

Format type: 1

4.4.14 EXCLUSIVE OR XO0R

DXOR
Syntax definition: XOR GS,GD
DXOR GSs,GD

Example: LABl X0OR >F8,eA "EXCLUSIVE OR"™ >F8 WITH (&)

A

1

Definition: Exclusively OR the GS and GD and replace the GD with
the result. The result is compared to zero and the
status bits are set/reset to indicate the result.

Status bits affected: / H / GT / cond / carry / OVF /
L] 1] | B 1 1

Execution results: (GD) := (GS) XOR (GD)

Application notes: The exclusive OR is accomplished by comparing
the GD and GS on a bit-by-bit basis. 1If the
bits are both 0 or both 1, the GD is reset;

otherwise it is set, If location A contains
>88 and location B contains >»87, the instruc-
tion

XOR @A,€B

would result in location B changing to >OF.
The logical high and greater than status
bits will be set, the rest will be reset.

To reverse bits in a byte, do an XOR with a

number which has all bits set you want to
reverse.

Op Code: >B8

Ya)
(v}
"y
EJ
V]
r

type: -

4.4.15 CLEAR LOCATION CLR
DCLR

Syntax definition: CLR GD
DCLR GD

Example: LABI CLR €A STORE ZERO IN (&)

Definition: Replace the GD with a zero. Does not affect status
bits.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := 0

Applications notes: Use the CLR instruction to replace any
addressable memory location with a zero.

Op Code: >86

Format type: 6

4-37

4.4.16 STORE ST

DST
Syntax definition: ST GS,GD
DST GS,GD
Example: LAB1l ST €X ,@TEMP STORE CONTENTS OF LOCATION X

IN LOCATION TEMP

Definition: Replace the GD with the GS. Status bits are not
affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) : (GS)

Application notes: Use the ST instruction to copy the contents
of any addressable memory location or an
immediate value into any addressable memory
location. For example, if 1location X
contains a>88; the instruction

ST @X,@TEMP

will result in both location X and TEMP con-
taining a >88.

Op Code: >BC

Format type: 1

4-38

4.4.17 EXCHANGE EX

DEX
Syntax definition: EX GD,GD
DEX GD,GD

Example: LABl EX ex,ey EXCHANGE THE CONTENTS OF

LOCATIONS X & Y.

1

Definition: The contents of the first operand is exchanged with
the contents of the second operand. No status bits
are affected.

Status bits affected: / B / GT / cond / carry / OVF /

Execution results: (GD) (EXCEHANGE WITH) (GD)

Application notes: Use the EX instruction to exchange the
contents of two locations in memory. For
example if location >380 in VDP RAM contains
a 03 and location >381 in VDP RAM contains

a 05 the instruction;

EX RAM(>380),RAM(>381)
would result in location>380 in VDP RAM
containing a 05 & location >381 in VDP
RAM containing a >03; thus swapping the

colors of pattern set $#0 with pattern set
#lo

Op Code: >CO

Format type: 1

4-39

4.4.18 PUSH ONTO DATA STACK PUSH

Syntax definition: PUSH GD

Example: LABl PUSH ENEWEST PUSH VALUE AT LOCATION
NEWEST ONTO DATA STACK

Definition: Increment the data stack pointer & push the one
byte operand onto it. (Opposite of instruction
POP). No status bits are affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (DATSTK) (DATSTK) + 1
((DATSTK)) :=(GD)

Application notes: Use PUSH instruction to add to data stack.
Opposite of POP.

Op Code: >8C

Format type: 6

4.4.19 POP OFF OF DATA STACK POP

Syntax definition: POP GD

Example: LAB1 POP @DAT POP top value off data
stack and into location DAT

Definition: Pop a byte off the data stack and load it into
GD, then decrement the value of the data stack
pointer

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD):=((DATSTK))
(DATSTK) (DATSTK) - 1

Application notes: This is a macro instruction which the
assembler accepts. The pop instruction is
the opposite of the PUSH instruction. It
assembles into:

ST *STATUS,GD

The interpreter traps this out to POP a
byte of data off the data stack and places
it into the GD, then decrements the data
stack pointer.

4-41

4.4.20 BLOCK MOVE MOVE

Syntax definition: MOVE GS; FROM GS; TO GD

Example: MOVE 21 FROM ROM(#TABL) TO RAM(800)

Definition: Move the specified number of bytes from the source
to the destination.

Status bits affected: / H / GT / cond / carry / OVF /
Ll (GD):=(GS2)
GD: =GD+1
GS2:=GSp+1
GS;:=GS;-1
$IF GS; .GT: 0 GOTO LI1;

Execution results: The requested number of bytes are transferred
from the Source to the destination.

Application notes: The MOVE instruction is useful wherever a
block of data must be moved from one
section of memory to another. Note that
the byte count is IMM or CPU and a double-
byte value.The Source and Destination operands
can represent blocks in CPU RAM, VDP RAM, or
ROM. In addition, the following mnemonics
can be used:

Destination only: VDP(IMM) ..block of VDP Registers

Instead of using a LABEL for GROM, an IMM
field 0-48K, or a GS pointing into CPU RAM
can be used (e.g. ROM(22), ROM(RCPULOC).
Furthermore, an index can be used, as in the
normal addressing mode (e.g. ROM(#AB(A)).
The VDP registers cannot be used as Source,
since they are write-only registers. The
MOVE instruction uses two bytes of the sub-
routine stack.

2p godes >20

Format type: 9

More examples:

MOVE 7 FROM ROM(2000) TO VDP(1l) ..loads up registers 1 thru 7.

MOVE @COUNT FROM R0 to €100 ..copy a block from CPU to CPU
4-42

4.4.21 SHIFT LEFT LOGICAL SLL

DSLL
Syntax Definition: SLL GD, GS
DSLL GD, GS
Example: LABl SLL @ VALUE, S SHIFT (VALUE) LEFT

LOGICAL 5 BITS

A

Definition: Shift the (GD) left for the (GS) number of bits.
Fill in the vacated bits with logical zeros. Status
is not affected.

Status bits affected: / H/ GT / cond / carry / OVF /

Execution results: Shift the (GD) left for the (GS) number of
bits and fill in the vacated bit with zeros.

Application notes: Use the shift left logical to shift the GD.
For example, if VAL has >21 in it, the
instruction

SLL evVAL, 2
results in the contents of VAL becoming >84.
DSLL requires a 2-byte shift count.

Op Code: >EO

Format type: 1

4.4.22 SHIFT RIGHT ARITHMETIC SRA

DSRA
Syntax definition: SRA GD, GS
DSRA GD, GS
Example: LABl SRA €A, €eB SHIFT (A) RIGHT ARITHMETIC BY

THE NUMBER OF BITS SPECIFIED
IN LOCATION B

Definition: shift the (GD) right for the (GS) number of bits.
Fill in the vacated bits with the MSB of (GD).
Status is not affacted.

Status bits affected: / B/ GT / cond / carry / OVF/

Execution results: See definition

Application Notes: An example of an arithmetic right shift is:
if location contains a >86; the instruction
SR @a,2
will result in changing location A to be a
El. DSRA requires a 2-byte shift count.
Op Code: >DC

Format type: 1

4.4.23 SHIFT RIGHT LOGICAL SRL

DSRL
Syntax definition: SRL GD, GS
DSRL GD, GS
Example: aBl SRL @VALUE,7 SHIFT (VALUE) RIGHT 7 BIT

POSITIONS

Definition: shift the contents of the GD to the right for the
(GS) number of bits while filling in the vacated bit
positions with zeros. Status is not affected.

Status bits affected: / B/ GT / cond / carry / OVE_/

Execution results: See definition

Application notes: An example of a logical right shift is: 1If
the double byte location A contains the value
>FFEF, then the instruction,

DSRL €a,3
changes the contents of location A to >1fFD.
DSRL requires a 2-byte shift.count.
Op Code: >E4

Format type: 1

4-45

4.4.24 SHIFT RIGHT CIRCULAR SRC
DSRC

Syntax definition: SRC GD, GS
DSRC GD, GS

Example: LaBl SRC €A, €eB SHIFT (A) RIGHT CIRCULAR BY
THE NUMBER OF BITS SPECIFIED
IN LOCATION B.

]

Definition: shift the (GD) to the right for number of bits
specified in the GS while filling vacated bit
positions with the bit shifted out (LSB). Status
bits are not affected.

Status bits affected: / B / GT / cond / carry / OVF /
Execution results: See definition
Application notes: An example of a right circular shift is, if

location VALUE contains a >A5, the
instruction

SRC @VALUE,1
will result in location VALUE containing a
D2. DSRC requires a 2-byte shift count

Op Code: >E8

Format type: 1

4.5 GRAPHICS AND MISCELLANEOUS INSTRUCTIONS COINC

4.5.1 COINCIDENCE

Syntax definition: LAB 1 COINC GS, GD

Example: COINC RAM (>300),RAM(>304)

]

Definition: The Source operand must indicate a Y,X byte pair for
object 1; likewise, the Destination operand
indicates the Y,X byte pair for object 2; COINC sets
the status equal bit if the objects are 1in
coincidence; otherwise it resets the status equal

bit.
Status bits affected: H /GT / cond / carry / OVE /
Execution results: COND = (objects in coincidence?)
Application notes: See Appendix E for details on operation
of the COINC INSTRUCTION.
Op Code: >ED
Format type: 1

4.5.2 LOAD BACKDROP COLOR BACK

Syntax definition: BACK IMM

Example: LABl BACK 3 LOAD BORDER WITH COLOR 3

Definition: Load the border area of the display with the
immediate color specified. Does not affect status
bits. Loads VDP register 7.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (VDP reg.7) := IMM

Application notes: Use the BACK instruction to change the VDP
register 7 to change the border color of the
display to the desired color.

Op Code: >04

Format type: 2

4.5.3 LOAD SCREEN ALL

Syntax definition: ALL IMM

Example: LABL ALL O LOAD EVERY BLOCK ON SCREEN WITH
PATTERN #0 (RESIDES AT>0800 ->0807
IN VDP RAM)

3

Definition: Replace every byte in the pattern name table
(768 bytes) with the immediate operand. No status
bits are affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: ST IMM,RAM(0)
MOVE 767 from RAM(0) to RAM(1)

Application notes: Use the ALL instruction to display a
repetitive pattern on the entire screen.
This can be used to clear the screen.
Assuming >900 to >907 (Pattern number >20)
contains 00's (which they will at power up from
the ASCII default character set); the instruction

ALL >20
will result in the the sceen getting filled

up with ASCII blanks. No status bits are
affected.

Op Code: >07

Format type: 2

4.5.4 FORMATTED BLOCK MOVE FMT

Syntax definition: FMT OPERAND],OPERAND2,0OPERAND3,...

Example: FMT BIAS=>20,4('0,2,4,6")

Definition: Output immediate and variable data to the Pattern
Name Table in a controlled, formatted fashion.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: The Pattern Name Table is modified; see
below.

Application notes:

The operands of the FMT instruction are encocded by
the assembler and placed inline after the FMT op code.
The FMT processor in the interpreter is essentially
a sub-interpreter in that its "language" is different
from the rest of GPL. The FMT instruction places
data into the VDP Pattern Name Table in such a way
that the resulting screen image is formatted in the
way the programmer desires.

The locations XPT and YPT in the CPU RAM are used
heavily by FMT to determine where to put the next bytes
of data. These locations can be set within the FMT
statement; they are updated by the FMT statement also.

Some of the FMT capabilities are:

@ Place a sequence of immediate data across the
screen from a defined starting point;

e Place a sequence of immediate data down the
screen from a defined starting point;

e Repeat the same immediate data byte or segquence
of bytes across or down the screen;

e Nest the above features in order to put data
up in a rectangular fashion;

Each of the OPERANDs can be of one of the
291ilowing Zormdats:

'Imrlm;Imfa..oo'

(places the data across the screen from
starting point specified by XPT,YPT);

4-50

"IMM, IMM,IMM,...."
(places the data down the screen from
starting point specified by XPT,YPT);

M('@QIMM')
(repeats the data from location IMM in
CPU RAM across the screen M times, where
M is from 1 to 32, or left off for 1, uses
the data stack);

M'IMM'
(repeats the same value across the screen
M times; M is from 1 to 32, or left off for 1);

N" IMM"
(repeats the same value down the screen
N times; N is from 1 to 32);

':character string:' or ":character string:"

(outputs the ASCII equivalents of the character
string to the Pattern Name Table; note also
that this colon-delimited string can be
used wherever IMM is called for in the
above formats);

(adds the value of N to YPT, N from 1 to 32);

(adds the value of M to XPT, M from 1 to 32);

XPT=IMM
(sets XPT to a specified value);

YPT=IMM
(sets YPT to a specified value):;

BIAS=GS
(sets the BIAS to a specified value, see below):

Upon entering the FMT statement, the BIAS is 0.
Everything that gets output to the Pattern Name Table
gets the value of BIAS added to it. Setting the BIAS
to a non-zero value allows using the same FMT statement
to output alternate character sets, the same character
set of different colors, etc.

Any sequence of operands to the FMT instruction
may be enclosed in parentheses, and a "loop" count
constant used in front of it. The operands inside the
Parentheses ar2 then effectively repeatad the number
of times specified by the loop count. Examples of this
will be seen below. Furthermore, these loop structures
may be nested inside one another.

4-51

If a horizontal boundary is reached while outputting
data to the VDP, XPT is reset to 0 and YPT i{s incremented.
Thus further data is then output starting at the beginning
of the next line. If the vertical boundary is reached, YPT
is reset to 0 ; XPT is kept the same (this means vertical
wrap-around will be to the same column).

Examples:
FMT 3" :HELLO:" (Repeats HELLO 3 times
down the screen)
HOME

FMT 32'>E0',22('>E0',30< ,'>E0'),32,'>E0"
(Puts a border around the
screen one character wide
of character >EO0)

FMT BIAS= >A0,XPT=13,YPT=23,':TENNIS:'
(Adds >A0 to the hex value of
the ASCII characters and puts
those characters on the screen)

PADL1 EQU >AS

FMT XPT=15,YPT=1, 22"PADL1" (Puts 22 of characer >AS5
down the screen)

FMT BIAS=>20,2('@NUM') (Adds >20 to the value stored
in NUM and puts 2 of those
characters on the screen.)

FMT 3(17,29<,3(':AAA:')) (Moves pointer one line down,
29 spaces right, and puts 8
A's on the screen--repeats
this two more times)

FMT BIAS=RAM(O)r11213f4r5r6f7?8!9f0
{Adds the value at RAM(0) to
each number and puts that
character across the screen)

FMT XPT=0,YPT=0,":MY:",1",2<, ":aRM: ", 1", 3<;
".THAT:",1",4<," : THROWS:"

(Starting at the top corner,
puts MY down the screen, moves
down 1 line, right 2 spaces,
puts ARM down screen, moves
down 1 line, right 3 spaces,
outs THAT Sown Lhe Scigen,
moves down one line, right 4
spaces, puts THROWS down the

screen.)
Op Code >08

Format type: 7

4.5.5 GENERATE RANDOM NUMBER RAND

Syntax definition: RAND IMM

Example: LABEL RAND 25 GENERATE A RANDOM NUMBER FROM
0 TO 25 INCLUSIVE

Definition: Generate a random number from zero to the immediate
operand and store this number in location >78 of CPU
RAM. Does not affect status bits. If no immediate
value is specified, the default is 255,

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (RAND) := Random number in (0,IMM)

Application notes: Use RAND to generate random numbers. For
example, for RAND sprite motion the in-
struction,

RAND 3

would generate a random number between
0 and 3 inclusive.

There is a useful way to generate
the initial seed for the random number:

LOOP1 RAND

SCAN

BR LOOPl
This method generates a "random" number
of calls to RAND, depending on how long
it takes for a key to be pressed. All
subsequent calls to RAND will thus gene-
rate unigque random numbers every time
the program is run. It is good to use
this 1loop everywhere you do a scan if
you need really random numpers.

Op Code: >02

Format type: 2

4.5.6 SCAN KEYBOARD SCAN
Syntax definition: SCAN
Example: LABL SCAN SCAN KEYBOARD

Definition: Scans keyboard specified in >74 in CPU RAM. Returns
the keycode in location >75, the Y-position of the
joystick in location >76, and the X-position in
location >77. The COND bit is set if a key is
found depressed; however, the keypad or keyboard
is "debounced"” in the sense that if the same key
is found depressed as was depressed upon the previous
call to SCAN (on the same keyboard), the proper
keycode is returned, but the COND bit is reset.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: >75 = KEY value
>76 := JOYY
>77 = JOYX
COND := set if new key; reset if old key or
no key

Applications notes: See Appendix D for details on handsets and
keyboards.

Assembly Language: There is a keyboard scan subroutine that can
be called while executing 9900 Assembly
Language code. This subroutine is located at
location >000E in the console ROM. The key-
board number (CPU >74) should be specified
before calling the subroutine. A BL to this
subroutine will serve the same purpose as a
SCAN instruction in Graphics Language.

Op Code: >03

Format type: 5

4.5.7 EXECUTE MACHINE LANGUAGE XML

Syntax definition: XML IMM

Example: LABl XML >05

Definition: Begin execution of 9900 machine language.
Use the IMM field to tell where.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: Execute 9900 machine language directly.

Application Notes: The immediate field of the XML instruction
is split into a left nybble (table number) and
a right nybble (index into table). There are 16
table addresses defined in the CPU address space.
See Table 4.5.1 for a list of these hardcoded values
(note that they have been arranged so as to insure
that at least one table exists in any conceivable
plug-in fast ROM). The left nybble specifies which
of the 16 tables to get the Branch address from.
The right nybble is then used to determine which
of the 16 addresses in the table to use. Each table
can contain up to 16 2-byte entry-point addresses.
Note that one can have less if one wishes. As an
example of XML,

XML >»24

causes a branch to the address contained in the
fifth entry of Table 2.

Upon entry to a routine, the 9900 workspace
pointer is set to >83E0 and the 9900 ST is set to an
unknown value. To return control to the interpreter,
make sure WP is still >83E0 and execute a "B *R1l".
GPL execution will continue out of the GROM from
which he XML was seen, at the address specified by
the internal GROM address.

To do a keyboard scan in 9900 Assembly Language, do a
BL to a subroutine located at location >000E in con-
sole ROM.

Op Code: >0F

Format type: 2

TABLE 4.5.1

XML TABLE
TABLE # FUNCTION ADDRESS (>)
0 FLOATING FOINT ROUTINES "FLTTAB"
3 CONVERSIQN AND BASIC ROUTINES "XTAB"
2 SYSTEM EXPANSION RQM/RAM 2000
3 BASIC ENHANCEMENT 3FCO and "XTAB3"
3 BASIC ENHANCEMENT 3FEO and "XTAB2"
5 NOT AVAILAELE 4010
6 NOT AVAILAELE 4030
7 GRM MODULE ROM/RAM 6010
8 GROM MODULE RQM/RAM 6030
9 GRM MODULE ROM/RAM 7000
10 FUTURE EXPANSION 8000
il FUTURE EXPANSION A000
12 FUTURE EXPANSION BO0O
13 FUTURE EXPANSION C000
14 FUTURE EXPANSIQN D000
15 SCRATCH PAD RAM 8300

4-56

4.5.8 EXIT GPL EXIT

Syntax definition: EXIT

Example: EXIT

Definition: Terminate GPL execution; return control to
the system monitor.

Status bits affected:

Execution results: The monitor performs a restart sequence.

Application notes: All GPL programs that terminate should use
the EXIT command. See the Monitor Speci-
fication for details on system restart.

Op code: >0B

Format type: 5

4.5.9 I1/0 INSTRUCTION 1/0

Syntax definition: 1/0 GS,IMM

Example: 1/0 @BLOCK,2

Definition: This is an extended instruction in the sense
that the action that occurs depends upon the value
of the IMM field. Specifically, this instruction
does SOUND, CRU input and output.

Status bits affected: / H / GT / cond / carry / OVF /

Execution result: See below.

Application notes: See Appendix F for currently supported
uses for the I/O instruction,

Op code: >F6

Format type: 8

4.5.10 HOME INSTRUCTION HOME

Syntax Definition: HOME

Example: HOME

Definition: SET XPT and YPT equal to zero

Status bits affected: None ;

Execution results: >7E (YPT):
>7F (XPT):

oo

non

Application notes: The HOME instruction assembles the same as:

DCLR YPT

APPENDIX A - THE GPL ASSEMBLER

SOURCE FILE FORMAT

GPL source instructions are entered as card images to the
assembler in a free field format with the restrictions that LABEL
fields must begin in column 1 and Operand list fields must begin
before column 25. No imbedded blanks are permitted within an
operand list. Blank lines in the source are ignored.

The format of a typical instruction is:

(LABEL) (INSTRUCTION MNEMONIC) (OPERAND LIST) (COMMENT)

The LABEL field is always optional. It consists of an
alpha-numeric string of up to 6 characters , the first of which
must be non-numeric. Up to 1000 LABELs can be defined in any one
source file. Any label that is defined in a source file can be
referred to in the OPERAND LIST of any other instruction in that
source file. Note that SYMBOLS (as defined using the EQU
directive) are exactly like LABELs and their usage is the same.

The INSTRUCTION MNEMONIC must be one of the valid mnemonics
as described in Section 4 of this manual. The OPERAND LIST
must be of the type required by that particular instruction. For
instructions that allow OPERAND LISTs of arbitrary length, thié
field may be continued up to 16 lines by terminating an OPERAND
with a semicolon instead of a comma (the FMT is an example).

The comment field must be separated from the OPERAND LIST by
at least one space. A comment cannot be placed on the same
line with a $Case macro instruction. In addition, GPL
instruction wnich have no operands (e.g. CARRY, GT, H, OVF, SCAN,
RTN, etc.) will only allow comments beyond column 25. A line of
source code should not consist of only a label and a comment.

A-1

ASSEMBLER DIRECTIVES

These directives have a format similar to GPL instructions;

they can include LABEL fields as well as comment fields.

DATA IMM,IMM,IMM,...

The DATA instruction is used to generate a sequence of bytes
in the Graphics ROM. The address field contains a list of

immediate values or LABELS. In conjunction with the MOVE

instruction, the DATA statement provides a way to load up a
sequential block of CPU or VDP RAM. For example:

MOVE 10 FROM ROM(#LABl) TO RAM(>300)
where later on in the source:

LABl parta 0,1,2,3,4,5,6,7,8,9

TITLE XXXXXXXX

The TITLE directive provides an 8 character string that is
printed at the top of each page of listing and included in the
object file. It generates no code and should be placed at the

very beginning of the source file.

END

The END directive may be used to separate blocks of code.

It also is required to terminate the source file.

(SYMBOL) EQU IMM

The EQU directive assigns tne immediate field value to the
symbol that starts in column one. A symbol may be a one or two

byte value.

GROM IMM

The GROM directive selects which GROM the assembled program
is to be in. 1In the current definition of the system the operand
must be less than eight and the maximum length of the program in
a GROM is 6K. The GROM directive sets the assembler location
counter to the start of the selected ROM. Remember that if a
program is longer than 6144 (>1800) bytes it must be partitioned
into segments. The only way to transfer control from one GROM to
another is through the long Branch instruction. However,

references can be made to LABELs and SYMBOLs in different GROMS.

ORG IMM
The ORG directive sets the assembler location counter to the
displacement within the currently selected ROM specified by the
operand. This is useful for generating déta in a different
section of the GROM than the program. IMM must be a value from
0 to >17FF.

BASE IMM;, IMMo, IMM3, IMMg, IMMc, IMMg, IMM-

The BASE directive specifies the base addresses for the
various sub-blocks in VDP RAM. The seven operands are the base
addresses for the Pattern Name Table, Pattern Generator Area, the
Pattern Color Table, Sprite Attribute List, Sprite Descriptor
Blocks, Sprite Velocity Table, and object code bias. The
default values correspond to the standard configuration and are
0, >800, >380, >300, >400, >780 and 0. It is necessary to use a
BASE directive only if one wishes to use the special mnemonics in
the MOVE instruction, and base addresses other than the defaults

listed above are used.

PAGE

The PAGE directive causes the listing to continue on a new

page. The PAGE statement is not printed.

LIST
The LIST directive restores printing of the source listing.
This directive is required only when UNL ﬁirective is in effect,
to cause the assembler to resume printing. The LIST statement is

not printed.

UNL
The UNL directive inhibits printing of the source listing.

The UNL statement is not printed.

LISTM
The LISTM directive restores printing of multiple lines of
object code. This directive is required only if a UNLM directive

is in effect. This statement is not printed.

UNLM
The UNLM directive inhibits printing of multiple lines of

object code. This statement is not printed.

GPL MACROS

These macro instructions are designed to allow implementa-
tion of control statements similar to those in high level langua-
ges like PASCAL. Table A.l shows the GPL instructions which each
macro expands to. The mnemonics for the statements are:

SEND
Terminator for the S$WHILE, $FOR, SIF, SELSE, and $SELSE state-
ments.

SSEND
Same as end $END. When used as a terminator for SWHILE and $FOR,
it generates a BR instead of a B.

SWHILE GD .R. GS

Causes the following block to be executed as long as the

comparison is true. A list of valid relations is given below.
SREPEAT

Causes the following block to be executed until the comparison in

the terminating $UNTIL statement is true. The block is executed

at least once.

SUNTIL GD .R. GS

Terminator for the SREPEAT statement.

$FOR GD = GS TO GS BY GS

Causes the following block to be executed as a loop. The loop is
controlled by a counter specified by the first operand. The
counter is initialized by the second operand and incremented by

the optional fourth operand until it is greater than (arithmetic

compare) the third operand. The range of each GS operand and the
GD operand is 0- >7F. 1If there is no fourth operand specified,a
default value of 1 is used to increment the second operand.

A-5

$SFOR GD = GS DOWNTO GS BY GS

Same as previous statement except that the counter is decremented
by the optional fourth operand until it is less than (arithmetic
compare) the third operand.

$IF GD .R. GS GOTO LAB

The branch is taken if the comparison is true and otherwise
execution continues at the next line. No END statement is
required with this form of $IF. LAB must be a label in the same
GROM because the compare generates a BS or BR instruction.

$IF GD .R. GS THEN

The following block is executed if the comparison is true. If
false it is skipped. An END statement must terminate the block.
If the "GOTO LAB" or "THEN" is omitted from a SIF statement, the
statement is treated as a SIF-THEN.

SELSE
Terminates a block following an SIF statement. If the comparison
was true causes a skip around the following block. If the
comparison was false the block is executed.

SSELSE
Same as SELSE, except it generates a BR instead of a B.

SCASE VAR OF LABl, LAB2, ...

Branches to the label in the list whose position corresponds to
the value of the operand. (If the value in VAR is 0, then the
program branches to LABl; if the value is 1, then the program
branches.to LAB2, etc.) All labels in the list must be contained

in the same GROM as the SCASE stacement.

SGOTO LAB

Branches to the label. Label can be anywhere in the program since
the $GOTO generates a long branch.

SCALL LAB

Calls the label as a subroutine.
The comparisons may take the following relations:
.H. .HE. .L. .GT. .GE. LT .LE.
.DH. .DHE. .DL. .DGT. .DGE. .DLT: .DLE.
.EQ. .NE. .AND.
.DEQ. .DNE. .DAND.
These relations are used in the logical expressions. .H., .HE.,
.L., .DH., .DHE., and .DL. are LOGICAL comparisons. .GT., .GE.,
.L7., .LE., .DGT., .DGE., .DLT., and .DLE. are ARITHMETIC
comparisons. The relations .AND. or .DAND. generate a CLOG of
the GS and GD. Additionally the relations .H., .GT., .OVF.,
.CARRY. may be used without GS and GD arguments to test bits in
the STATUS byte. The negating prefix .NOT. may be used before
the relation or first argument to reverse the sense of the test.
Individual bits may be tested by using the prefix .BITn or
.BIT(IMM) before the first argument where n is a bit number from
0 to 7 or IMM is equated to a number from 0 to 7. Only the .EQ.
and .NE. relations may be used and the second argument must be a

0 ‘o 1.

TABLE A.l
MACRO EXPANSIONS

INSTRUCTION SIF-THEN SIF-GOTO $REPEAT-SUNTIL SWHILE
RELATION INSTRUCTION BS/ER BS/ER BS/ER BS/ER
TEST OF BITS IN THE STATUS BYTE:

.H. H ER BS ER ER
BT GT ER BS ER ER
.OVF. OovF ER BS ER ER
.CARRY . CARRY ER BS BER ER
TEST RELATION OF G TO GS: :

-EQ. R BR BS ER ER
.NE. CEQ BS ER BS BS
.H. H ER BS ER ER
.HE. CHE BER BS ER ER
.L. CGiE BS BR BS BES
.GT. oGT ER BS ER ER
.GE. CGE BER BS ER ER
.LT. GGE BS ER BS BS
LE. QGT BS ER BS BS
.AND. CLOG ER BS ER ER
TEST RELATION OF GD TO O:

+EQ. Cz ER BS ER ER
.NE. cz BS ER BS BS

All other relations of GD to 0 are tested as GD to GS, using 0 as the Gs.

Following are several MACRO instructions with their graphics
language equivalents:

1. S$SREPEAT
SUNTIL GD .NOT. .H. GS o Gs,GD
BS (Code following SREPEAT)
2. SREPEAT
SUNTIL GD .HE. GS CHE GS,GD
ER (Code following SREPEAT)
3. SREPEAT
SUNTIL .NOT. GD .AND. GS CLOG GS,GD
BS (Code following S$REPEAT)
4. SREPEAT
SUNTIL .OVF. OVF
BR (Code following SREPEAT)

Page Two
MACRO EXPANSIONS - TABLE A.l

10.

12.

13,

14,

SWHILE GD .NE. GS
$END

$WHILE .BITS GD .EQ. 1
$SEND

SWHILE .CARRY.

$END
$IF GD. .EQ. GS THEN

SELSE
$SEND

$IF GD .DGE. GS THEN
SEND

$IF GD .L. GS THEN
$END

SIF GD .NOT. .AND. GS THEN
SEND

$IF G .GT. GS GOTO LAEEL

SIF .H. THEIN

SEND

$IF BIT7 GD .NE. 0 THEN
SEND

GS,GD
(Code following SEND)
SWHILE

>20,GD
(Code following $END)
SWHILE

1

(Code following $END)
SWHILE

Gs,GD

(Oode following SELSE)
(Code following SEND)

Gs,GD
(Code following S$END)

Gs,GD
(Code following SEND)

erD
(Code following SEND)

@;GD‘
LABEL

(Code following SEND)

>80,GD
(Code following S$END)

g B™ Bg BQ ®Wg BE “Hp mﬁg "BQ “Hg

ST GS1,GD
B S+6
SFOR+6 ADD @3, &)
$+6 aGT GSy, GD
3S {(Ccde following SEND)
B SFOR+6

Page Three
MACRO EXPANSIONS - Table A.l

GD

$+5

GD

Gs, GD

(Code following SEND)
SFOR+5

GS,GD

$+5

GD

GS,GD

(Code following SEND)
SFOR+6

16. SFORGD = 0 TO GS

SFOR+5
$+5

17. S$FOR GD = GS DCGWNTO 0
SFOR+6
$+5

VAR
LABl
[AB2

18. SCASE VAR OF LABl, LAB2

19. S$GOTO LABEL

5 v ®Ep “ERR"Y “GE”g

20. SCALL LAEEL

A-10

APPENDIX B AUTOMATIC SPRITE MOTION

Any number of Sprites from 1 to 32 can be set into motion
in such a way that the direction and speeds of each Sprite are
constant, and independent of each other. The MOTION byte in the
STATUS BLOCK, which is normally 0, is set by the programmer to
the number of Sprites he wants to be governed by auto-motion.
If set to N, Sprite (0) thru sprite (N-1) in the Sprite
Attribute List are set in motion. The Sprites are moved by
updating the Y and X pixel positions for each one in the Sprite
Attribute List.

A motion control block must be set up in VDP RAM prior to
making the MOTION byte non-zero. This control block must begin
at >780 in the VDP RAM. Four bytes are required for each Sprite
to be controlled:

byte l: velocity in the vertical direction;

byte 2: velocity in the horizontal direction;

bytes 3,4: reserved for system use.

The velocity bytes are scaled in such a way that a value of
1 causes the Sprite to move in that direction once every 16 frame
refreshes (or 16/60 second, about % second). A value of 16 in a
velocity byte causes a movement of one pixel every one-sixtieth
of a second, or 60 pps. A positive Y velocity causes downward
motion, a positive X velocity causes horizontal motion to the
right. As an example, if the first two bytes are 1 and 8, then
every 16 frame refreshes the Sprite will move 1 pixel down and 8
pixels to the right. The motion will appear to be continuous.

For a complete example of Sprite auto-motion, see sample
program "SPRITES" on the following page.

B-1

TI990 GL ASSEMBLER SPRITES 04/12/79 07 55: 35 PAGE

6000
6003
6006
6008
600B
600E
6010
6012
6014
6017
&601A

601C

601F
6022

6023
6026

6029
s02¢
&02F

6030
60323
6036

6037
&03A
603D

603E
6040
46042
46045

007A

0001

AAD101
000000
6010
000000
000000
000D
0000
&01C
075350
524954
4553

BE7AZ20

BEA384
01

390001
016045

310080
A30060
as

3100€0
A4006 1
45

310080
A7B8050
Cé

0720
0401
055042
&2

QONOCUBWUMN =

—
- O

L I e I T
O ONOCUOEWLUMN

rn o
[

ot B |
[y

25
24

-
=

26
27

-
=

29

30
31

32

33

34
35
35

-

38

TITLE SPRITES
#+ STATUS BLOCK LOCATION TELLING NUMBER OF MOVING SPRITE
MPC EQU D>7A
3* COLOR NUMBER OF BLACK
BLACK EQU
P R T L R R S e e S g g g g A A g R g R g
* ‘ MAIN PROGRAM
R I L Lt e L T r T I T Ty T R e g
* 33 TELLS BEGINNING LOCATION OF OBJECT CODE (:6000)
CROM 3
ORG O
33t 4 HEADER BLOCK
DATA >AA. 1,1
DATA 0,0.,0
DATA #PROG!
DATA 0,0,0
DATA 0.0,0
DATA 0,0
PROG1 DATA 0.0
DATA #START
DATA 7, : SPRITES:

*adt STORE NUMEBER OF SPRITES IN MPC

START ST 32, @MPC #3232 SPRITES ALLOWED TO MOVE

3t LOAD COLOR TABLE THAT CONTAINS THE SPACE
ST 201, RAM(:384) #COLOR SPACE BLACK

4 LOAD VDP REGISTER 1 FOR DOUBLE-SIZED SPRITES

MOVE 1 FROM ROM(#YDPREG) TO VDP(1)
4 3 ESTABLISH SPRITE ATTRIBUTE BLOCK
MOVE 128 FROM ROM(#SALIMNT) TO RAM{300)

#* 33 ESTABL1SH SPRITE DESCRIFTOR BLOCK
MOVE 128 FROM ROM(H#EHAPE) TO RAM{Z400)

i ESTABLISH SPRITE VELQCITY BLOCK
MOVE 128 FRUOM ROM(#SMOTAE) TO RAM(I-780)

3 MAYE ALL FPATTERN NAME TAZLE BLAMNA
ALL =20 '
BACK BLACK +GORDER IS BLACK
B %

VDPREG DATA 262

(95
]
“J

TI990 GL ASSEMBLER

sl 4

ks

T 60446
6049
604C
604E
6051
6054
6056
6059
605C
605E
6061
6064
6066
6069
604C
606E
6071
6074
6076
6079
607C
&07E
6081
6084
6086
6089
608C
L08E
6091
6094
6096
6099
609C
60%E
60A1
60A4
60A6
60A7
60AC
60AE
60B1
60B4
6086
&0B9
60BC
60BE
£CC1
L0Ca

000080
020608
8403
oci088
041218
8CO05
182080
061ER28
8407
243088
082A38
8C09
304080
0A3448
840B
3C5088
0C4258
8CoD
486080
OE4ESLB
840F
547088
025A78
8C035
608080
046688
8405
4C7088
067298
eco7
784080
0B7EAB
8409
84R088
OABABS
8COB
F0C080
0C76C8B
840D
CDoBS
OEAZ2D8
8COF
ABEGCBO0
O2AEES
8404
B4FOES
CLBAFE

2Cce

40
41
42

43

&4

45

46

47

48

49

50

51

52

23

54

35

36

S8

SPRITES 04/12/79 07:55:35

PAGE

HHERES SRR R R LR E LRSS SR B ERAES SRR S RS LA RS E RS RTND

SPRITE ATTRIBUTE LIST INITIALIZATIONS

363 3 3 304040 36 46 3 9 309 30 36 38 36 35 3 3696 36 00 28 36 35 36 36 3 36 35 3 3636 38 30 96 F0 30 36 50 96 36 90 45 36 36 30 0 9 % %9
SALINT DATA 200, >00, >80, >2, >06, >08, >84, >3

DATA.}QC.>10;}88a}4)}12.}18.>8C.>5

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

>18, >20, >80, >6, >1E,
>24, >30, >88, 28, >2A,
230, >40, >80, >A, >36,

>3C, >50, >88, >C, >42,

4

I t
>48, >60, >80, 2E, >4E,

:’541 }70: :"88: ::‘gi :‘/5Aa

260, >80, >BO, >4, 266,

>6C, >90, >88, 6, 72,

:)781! :)AOJ ‘:}80) :"8: }’76; :."

>84, >BO, :’BBI :}Al :>8A! =

::C)’O: }COJ ~80, >C, »96,
::QCJ :}DOa >BB, 2E., A2,
>AB, 2EOQ, 280, > 2, -AE,

:}Bqt :"FOJ :‘88, :)‘é\, :j:-BA,

>28, >84, >7

>38, >8C, 29

>48, >84, >B

+98, »8C, 2D

>é8, »84, OF

>78, 28C, >3

88, >84, 5

>98, >8C, >7

AB: ::84 ' 29

B8, >8C, >B

»C8, >84, D

=D8, >8C, >F

>EB, 28B4, >4

>F8, >8C, 8

TI990 GL ASSEMBLER SPRITLS v4s12/7/9 V/:99: 39 . FAGE

60 FEBREREERBRBRFRBRFARBEDRF SRR E RS R E R RRERER AR R AR R R RF AR
&1 o+ SPRITE MOTION TABLE
LD FEEREBREEAERRRFREREREERFLERRERER B ERRRBHR AR R AR AR RR AR RT

&0Cé& 021000 &3 SMOTAB DATA 2,16,0,0.2,14,0,0

60C9 00020E :

&0CC 0000

&0CE 020C00 &4 DATA 2,12,0.0,2,10,0.0

&0D1 00020A

&0D4 0000

&0D& 020800 &5 DATA 2.8,0,0,2,:6.0,0

60D9 000206

4&0DC 0000

&LODE 020400 &b DATA 2,4,0,0,2,.2,0.0

40E1 000202 ' ')

&0E4 0000

&0ES6 040200 &7 DATA 4,2,0,0,6,2,.0:.0

60E? 000602

60EC 0000

&LOEE 080200 &8 DATA 8,2,0,0,10,2,0,0 s

60F1 000A02

&0F4 0000

&0F & 0C0200 &9 DATA 12,2,0,0,14,2,0,0

&0F? 000E0Q2 .

&0FC 0000

&0FE 100200 70 DATA 16,2.0.0,8,0.0.0

&101 000800

6104 0G00

&£106 CCFBOO 71 DATA 0,-8,0,0,-2,-16,0,0

6109 OOFEFO

610C 0000

&10E FEF200 72 DATA -2,-14,0,0,-2,-12,0,0

&111 OOFEF4

6114 0000

&116 FEF&00 73 DATA -2,-10,0,0,-2,-8,0.,0

&119 OCFEFB

611C 0CO0

&11E FEFAQOQ 74 DATA -2,-6,0,0,-2,-4,.0.0

6121 OCFEFC

6124 0CO0

6126 FEFEQO 75 DATA -2,-2,0.0,-4,-2,0,0

6129 COFCFE

612C 0000

&12E FAFEOQO 76 DATA -6,-2,0.0,-8,-2,0.0

&131 OQFSFE |

&134 0000

6136 F&FEOQO 77 DATA -10,-2,0,0,-12,-2,0.,0

6139 OCOFAFE

613C 0000

&13E F2FEQOQ 78 DATA -14,-2,0.0,-16,-2,0,0

&141 OOFCF=

&i44 0COO0

3-4

TI990 GL ASSEMBLER

6146
6149
614C
614E
6151
6154
6156
6159
615C
$15E
6161
6164
6166
6169
616C
616E
6171
6174
6176
6179
617C
617E
6181
6184
6186
6189
6£18C
618E
6191
6194
6196
6199
619C
619E
61A1
61A4
61A6
61AF
61AC
61AE
61B1
6184
6186
61B9
61BC
6138E
si€i:

61C4H

FFFFCO

COCoCo
coco
€OCOoCo
€0CoCo
FFFF
FFFFO3
030303
0303
030303
030303
FFFF
010306
0C1830
60C0
C06030
180C06
0301
80C0&0
30180C
0603
032060C
183060
co80
071F3C
7060E0
coco
COCOEO
60703C
1FO7
EOF23C
CUE0&07
0303
030307
060E3C
FEEO
010103
030606
ococ
181830
306050
FFFF
8080CO
C06060
2030
18180C
0C0L0s

—

FFF=

ERRORS= 0

LENGTH= 454

£

SPRITES

04/12/7% 07:55: 35

PAGE

80 B L e T
' SPRITE DESCRIPTOR BLOCKS

g1 =
82 =

{ SQUARE,

DIAMOND, CIRCLE. TRIANGLE)

83 ‘I‘*****************I‘********‘I‘****l‘***‘ﬁ'*“******'ﬁ**********'

85

84

87

88

89

Q0

1

93

94

g5

96

97

58

59

100

(>01C8)

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

END

>C0, >C0, >C0, >C0, >C0, >CO, >FF. >FF

3FFJ :>FF; :}031 ::03: }033 :>031 .)03: :4\03

=03,

>01,

>03, >03, >

>03, >06,

>C0, >60, >30,

:>80! }CO: :}60:

>03,

>07,

>CO,

2EQ,

03,

:}01:

>18,

:""801

>18,

(wb]
]

>06, >0C,

>1F, >3C,

>CO0, 2EO,

>FB8, >3C,:

:>03a :07]

>01, >03,

>18, >30,

+80, >2CO0,

:-“'181 :30(:1

(¥]

03, >03, 303, 3FF, »FF
50C, >18, >30, 260, >CO
>18, >0C, 306, 303, >01
530, 318, >0C, >06, 303
518, 330, 360, >C0O, >80
270, 360, E0, €0, >CO
560, 370, 33C, >1F, >07
S0E, 306, 207, 303, >03
306, »OE, 33C, »F8, EO0
203, 306, 306, 30C, >0C
230, 360, 360, 3FF, 3FF
3€0, 360, 360, »30, >30

~0C. >06&, 206, >FF, >FF

SQ!

DIA

Cl

TRIA

APPENDIX C AUTO-SOUND INSTRUCTION

The sound instruction allows the programmer to control the
Sound Generator Chip (SGC) in the system console by means of a
pre-defined table in GROM, or VDP RAM. Sound output is
controlled by the table and the VDP interrupt service routine. A
control byte at the end of the table can tell the interpreter to
end sound output, or can cause control to loop back up in the

table.

Table Format

The format of the table is the same regardless of where it
resides. The table consists of a series of blocks, each of which
contains a series of bytes which are directly output to the
SGC. The exact format of each block is:

(block size in bytes)
byte 1 to output to SGC;

byte 2

byte Ny
Interrupt count (unsigned)

Since the VDP generates 60 interrupts per second, the
interrupt count is expressed in units of one-sixtieth of a
second. When the I/0 instruction is called, upon the next
occurring VDP interrupt, the first block of bytes is output to
the SGC chip. The interpreter then waits for the reguested num-

ber of interrupts (for example, if interrupt counts are 1, every

interrupt causes the next block to be output). Remember
that interpretation of GPL continues normally while the SGC
control is enabled.

The sound control can be terminated by using an interrupt
count of 0 in the last block of the table. Alternatively,
a primitive looping control is p;ovided by using a block whose
first byte is 0, and the next 2 bytes inﬁicate an address in the

same memory space of the next sound block to use. If the first

byte is hexadecimal FF, the next two bytes indicate an address in
the other memory space. These allow switching sound lists from
GROM to VDP or VDP to GROM. By making this the beginning of the
entire table, the sound sequence can be made to repeat
indefinitely.

To initiate sound use the I/O instruction:

1/0 GS, 0 for list in GROM

or I1/0 GS,1 for list in VDP RAM, e.g. I/0 @FAC, 1

The GS points to two-byte block in CPU RAM which contains the

address of the sound list.

GPL can also check for completion of an executing sound
list by testing whether location >83CE (>CE in GPL) in CPU RAM
is equal to 0 (this byte is a down-counter and is 0 only after
table-driven execution is complete. Additionally, the address of
the sound block currently executing is in CPU RAM locations >83CC
and >83CD.

Zxecuting a sound list while table-driven sounc¢ control is

already in progress (from a previous sound list) causes the old

sound control to be totally supplanted by the new sound

instruction.

Sound Generator CHIP (SGC) Control Summary

The SGC has 3 tone (square wave) generators - 0, 1, and 2 -
all of which can be working simultaneously or in any combination.
The frequency (pitch) and attenuation (volume) of each generator
can be independently controlled. In addition, there is a noise
generator which can output white or periodic noise.

Attenuation Control (for generators 0,1,2 or 3)

One byte must be transmitted to the SGC:
+ 4+ + + + + 4+ 4+ o+
/1 /REG# /1 / A /

REG# = register number (0,1,2,3);

A = attenuation/2

(e.g. A=0000

]

0 db = highest volume;

A=1000 16 db medium volume;

A=1111

30 db

off.)
examples: 1 10 1 0000: turn on gen. #2 to highest volume;
1 11 1 1111: turn off noise generator (#3).
You should not use all three tone generators at maximum
volume at once.

Frequency Control (for generators 0,1,2)

Two bytes must be transmitted to the SGC to control the
frequency of a given register. To compute the number of
counts from the frequency f, use:

N = 111860 / £ ;

byte 1: byte 2:
+ + 4+ + + o+ o+ o+ o+ + 0+ 4+ 4+ o+ o+ o+ o+ o+
/1 /REG$§ / N (1s 4 bits) / / 00/ N (ms 6 bits)/
Note that N must be split up into its least
significant 4 bits and most significant 6 bits (10 bits
total).
The lowest fregquency posqible is 110 Hz and the
highest is 55,938 Hz.

Noise Control

One byte must be transmitted to the SGC:

+ O+ + + + o+ o+ o+ o+

JT ¥ ¥ o0/ / 8 [/

0 for white, 1 for periodic noise;

-3
[}

wn
]

shift rate (0,1,2,3) =frequency center of noise.
S = 3 = frequency dependent on the frequency
of tone generator 3.

For more information on controlling the SGC, see the

TMS9919 SGC Specification.

Creates a Falling Sound (High to Low)

SOUND EQU >00

DTEMP1 EQU >02

EQU >79

MUSIC EQU >400

MOVE 8 FROM ROM(#DROP) TO RAM(MUSIC)
DST >0039, @DTEMPI >39 = Highest frequency played

@DTEMP1 = 2-byte temp area

DST MUSIC,@SOUND (Music is a constant.of 400 --
could be anywhere in RAM
BO1 DST @DTEMP1, RAM(MUSIC+1)
DSRC RAM(MUSIC+1),4

SRL RAM(MUSIC+1) ,4

OR &10000000,RAM(MUSIC+1)

1/0 @SOUND, 1 @SOUND = 21byte area for ADDR

CLR €TR @TR = Timing register (>79)
B02 Cz €TR

BS BO2

DINC €DTEMP1

DCGE >0200,@DTEMP1 >0200 = Lowest frequency played
BR BO1
DST $ENDROP, @SOUND *Turns sound off

I/0 @sOuUND, 0
B B
DROP DATA 3,>00, >00, >92.1

ENDROP DATA 1, >9F, 0

A similar routine could be implemented to create a rising sound
by storing a low freguency in DTEMPl to begin with, do a DDEC to

DTEMP1 and a compare low with a high frequency value.

CREATES AN EXPLOSION SOUND

DST #EXPL, @SOUND
1/0 @SOUND, 0
B $

EXPL

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

2, >E4, >DF2, 5

2, >E4,
2, DE4,
2, DEl,
2, >E4,
2, >E4,
2, >E5,
25 DES;
2, DES5,
2, >E5,
2, >ES5,
2, >E6,
2, >Eb,
2, DE6,
2, DEb,
2, DE6,

>Fo,
>F1,
>F2,
>F3,
>F4,
>F5,
>F6,
>F17,
>F8,
>F9,
>FA,
>FB,
>FC,
>FD,
>FE,

18
16
14

1,

>FF,0

c-6

APPENDIX D HANDSET/KEYBOARD INTERFACE

As mentioned in Section 4 of this manual, the SCAN
instruction is used to poll the state of the handsets and
keyboards on the system. The byte KEYBRD in the STATUS BLOCK is
used by the SCAN instruction to determine which peripheral device
to look at, as well as how to interpret ;he results.

Presently, the following peripherals are supported by the
SCAN instruction:

e 40-KEY KEYBOARD (KEYBRD = 0):

When scanning this keyboard, only the bytes KEY,
and the COND bit are affected. The layout of the keyboard
and the codes returned by each key are shown in Figures
D.1 and D.1.A. If more than one key is depressed at a

given time, only one key will be read.

e REMOTE HANDSETS (REYBRD = 0,1,2,3,4)

See Figures D.2, and D.2.A for keycodes assigned to

the Remote Handsets. Note that if KEYBRD 0, Handsets 1
and 2 are assumed to be adjacent to each other and thus
simulate the 40-key keyboard. 1If KEYBRD = 1,2,3 or 4, the
correspondingly numbered handset is scanned; in addition,
the joystick is scanned, and each of JOYY and JOYX will get
a value returned in them ranging from -7 to +7, depending

upon the amount of deviation from the neutral position in

the Y and X axes respectively.

e REMOTE KEYBOARD (KEYBRD = 5)
Remote handsets 3 and 4 can be mapped into a 40 key

keyboard in the same manner as handsets 1 and 2.

e WIRED HANDSETS (KEYBRD = 1,2):

See Table D.3 for keycodes assigned to this type of
handset. The joystick behaves s}milarly to the remote
handsets except that the range of JOYY and JOYX is limited
to values of -4,0, or +4, These values were chosen to make
the remote and wired joysticks as compatible as possible.
Note there is a pushbutton mounted on the joystick. This
button is electrically and logically the same as the key
corresponding to keycode >C. The console keyboard may be
used to simulate two 20-key keypads for the wired handsets.
Note that if the joystick pushbutton is depressed, it will
always be recognized, as it has the highest priority. The
depression of more than 2 keys causes undefined values to
be returned.

Since the GPL program is not immediately alerted that the
state of a handset has altered, it is necessary to regularly scan
the handsets, if input from them is desired. The COND bit in the
STATUS byte is set only the first time a given key is found
depressed. If the same key is found depressed on successive
scans, the successive calls to SCAN reads the keycode properly,
but resets the COND bit. Thus in applications like the above,
where we wish to recognize fresh keystrokes only, the following

code seguence can be used:

LOOP1 SCAN
BR LOOP1l

The above code causes GPL to loop until a fresh keystroke
is seen.

In order to debounce the Fire button a routine must
be implemented to make sure it has been lifted before it is
detected as being down again. An example of this routine would
be:

SCANIT SCAN
SIF @KEY .EQ. EOLDREY THEN
B SCANIT
SELSE
ST €REY, @OLDKEY
(operate on KEY)
SEND

B SCANIT

JIVdS

LEJLES

..

L4THS

JIVdS

Qyv08A3IA 3IT0SNOD

1°0 3¥n914

)

3IvdS

a0 32 ay L 2y 96 £v 08s VS
(00) (32) (ae) | . | (ve) (4€) (20) (20) (Vo) (40)
b 8y v 8 LY 9y by €5
(ag) (42) (35) (2g) (vo) (€0) (60) (80)
0S iy 6b GG 65 bS 2§ G LS
(22) (82) (a2) (45) (3¢€) (20) (90) (00) (30)
(1]3 6€ 8¢ LE 9¢ SE ve £€
(62) (82) (v2) (92) (£2) (s2) (v2) (€2)

V'i'a 3un9ld

SINIWNIISSY 3002-TVWIIIAXIH AYVOLAINX 3ITOSNOD

1S
.!S omt
(10) (02)
1§
(s0)
i e
(0v) (12)

FIGURE D.2

HANDHELD UNIT KEYBOARD

< HORIZONTAL >

CLR 4 8 9 s

(13) (7) (8) (9) (A)

GO 4 5 6 X

% (12) (4) (5) (6) (8)
<
(8]
e
[==
<

SET 1 2 3 NO-

(11) (1) (2) (3) (C)

NEXT STQP 0 E= YES+

(10) (F) (0) (E) (D)
v

NOTE 1: Hexadecimal numbers in parenthesis correspond to keycodes returned

by console system software.

0-6

3IvdS

(go<) (30<) (0) (40<) (01<) (00<) (30<) (0) (40<)
+S3A = 0 | rdoLs. 1X3N +S3A = 0 "d01S
(20<) (€) (2) (1) (11<) (20<) (€) (2)
-ON 3 2 1 138 -ON £ 2
(80<) (9) (s) (v) (21<) (90<) (9) (S) (t)
X 9 S b 09 X 9 g b
(vo<) (6) (8) (L) (e1<) (V0<) (6) (8)
3 6 8 L ¥19 : 6 8

SLINN G73HONYH OML SV Q3dd¥YW QYVO89A3X 370SNOJ

V2 0 3noId

ST

(01<)

LX 3N
I
[135

(@1 |
09
(£) (€1)
L 1)

>FF (-1)
>FC* (-4)
>F9 (=7)
>F8

TABLE D.3

JOYSTICK QODES

POSITICN
(BORI ZONTAL)

Full Right

Medium Right

Near Right

Center Off

Near Left

Medium Left

FPull Left

Illegal

Y POSITION
VERTICAL)

Pull OUp
Medium Up

Near Up

. Center Off

Near Down
Medium Down
Full Down
Illegal

*These codes to be returned if joystick has only single bit resolution in any

direction.

Example
Pull Right and Medium Down

JOSTICX

7,>FC

O - B

-1

y 4

=7-4-1 01 4 7

D-8

APPENDIX E COINCIDENCE DETECTION

The VDP provides a bit in the VDP status register that is set
whenever any Sprites are in coincidence with one another (in this
instance, coincidence means that they overlap by at least one
pixel of foreground). From GPL, this bit is most easily checked
by the instruction:

CLOG >20,@VSTAT ‘

The VDP Status byte in CPU RAM 1is copied from the VDP
Status register every frame interrupt; the third bit is the
sprite coincidence bit.

The COINC instruction in GPL allows the user to check for
coincidence between any 2 objects. These may be 2 Sprites, a
Sprite and another object, or any 2 generalized objects. The
strict definition of coincidence can be dictated by a bit table
the user must provide in GROM; one might desire coincidence to be
true when the objects just touch, or a one dot overlap may be
required. Or perhaps coincidence may be true only when object 1
overlaps object 2 exactly.

Coincidence statements must be followed by a one-byte
mapping value, plus a 2-byte address pointing to a table in GROM.
Mapping = 0 gives the highest resolution coincidence checking,
but requires the largest table. Mapping = 1 yields a table of %
the size; however, coincidence errors of + 2 pixels are possible.
Mapping = 2 yields one-sixteenth the table size but can have
arrors of +4 pixels.

Let an "object type" be a set of identical objects. Then 2

sprites which have identical dot patterns are actually of the

E-1

same object type. To detect coincidence between objects of 2
types (may be the same type) a unique table for this type
combination is necessary.

Coincidence screening is done on 2 levels. The first,
range checking, involves looking at the distance between the
objects as well as their individual dimensions (in pixeis). If
they are out of range, coincidence is tegminated by resetting the
condition bit and terminating. If in range, a table lookup is
used to determine coincidence. The delta-y and delta-x are
found; using them as indices, a bit is read from the table. If
it is a 1, coincidence is true, and the cond bit is set;
otherwise coincidence is false. Remember that a unigue table is
required for each combination of object types; e.g. for 2 object
types, say girls and boys, three tables are required for complete
coincidence detection:

- girls : girls
- girls : boys
- boys : boys.
Coincidence must always be called with its arguments in the

same order that the table was constructed for.

CONSTRUCTING COINCIDENCE TABLES FOR MAPPING = 0

Let V] and H) be the dimensions of object type 1 in pixels
(for irregular objects, these are the dimensions of the

circumscribing rectangle). Likewise, let V5 and Hp be the

vertical and horizontal dimensions of object type 2. Let ¥, X;

be the dot position of object type one, and Y, X, the same for
object type 2 (the origin is at the top left of the TV screen;
object position is the position of the top left dot of the
circumscribing rectangle).

Then let DY be Y; - Y, and DX be X3 - X3. Then DX, DY,
Vi, Hy, V2 , Hp, and the object shapes completely specify whether
coincidence is true or not. See Figure E.l1 (page E-6).

Imagine object 2 fixed in one place on the screen, and
object 1 mobile. It is not hard to see that after object 1 is
more than Hj] dots to the left of object 2, coincidence is no
longer possible. Similarly after it is more than Hy dots to the
right of object 1, coincidence is not possible. Applying the
same logic to the vertical axis, we arrive at the rules for the
range check:

-H; .LE. DX .LE. Hj
-vy .LE. DY .LE. V2

After finding DX and DY to be within this range, they are
used to compute a unigue bit index in;o the bit table:

INDEX = (DX + Hy) + (DY + Vi1)*(H] + Hp + 1).

The bit table is most easily visualized as seen in
Figure E.2 (page E-6). This table is then encoded by bytes;
starting at the top left, working to the right, then going to the
second row and repeating.

The easiest way to manually construct a bit-table is to
draw object 2 on graph paper, letting each square represent a
pixel. Then cut out object 1 from another sheet. Starting with

object 1 at the top left corner of object 2 (circumscribing

rectangles just touching), move it to the right, generating a 1
or a 0 each movement. An example is shown in Figure E.3
(page E-7). Then repeat the same with object 1 down by one dot.
This technique is repeated through the row in which object 1 is
just touching the bottom of object 2.
The table in GROM requires a 4 byte‘header. The exact
structure is:)
(label) DATA (vertical size of table less 1)
DATA (horiz. " " i L
DATA (V1)
DATA (Hy)
DATA (bits, grouped in 8's)
In the example from Figure E.3, we have
EXAMP DATA 4
DATA 5
DATA 2
DATA 2

DATA >73 ,>FF ,>FF,>FF (2 scrap bits at end);

HIGHER MAPPING VALUES

By specifying MAPPING values greater than 0, one can make
the bit table more compact; however, accuracy of detection
suffers. In the case of MAPPING =1, instead of a one-to-one
mapping of DX,DY pairs onto bits of the table, 4 combinations of
DX,DY all map into one bit. Thus the bit table is smaller, but

it is necessary to lose detection resolution.

To construct a table for MAPPING = 1, construct a
magnification O table first (see Figure E.4 (page E-8); note
that the objects are not shown in thislexample). Then draw 2x2
boxes on the table, starting at the box corresponding to DX=0,1,
DY=0,1. A new table is then constructed; each group of 4 pixels
in a box are compacted down to one pixel (Vq and Hy are half
their actual size). Note that:

-small 2x1 boxes on the edges reduce a single bit;

-the single bit should reflect the predominant value of the

cluster;

-in the cases of 2 ones and 2 zeros, the user has a choice,

depending on if he wants coincidence to predominate.

To make a table of MAPPING =2, do the same process, but
make 4x4 boxes on the 2 dimensional table (the first box is at DX
= 0,1,2,3, DY = 0,1,2,3). Now V; and Hy are one-fourth their
actual size. Note that resolution of coincidence suffers greatly
because now we have 16 combinations of DX and DY mapping into one
bit.

The concept of MAPPING lends itself well to changing the
magnifications of sprites. If a MAPPING = 0 table is designed
for two mag 0 sprites, the same table can be used for chnecking
coincidence when mag = 1, by merely calling COINC with MAPPING=
1. Remember though that coincidence resolution goes down.

Note that any object can be used in coincidence detectlion;
ali that is required is tanat a Y¥,X byte pair exists in the VTP
RAM for that object. Note also that the object can be purelry

fictitious as far as the TV screen is concerned.

E-5

BJECT 2

TRy

~d

3

OBJECT 1 - : | FIGURE E.1
DY=-1
DX=-2
Vl= 3
H1= 4
V2= 3
H2= 2
bV
?W?W,%:* ~ o %
vyfoo1101011001
v#1{11111000000 1
-V1+2 100
00 1
10 1
110 0 C
0o 0 1
1100 1
g (! 1
V-1 1 1
v, |0 1 0
FIGURE E.2

—

A\

\4

VY

\%

\4

FIGURE E.3

1
o GENERATED 0 11 10
I
GENERATED 1 11 11
1 GENERATED 11 1 11
1] GENERATED 1 11 1
GENERATED 1 11 11
1
DX
-2 -1 0 +1 +2 +3
2111359
ali111111
ol11 1111
10111111
+2 111111

N
— o =
— C ——
—— ——

I— A0 O

Or ™ — —

DanLlllanl

— OO drd A A O

— OO | | |

nUannUllﬁll_ll
— O O OO i —

O g4 A 4 —4 0O —

1111*100101

1111—110001
OO Ol —Hlrm OO0 O

-3-2-1 0123

OO0 0O —OoO —

BEpf i g i s

DATA >7F, >BF,
>EF, >BC

DATA 4
DATA 5
DATA 6
DATA 3

TABLE :

E-8

FIGURE E.4

APPENDIX F 1/0 INSTRUCTION

The I/0 instruction is used to control a variety of
input-output devices including cassettes, speech, sound, and CRU.
The format of the I/O instruction is:
1/0 GS, IMM
where
GS is the address of a list whose format depends on
the value of IMM. |
IMM specifies the type of input-output. Currently supported
values of IMM are:
O = Sound in GROM
1 = Sound in VDP RAM

2 = CRU input

w
"

CRU output
4 = Cassette write
5 = Cassette read
6 = Cassette verify
The format of the list specified by GS for sound I/0
instructions is given in Appendix C.
The format of the lists for CRU output is the same. GS
points to a 4 byte block in CPU RAM. The format of the block is:
bytes 0 and 1 - CRU base address. The interpreter
will double this for you since the
9901 ignores the least significant
bit of the base register.
oyte 2 - The number of bits tdo input or

output (1-16)

byte 3 - A pointer to a one or two byte area
in CPU RAM to write from or read
to. If the number of bits to read
or write is greater-than 8 then
this address must be even. |
The CRU data to be written should be right justified in the
byte or word. The least significant bit will output to or input
from the CRU address specified by tke CRU base address.
Subsequent bits will come from or go to sequentially higher CRU
addresses. If the CRU input reads less than 8 bits, the unused
bits in the byte are reset to zero. If the CRU input reads less
than 16 but more than 8 bits, the unused bits in the word will be
reset to zero.
The three different cassette I/O instructions use the same
list format. This list must be in CPU RAM.
bytes 0, 1 - are the length of the data transfer
(or the number of bytes to verify).
This length is rounded up to the
nearest multiple of 64.
bytes 2, 3 - are the source or destination
address in VDP RAM or the address
of the bytes to verify the tape.
The read and write instructions physically perform I/O to
the cassette. The verify instruction will read a tape and
compare it, byte for byte, against what is in the specified VDP
RAM area. It will set the status in CPU RAM location 7C if

any differences are detected.

The 1/0 instructions for cassette will not generally be used
by the application programs. There is a cassette program written
in GPL that should be used by the application programs. This
program will uniformly request the user to perform certain manual
operations necessary to the operation of the cassette. This

cassette program is described in Appendix I.

APPENDIX G TEXT AND MULTICOLOR MODE

When the Text Mode bit “(bit 4)-in VDP register $#l.is set,
40-character mode is selected. The screen is 40 x 24:characters
with each character being 6 x 8 dots. The Pattern Name Table is
now 960 bytes long and is in locations 0 re.BBF-in VDP RAM. Each
" byte in the Pattern Name Table corresponds to a pattern position
on the screen (0 - 27, first row; 28 - 4F, second row; etc.).
The pattern"numbe;g-are still 0. - 255; corresponding to VDP 800
= ‘FFF, but in text mode the last. 2 bits of each byte in the
patterns are ignored; making the .6 x 8 dot patterns. The only
means of changing the screen in text mode is to write the pattern
numbers to the Pattern Name Table position. There is not a color
table to use with text mode. The only way to give color to the
patterns is by loading VDP (7) with the foreground/background
combination desired.

When the MCMD bit (bit 3) in VDP register #1 is set,
the multicolor mode is selected. Each 8 x 8 dot pattern on the
screen is now divided into four quadrants (4 x 4 dots each). Each
“guadrant must be given a nybble assignment .in the pattern
generator block before you can use multicolor mode correctly. The
nybbles used in the pattern generator block are from RAM 800
thru DFF. The nybble assignments are made with a format
statement as follows:

HOME

FMT 4(' >00, >01, >02... >IF'), 4(' >20, >21, >22... >3F'},
4(' >40, >41, >42... >5F'), 4(' >60, >61, >62... >TF'),
4(' >80, >81, >82... >9F') 4(' >a0, >Al, >A2... >BF')

G-1

This format statement puts 24 rows of 32 characters in the
Pattern Name Table (VDP RAM >0 - >2FF), but it puts 48 rows of
64 blocks on the screen (each byte in the PNT corresponds to a 2
x 2 block of 4 x 4 dots on the screen) VDP RAM locations O,
>20, >40, and >60 all have the value 0, but RAM (0) uses the
nybbles at >800 and >801; RAM (>20) uses the nybbles at >802 and

803; RAM (>40) uses the nybbles and >804 and >805; RAM (>60)
uses the nybbles at >806 and >807.

The value in each byte of the PNT is the number of the
character in the Pattern Generator. Although each character in
the Pattern Generator consists of 8 bytes, the systém has a
pointer for each byte in the PNT which tells it which two bytes
of that charater it uses to color the quadrants. The nybbles in
these two bytes are used as follows:

- The first byte's MSN describes the upper left guadrant's

color

- The first byte's LSN describes the upper right

Quadrant's color

- The second byte's MSN describes the lower left quad-

rant's color,.

- The second byte's LSN describes the lower right

guadrant's color.

Figure G.l1l shows the ranges of XPT and YPT and the VDP
nybble assignments. As you can see from this drawing there is a
typce of indexing of the bytes in an 8-byte pattern generator

block which corresponds to YPT. For example:

Index into Pattern Generator YPT Values

0 . 0, 8, 16, 24, 32, 40
| 1, 9, 17, 25, 33, 41

2, 10, 18, 26, 34, 42

11, 19, 27, 35, 43
4, 12, 20, 28, 36, 44

()] i w n
w
-

5, 13, 21, 29, 37, 45
14, 22, 30, 38, 46

~ o
(=)}

T+ 18; 234 31, 39, 47
When XPT is even, then MSN of each byte 1is used; and when
XPT is odd, the LSN of each byte is used.

After the screen has been initialized with the format
statement as described above, bit 1 of CPU RAM location >FD must
be set. Once this bit is set, you cannot use format statements
to change the screen. All changes to the screen must be done by
setting XPT and YPT to specific values and storing the color you
wish for that block in the character buffer (CB = CPU RAM 7D).
For example, the instructions:

ST 37,@XPT
ST 13,8YPT

ST 4,€CB

would put a 4 x 4 dot block of color 'blue 2' at the specified
place on the screen and also put a 4 in the right nybble of VDP
RAM (>995). A store in CB does not affect the PNT since the
values from the initial format statement are the only ones which

allow MCMD to work correctly.

The ALL instruction may be used in this mode to change the
screen. For example:

ALL >24
will look at VDP RAM (>920->927) and fill the screen with these
colors in 2 x 8 blocks of 4 x 4 dots. It will also store >24 in
VDP RAM (0->2FF). Since the ALL instruction changes the values
in the PNT, before succeséful use of MCMD can be made, the
programmer must reset bit 1 of CPU RAM location >FD and
re-initialize the screen with the format statement above. "Then
set bit 1 at location >FD and proceed as above with a store to

CB of a color.

Ve

2%

AR EEE Y I TR ENE . /.4

-
" : |
R e
|

o
4

A

s

¥

1t
o .AM 2\..

Til o 6

ol SR} e

TRV TR

B O O 1. _ , Aesbiy :\
B UL (O G (O (o Y (O [; " . | i : _ x..__\ §r
?f LT

--?-"
o)
1 =3

™

:J‘
-~
b !

Q

-
i
——
S
. w_ "w
~—

|

I
i
I
--N;:--ﬂw‘a-f!_:-&:w :
e 2
L

|

|

]

|

|

]

|
a“'i
~=
: -
A

|

!

|

|

i
~3

——
«

!

e

=

T N 0

S o O O

- - - e E

td

] o *

bl

~ = ISl ™Y

obslsbalo A Aedslod sl shslodalagslotal skalok sl atal agsl s slod sl
2 mk_ \r me, %mwa.wwwﬁmw\WR 123 h};\w:\\\ﬁ Wb b

200N YL 0D- 1IN LdX

M=
i
<0
b o
<
- 1

APPENDIX H DEVICE 1/0

Each GROM or ROM that contains programs that may be accessed
by programs outside of that ROM or GROM need a header. There
are 6 types of programs currently defined. They are power up,
user application, device service, subroutine links, BASIC sub-
program libraries, and interrupt service‘programs. Every type of
program except user application programs, BASIC subprogram
libraries, and interrupt service routines can be in either ROM or
GROM. User application programs and BASIC subprogram libraries
can only be in GROM. For every type of program in a GROM or ROM,
there is a chained list of program headers. The first program
header of each type is pointed to by an entry in the GROM/ROM
header. GROM/ROM headers must be located at the beginning of a
GROM or ROM. Program headers can be located anywhere. Within a
multi-GROM package the GROM headers and program headers may be in
the same or different GROMs. Table H.1l shows a GROM/ROM header
and Table H.2 shows a program header.

MONITOR FUNCTIONS

5 SYSTEM INITIALIZATION

The monitor will start every application program with all of

RAM in a defined state. CPU RAM will be zeroed except for
>70 through >81. Location >70, >71 contains the highest

address in VDP RAM. Location >72 will contain >9F and is the
data stack pointer. Location >73 (the subroutine stack pointer)
is initialized to D>7E. Location >74 is zero, The other

locations (>75 to >81) have undefined values.

TABLE H.1

GROM HEADER

LOCATION SIZE CONTENTS
X000 byte >AA valid identification
X001 byte version number
X002 byte number of program
X003 byte reserved
X004 word(2 bytes) address of first ‘power up routine header
X006 word address of first wuser program header
X008 word address of first DSR header
X00A word address of first subroutine link header
X00C word address of first ‘interrupt link
XO00E word address of first. BASIC subprogram

libraries
The address of any program types should be 0 in the GROM/ROM

header if there are no programs of that: type. The number of

programs and verison number are not currently being used but
should be used for future expansion.

TABLE H.2

PROGRAM HEADER

SIZE CONTENTS

word pointer of next program header of the same program
type (O if end of list)

word entry address of program

byte number of characters in program name (N)

N. bytes ASCII character representation of program name

VDP RAM will have the 6 X 8 character set locaded. The VDP
registers will be set for the standard locations (see Table 3.4,
page 3-14). The screen will be blanked and the color table will

contain all D>17. All the rest of VDP RAM will be zeroes.

2 POWER-UP ROUTINES

The monitor initializes the gystem by calling power-up
routines. The console power-up routine executes first. This
routine puts up the initial screen and menu and calls the
selected program. Next, the monitor searches peripheral ROM and
GROM headers for power-up routine addresses and executes them as
it finds them. After each power-up routine is executed, a search
is made for the next one. When there are no more power-up
routines found, the selected program is started with the system
initialized as described in Section 1.

Each ROM power-up can use RO - R10, but cannot use >55 and
>6D 1n CPU RAM. R12 will be set up with the proper CRU address
to address the attached peripheral's CRU. The ROM power-up

routine should end with a B #R11 to return to the system.

GROM power-up routines are called from GPL. They can be
located in any slot of the library peripheral. They may not use
subroutine links or call DSR's. The return is accoamplished by

moving 2 bytes from the data stack to the subroutine stack,
decrementing the data stack pointer by 2, and then doing a return
instruction.

Power-up routines can use C2U RAM >4 to >T1 f2r whatever

they need. They may also use all of VDP RAM. They must not

H-3

change the data or subroutine stack pointers upon return to the

monitor.

3 GENERAL SUBROUTINES PROVIDED BY THE MONITOR

The monitor provides a group of subroutines that are of
general use in many applications. These include mathematical
functions, character sets, certain sounds, and application exit.
The mathematical functions are described 'in Appendix K.

There are two routines to load VDP RAM with either a 6 x 8
or 5 x 6 character set. They are called by:

CHR1 EQU >16

CALL CHR1 (6 x 8 characters)
CHR2 EQU >18

CALL CHR2 (5 x 6 characters)

When they are called, CPU RAM location FAC should be
pointing to the VDP RAM location of the first character (space).

There are two routines that give positive and negative
acknowledge tones. These are used primarily for acknowledging
good and invalid key pushes. The two routines are called by:

TON1 EQU >34
CALL TON1 (positive acknowledge)
TON2 EQU >36
CALL TON2 (negative acknowledge)
EXIT - RETURN TO MONITOR

An application program may exit and return to the monitor

EXIT

This instruction causes a software reset of the system. All

power-up routines are executed and the initial screen displayed.

This should not be confused with a hardware reset.

BIT REVERSAL ROUTINE >3B

Purpose: Provide a quick way to form mirror image bytes
in VDP RAM \
Input: FAC address of data in VDP (CPU RAM

FAC+2

location >4A)

number of bytes to reverse

Call: BITRVR EQU >3B

Output:

Exceptions:

Side Effects:

CALL BITRVR

Every byte in VDP RAM from the first
address pointed to by FAC to the byte
pointed to by the address + numbers cf
bytes in FAC+2 is bit reversed. This
means bits 0 and 7 are exchanged,
bits 1 and 6 are exchanged, bits 2 and
5 are exchanged, and bits 3 and 4 are
exchanged to give a mirror image of the
by te.

None

CPU RAM from >00 to >40 will be

destroyed.

WRITING I/0O ROUTINES

; T SUBROUTINE AND DSR CALLS

Subroutines and DSR's may be called through the monitor.

The monitor is passed the name of the routine in VDP RAM. The
name location in VDP RAM is pointed to by a 2-byte value in CPU
RAM >56. The VDP locations contain a one-byte count of the
number of characters in the name followed by the ASCII
representation of the name with a "." (period) and some more
characters. This may be repeated any number of times. The
routine name the monitor uses consists of the string up to the
first period, if any. The routine itself is called by

CALL LINK LINK EQU >10

DATA BYTE
where byte is 8 for a DSR and > A for a subroutine link. The
subroutine or DSR shouid return by

CALL RETN EQU >12

If the routine is in ROM, Rl will contain a version number

starting with 1. Every time a routine is found with the right
name, Rl is incremented. This enables a routine to determine its
position relative to other routines of the same name. If the
version number is wrong, the routine should B *R1ll without
changing any registers. If the routine is executed , it should
return by incrementing R1l by 2, and branching indirect on RI11l.
Registers RO - R10 can be used, as well as CPU RAM locations 4A
thru 6D. R1ll has the return address for RCM code and R12 will

be pointing to the peripneral CRU space.

For GROM programs, the subroutine or DSR may reside in
another library peripheral slot. The subroutine or DSR calls may
be nested. Each GROM subroutine or DSR call takes 4 bytes of
subroutine stack. ROM subroutines and DSR's called through the

monitor may not be nested.

- INTERRUPT ROUTINES

3

Interrupt routines may only be in peripheral ROM. Interrupt
routines may not use R9 or the subroutine stack. R8 must be
cleared before returning if the interrupt uses it. Every
interrupt tﬁat is not recognized as being a console interrupt
causes the interpreter to execute every interrupt service routine
that it can find in a peripheral ROM. These routines may use
R1-R8 and R10. R1ll has the return address and R12 must be
returned with the same value. If the DSR enables the interrupt,
it should wait for all processing to be complete before disabling
the interrupt and returning to the application program.

Because of the execution of an interrupt routine only as
part of a DSR, the DSR and interrupt routine can split the
allocation of CPU RAM from >4A to >6D. Interrupt routines that
service interrupts in any other way may only use R1-R10. All

interrupt routines end by a RT instruction.,

APPENDIX I CASSETTE DSR

DEFINITION

A file consists of a collection of data groupings called
logical records. This division of the file into logical records
does not necessarily correspond to the physical division of data
on the medium (like a block on a disk). Thus, there are two
types of records:

@ Logical records - the data grouping of a file as seen by

the BASIC interpreter or other application programs.

° Physical records - the buffers physically transferred

between memory and medium.

File I/0 from a program is done on a logical record basis.

The manipulation of physical records is done by the DSR.

All cassette files are sequential and allow variable length
logical records. When a file is created, the logical record size
must be specified. For sequential files the specification is
optional. If specified, the logical record size is used as an
upper limit for any logical record size of that file.

The physical record size for any medium is specified within
the DSR and is implementation dependent.

PATTERN NAME TABLE

When the cassette DSR is used, the PATTERN NAME TABLE must be

located at address 0 in VDP RAM.

MODE OF OPERATION

A file is opened for a specific mode of operation, specified
in the OPEN I/0 call. The three modes of operation are:
@ INPUT - the contents of the file may be read, but they
may not be altered.
e OUTPUT - the file is being created. 1It's contents may
be written but not read:
® APPEND - new data may be added at the end of the file,
but the contents of the file may not be read.
This is the same on the cassette as output mode.
Each DSR decides whether or not a specific mode for an I/O

operation can be accepted by the corresponding device.

IMPLEMENTATION

As mentioned, the DSR's should present a uniform interface
between the File Management System and the peripherals. This

section will give implementation details on this interface.

PERIPHERAL ACCESS BLOCK DEFINITION

All DSR's are accessed through a so called Peripheral Access
Block (PAB). The definition for these PAB's is the same for
every peripheral. The only difference between peripherals is
that some peripherals will not support every option provided for
in the PAB.

All PA3's ar2 phyvsically located in VDP RAM. They are
created before the OPEN call, anc are not to be released until

the I/0 has been closed for that device or file.

Figure I.l1 (page I-6) shows the layout of a PAB. The PAB
has a variable length, depending upon the length of the file
descriptor.

The meaning of the bytes and bits within the PAB is:

BYTE BIT MEANING

0 - I/0 opcode - contains opcode for the current
I/0-call. See Table I.2 for available
opcodes.

1 - Flagbyte/status - all the information the system
needs about file-type, mode of operation, and
data-type, is stored in this byte. The mean-
ing of the bits within this flagbyte is (bit 7
is most significant bit, bit 0 is least signi-
ficant bit).

0 Filetype - indicated file-type
0

Sequential file

1

Relative record file
(Cassettes are always seguential.)
1-2 Mode of operation - indicates operation mode file

has been opened for:

00 = UPDATE
01 = OUTPUT
10 = INPUT
11 = APPEND

Cassette DSR does not support update or

append.

BYTE BIT MEANING

3 Datatype - indicates type of data stored in the
file. DISPLAY type data comprises standard
ASCII data. INTERNAL type data is imple-

mentation dependent.

0 = DISPLAY
1l = INTERNAL
4 Recordtype - indicates type of record used.
0 = Fixed length records
1l = variable length records
5-7 Errorcode - these three bits indicate, in

combination with the I1/0 opcode, the error
type that has occurred (0 = no error).

2-3 « Data buffer address - address of the data buffer

the data has to be written to or read from.
The buffer is always in VDP RAM.

4 - Logical record length - indicates the logical
record length for fixed length records, or the
maximum length for a variable length record
(see flagbyte). It is rounded up to the next
highest multiple of 64.

5 - Character count - number of characters to be
transferred in write mode, or the number of
bytes actually read in read mode. It is used

by the cassette DSR only for reads and writes.

BYTE BIT MEANING

For cassettes, the record number is used for the
number of bytes to load or save. This number
must be larger than the number of bytes on the
cassette record. This number is rounded up to

the nearest multiple of 64 by the cassette DSR.

3

8 - Screen offset - offset of the screen characters
in respect to their normal ASCII value. This
is used if your characters are not at the
default positions in VDP RAM. It enables the
cassette DSR to use your character set for
messages. The cassette DSR messages look best

using the small character set.

9 - Name length - length of the file descriptor

following the PAB.

10+ - File descriptor - devicename. The length of this
descriptor is given in byte 9. There are two
valid names for cassettes:
CSl - cassette unit 1

CS2 - cassette unit 2

B e e fem b=

0 T |
I/0 OPCODE l FLAG / STATUS

l

2-3

DATA BUFTFER ADDRESS

B .-

LOGICAL RECORD LENGTH ! CHARACTER COUNT
!

6-7

- — e e S R e S e S = = e

-—— e e e e e

FIGURE I.1l PAB LAYOUT

I/0 OPCODES

This section describes the valid opcodes that can be used in
the PAB. These valid opcodes are shown in Table I.2 (page I-6)

The following section will describe the general actions
caused by an I/0O-call with each of the I/O-opcodes. Each
I/0-call returns any error-codes in the FLAG/STATUS byte of the

PAB.

OPCODE MEANING
00 OPEN
01 CLOSE
02 READ
03 WRITE
04 RESTORE/REWIND (not supported)
05 LOAD
06 SAVE
07 DELETE FILE - NO OPERATION

FOR CASSETTE

08 SCRATCH RECORD - NO OPERATION FOR
CASSETTE
09 END OF FILE TEST (not supported)
TABLE 1.2 I/0 OPCODES

Open
The OPEN operation should be performed before any data

transfer operation. The file remains open until a CLOSE
operation is performed. The mode of operation for which the file
has to be OPENed should be indicated in the flag byte of the PAB.
In case this mode is OUTPUT, APPEND or INPUT, the record length
(64) is returned in byte 4.

An OPEN operation must be performed before any other
operation except LOAD or SAVE. Consistent use of OPEN and CLOSE
is recommended for all files and devices; however, neither the

OPEN nor the CLOSE operation is required for devices.

Close

The CLOSE operation informs the DSR that the current I/O
sequence to that DSR has been completed.

After the CLOSE operation, the PAB is no longer needed, so
it can be released. As long as no CLOSE operation is performed

on an active PAB, this PAB has to be preserved.

Read

The READ operation reads a record from the selected device
and stores the bytes in the specified buffer. The buffer address
is specified in PAB entry 2 and 3, and the buffer size is
specified in PAB entry 4. 1If the length of the input record

the record is not read and an error is

o
Fn
th
D
ty
wn
iR
[¥]
m

exceeds tnhe b

returne<.

The WRITE operation writes a record to the specified device
from the buffer specified in the PAB. The number of bytes to be

written is specified in byte 5 of the PAB.

Restore/Rewind

The RESTORE/REWIND operation repositions the file read
pointer to the beginning of the file.
A RESTORE can only be used if the file is opened for INPUT

mode. RESTORE itself does not perform any READ operation.

Load
The LOAD operation loads an entire program from an external
device or file into program memory. All the control information
for BASIC is contained in the load file. Since all information
is directly written to program memory without intermediate
buffering, no buffer memory needs to be assigned.
The LOAD operation is a stand alone operation, i.e., the
LOAD operation can be used without previous OPEN operation.
For the LOAD operation, the PAB needs to contain the
following information:
Bytes 2 and 3 should contain the start address of the
program memory.
Bytes 6 and 7 should contain the maximum number of bytes
available for the program.
Aside from the I/0 opcode and the file descriptor, no more

information is required for the LOAD operation.

Save

SAVE is the complementary operation for LOAD. Instead of
loading a program from a device or file, it writes a program from
program memory to a device or file. Again, only a small part of
the PAB is used. Aside from the usual information (I/O opcode
and file descriptor), the PAB should contain the start address of
the program to be SAVEd in bytes 2 and 32 and the number of bytes
to be SAVEd in bytes 6 and 7.

BASIC automatically saves all the control information
necessary for reloading of the program, together with the program

code.

Delete

The DELETE operation deletes the specified file from the
specified device. This operation also CLOSEs the I/O sequence.
The DELETE operation can only be used in UPDATE, APPEND or OUTPUT

mode. (No operation for cassette.)

Scratch Record

The SCRATCH RECORD operation scratches the specified record
from the specified (relative record) file. The record to be
scratched is specified in byte 6 and 7 of the PAB. This
operation will cause an error for sequential files and devices.

(No operation for cassette,)

VERIFY
The VERIFY command allows the record on tape to be compared

against what is in VDP RAM. It will return an error code if the

I-10

record is unreadable or if there is a difference between the

tape's data and the VDP data.

ERROR CODES

The File Management System shall support the following

error codes:

1. BAD DEVICE NAME

k]

the device indicated is not in the system.

2. ILLEGAL OPERATION
either an invalid operation was specified,

or a conflict with the OPEN mode has occurred.

3. DEVICE ERROR

covers all hard device errors, such as parity and bad

medium errors.

ISSUING THE COMMAND TO THE CASSETTE DSR

After the PAB is set up, the cassette DSR is called by
putting the address of the name length (byte 9 of the PAB) in CPU

RAM location >56 and then calling a subroutine at location >10

in GROM 0. This is illustrated as follows for a save routine:
DSR EQU >10 Address of subroutine
NAMLEN EQU >56 Address of byte 9 of PAB

MOVE 13 FROM ROM(#PABCAS) TO RAM (500)
DST # >509, E@NAMLEN Address of byte 9 of PAB in VDP

CALL DSR

DATA 8 *Tells subroutine this is a DSR
PABCAS DATA >06 Opcode for save

DATA >02 Sets output status for save

DATA $#>600 Address in VDP of data buffer

DATA >40 Fixed record length size for cassette

DATA >00 Character count for cassette

DATA #>6F0 Number of bytes to be read

DATA >00 Bias for ASCII characters

DATA >03 Length of name of device

DATA :CSl: Name of device*

* For cassettes the name of the device is predefined as CS1 or

CS2 and these are the only names you are allowed to use.

AUDIO GATE

CRU bit 24 is the audio gate bit which allows data being
read to be heard. 1If the bit is set to 1, the data being read is
heard, and if the bit is set to 0, the data is not heard.

Setting this bit to a 0 or 1 is done with an I/0O instruction.

MOTOR CONTROL

There are two CRU bits (22 and 23) used to control cassettes
1 and 2, respectively. When there is no Cassette I/O being dcne,

I1-12

both motors remain on. When Cassette I/0 is specified, the DSR
will control the data being read. 1If there are two motor units
connected, the data will be read simultaneously, or you may have
the option of reading data from one motor unit and playing the

recorded voice from another motor unit through the TV speaker.

I-13

APPENDIX J - LIST OF INSTRUCTIONS

PART 1 ALPHABETIC

STATUS
MNEMONIC OPCODE(>) FORMAT AFFECTED

A A0 1 ALL

ABS 80 6 NONE
AID a0 1 ALL

ALL 07 2 NONE
AND BO 1 ALL

B 05 3 QoD
BACK 04 2 NONE
ER 40 4 QOND
BS 60 4 QOND
CALL 06 3 QoD
CARRY oC 5 QOND
CASE 8A 6 QOND
CEQ D4 1 QOND
QGE DO 1 QoD
oGT oo 1 QOND
o:1 c4 1 QoD
CHE cs ;] QOND
CLOG D8 1 D
CLR 86 6 NONE
QOINC B 1 QD
QONT 10 5 NONE
CZ 8E 5 CCND
D AC 1 ALL

DEC 92 6 ALL

DECT 96 6 ALL

INSTRUCTION

ABSOLUTE VALUE

ADD

LOAD SCREEN

LOGICAL AND

LONG BRANCH

LOAD BORDER COLCR
ERANCH (N RESET
BRANCH N SET

CALL SUBROUTINE
CARRY STATUS TO COND
CASE BRANCH

COMPARE EQUAL
COMPARE GREATER CR EQUAL
CQMPARE GREATER
COMPARE HIGH

COMPARE HIGH CR BEQUAL
COMPARE LOGICAL
CLEAR

COINCIDENCE

BASIC QONTINUE
CMPARE TC ZERO
DIVIDE

DECREMENT BY ONE

DECREMENT BY TWO

4.4.

SECTION

1

.10
LD

STATUS

MNEMONIC OPCODE(>) FORMAT AFFECTED INSTRUCTION SECTION
DIV AC 1 ALL DIVIDE 4.4.4
EX co 1 NONE EXCHANGE 4.4.17
EXEC 11 5 ALL BASIC EXPQUTE
EXIT 0B 5 NONE EXIT PROGRAM 4.5.8
FETCH 88 6 NONE FETCH FROM CALL 4.2.6
FMT 08 7 —— FORMAT SCREEN 4.5.4
GT 0A 5 COND GREATER STATUS TO COND 4:1.2
H 09 5 QoD HIGH STATUS TO COND 4.1.1
INC 90 6 ALL INCREMENT BY ONE 4.4.5
INCT 94 6 ALL INCREMENT BY TWO 4.4.6
1/0 F6 8 NONE SPECIAL 1/0 4.5.9
INV 84 6 NONE INVERT (ONE'S CQMPLEMENT) 4.4.11
MOVE 20 9 NONE MOVE DATA 4.4.20
M A8 1 NONE MULTI PLY 4.4.3
MUL a8 1 NONE MULTI PLY 4.4.3
NEG 82 6 NONE NEGATE (TWO'S COMPLEMENT) 4.4.10
R B4 1 ALL LOGICAL OR 4.4.13
OVF 0D 5 COND OVERFLO4 STATUS TO CQD 4.1.4
PARSE OE 2 ALL BASIC PARSE
U 8C 6 NONE FUSH DATA STAK 4.4.18
RAND 02 2 NONE RANDQM NUMBER 4.5.5
RB BO 1 ALL RESET BIT 4.3
RTN 00 5 COND RETURN FRQM SUBRCUTINE 4.2.7
XTNB 12 5 ALL BASIC RETURN
RTNC 01 5 NONE RETURN FROM SUBRCUTINE 4.2.8
S A4 1 ALL SUBTRACT 4.4.2

STATUS

MNEMCNIC OPCODE(>) FORMAT AFFECTED
SB B4 h § ALL
SCAN 03 5 QoD
SLL EO 1 NONE
SRA pC 1 NONE
SRC ES 1 NONE
SRL E4 1 NONE
ST BC 1 NONE
SUB A4 1 ALL
TER D8 1 COND
XML OF 2 NONE
X0R B8 1 ALL

The following instructions are
Language:

PARSE

INSTRUCTION
SET BIT
SCAN KEYBOARD
SHIFT LEFT LOGICAL
SHIFT RIGHT ARITHMETIC
SHIFT RIGHT CIRCULAR
SHIFT RIGHT LOGICAL
STCRE
SUBTRACT
TEST BIT RESET
EXBCUTE MACHINE LANGUAGE

LOGICAL EXCLUSIVE CR

used to access BASIC

BASIC Continue
BASIC Parse
BASIC Return

BASIC Execute

4.4.21
4.4.22
4.4.24
4.4.23

4.4.16

ENINY

INI10)

a3snnd

03SNNN

--laa:;!la.;:-;.ﬁmﬂ.

vys

.

199

1S

AlQ

T AISANN

NS .J:W‘-!-|-;;‘.. - e.;mmwn|-|.
201 r.-:11!.sr||-Mw%w-n-|--r N :-l;.ugu[. -
EILN; N ra;J\:u o :..||;|l!.|-|i.xm:- -
wox | W0 T aw

W . g

ns

a3snnn

)

_ HSNd

_ umiu_

Q3SNNN 1330

41

~:upmm

a3SNNN

He

JAOW

anty | o1l

TWX

3Syvd

4A0

AUV

11X3

19

TIVI

1 ﬁxu<:

NVIS [ONVY | ONLU| NI

a

J

]

H »zm{ﬁl44<
6 8 L 9

3qqAN juedLyLubLs 3sean

dVW NOTLOMYLISNI ¢ 1dvd

m

b

3 ¢ | 0

{]

6

3[QQAN 3uedL4LUbLS 3SO|

APPENDIX K FLOATING POINT OPERATIONS

There are several subroutines in the monitor which can be
called from a GPL program. These subroutines are described in
this appendix. It is important the programmer realize that when
one of these subroutines is called the contents of CPU RAM
locations >4A through >6F may be used, and VDP RAM locations >3CO
through >3DF will be used for roll out.

The mathematical function subroutines provided in the
monitor include convert number to string, greatest integer, invo-
lution, square root, exponential, natural log, cosine, sine,
tangent, and arctangent. The CPU RAM locations used by these
routines are:

FAC is CPU RAM >4A (8 bytes)
ARG is CPU RAM >5C (8 bytes)
STATUS is CPU RAM >7C

SGN is CPU RAM >75

EXP is CPU RAM >76

VSPTR is CPU RAM >6E (2 bytes)
FPERAD is CPU RAM >6C

FLOATING POINT ERRORS

When errors occur during the execution of floating point
routines, they are indicated by a non-zero value teing placed in
CPU RAM location FAC+10. If an error has occured, the user
program 1s then responsible for clearing tals ercer Zlag

location.

Error Codes:
WRNOV
DIVZER
ERRSNN
ERRIOV
ERRSQR
ERRNIP
ERRLOG

TRIGER

>01
>01
>02
>03
>04
>05
>06

>07

- warning, overflow

- division by zero

- syntax error

- integer overflow on cohversion

- square root of negative number

- negative number to non-integral power
)

- log of negative number or zero

- invalid argument in trig function

CNS - CONVERT NUMBER TO STRING

Purpose:

Input:

Convert a floating point number to an ASCII

string.

FAC

FAC+1l1

FAC+12

The floating point value.

If set to 0, the output string will be
in BASIC format. If greater than 0,
represents output in CALCULATOR mode.
The contents are the effective
calculator width, exclusive of decimal
point. The following two cells are

also required in CALCULATOR mode.

If zero, express overflow from
calculator range by + or - EE...E.

Underflow is expressed as 0. If

tn

rn

positive, under- or over-£{low rcm
calculator range is expressed in
E-format using the number of

K-2

FAC+13

CALL: CALL

Qutput: FAC

FAC+11

FAC+12

Exceptions:

significant digits specified by this
cell.

The number of digits to fix to the
right of the decimal point. A

negative value disables the FIX mode.

EQU >14

CNS

The FAC contents will be modified due
to rounding performed for display

purposes.

-

Points to the beginning of the result
string. The string will be entirely
contained within the floating point

scratch area between FAC and FPERAD.

The length of the string, in bytes.

None

INT - GREATEST INTEGER FUNCTION

Purpose: Compute the greatest integer contained in a

floating point value.

Input: FAC

INT

The floating point value.

EQU 222

PWR

Call:

Output:

Exceptions:

CALL

FAC

STATUS

INVOLUTION ROUTINE

Purpose:

Input:

Call:

OQutput:

Raise a

FAC

STACK

CALL

INT

The greatest integer contained in the
floating point value. For positive
numbers the integer is the truncated
value. For negative numbers the
integer is the truncated value plus

one.

The status byte is set according to the
contents of FAC after the operation.

None

number, B, to a specified power, E

The exponent, E.
The base, B.

EQU >24

FAC The result, B**E, The result is com-

puted as EXP (E * LOG(ABS(B))). 1If B
is negative and E is an odd integer,

the result is negated.

STATUS The status byte is set according to the

contents of FAC.

Exceptions: Negative number to non-integer power.
Zero raised to a negative power.

Overflow if result greater than maximum

value. ;
K-4
Side Effects: SGN and EXP are destroyed. The

previous FAC contents are destroyed and

the contents of VSPTR are decremented

by 8.
SQR - SQUARE ROOT ROUTINE
Purpose: Compute the square root of a number.
Input: FAC The input value.
SQR EQU >26
Call: CALL SQR
Output: FAC The square root of the number.

STATUS Set accorcding to the contents of FAC.

Exceptions:

Side Effects:

EXP - EXPONENTIAL ROUTINE

Purpose: Compute

Input: FAC
EXP
Call: CALL
Output: FAC
STATUS
Exceptions:

Side Effects:

If the input value is negative, the

ERRSQR condition results.

SGN and EXP are destroyed. The con-
tents of VSPTR are unchanged.

the inverse natural logarithm.

The input value.

EQU >28

EXP

The inverse natural logarithm.

Set according to the contents of FAC.

Overflow of the result causes the WRNOV

condition.

SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

LOG - NATURAL LOGARITHM ROUTINE

Purpose: Compute

the natural log of a number.

Input:

Call:

OQutput:

Exceptions:

Side Effects:

FAC

LOG

CALL

FAC

STATUS

COS - COSINE ROUTINE

Purpose:

Input:

Call:

Qutput:

Exceptions:

Compute

FAC
cos

CALL

FAC

STATUS

The input value.

EQU >2A

LOG

The natural log of the number.

Set according to the contents of FAC.

¥

If the input value is zero or negative,

the ERRLOG condition results.

SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

the cosine of a number (in radians).

The input value.

EQU >2C

Cos

The cosine of the number.

Set according to the contents of FAC

None

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

SIN - SINE ROUTINE

Purpose: Compute the sine of a number (in radians)
Input: FAC The input value.
SIN EQU >2E
Call: CALL SIN
Qutput: FAC The sine of the number.

STATUS Set according to the contents of FAC.

Exceptions: None

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

TAN - TANGENT ROUTINE

Purpose: Compute the tangent of a number (in radians).
Input: FAC The input value.
TAN EQU >30
Call: CALL TAN
Output: raAC The tangent of the number (in radians).

STATUS Set according to the contents of FAC.

K-8

Exceptions:

Side Effects:

ATN - ARCTANGENT ROUTINE

Purpose:

Input:

Call:

Output:

Exceptions:

Side Effects:

Compute

FAC
ATN

CALL

FAC

STATUS

If the input value causes an overflow
the WRNOV condition results.
SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

the arctangent of a number (in radians)
The input value.
EQU >32

ATN

The arctangent of the number.

Set according to the contents of FAC.

None

SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

The floating point routines provided in ROM are convert

string to number,

floating subtract,

compare, stack add, stack

and stack compare.

As a numper 1is

incremented by 8.

convert floating to integer, floating add,

floating multiply, floating divide, floating

subtract, stack multiply, stack divicde,

All numbers are 8-bits.

used on the value stack, the stacx pointer is

All errors are returned in location FAC + 10.

Only overflow errors are detected and the code is 1 for a

floating point overflow and 3 for integer overflow.

CSN - CONVERT STRING TO NUMBER

Purpose: Convert an ASCII string to a floating point
number,

Input: FAC Address of the string.
CSN EQU >10

Call: XML CSN (The instruction FLTPT will

generate the same code as

ML)

Output: FAC Number returned here. All numbers are
returned in internal format which is
radix 100. CPU RAM space FAC thru
FAC+9 should be reserved for the
answer.

FAC+10 Error code (>01 - overflow)

CFI - CONVERT FLOATING POINT TO INTEGER

Purpose: A rounded conversion of a floating point number

to an integer.

Input: FAC Floating point number

CFI EQU >12

Call:

Output:

Exceptions:

XML CF1I

FAC Integer value returned in first two
by tes.

FAC+10 Error code (>03 - overflow)

Range of integer must be -32,768 to 32,767

FADD - FLOATING POINT ADDITION
Purpose: Perform addition in base 100,
Input: ARG Left-hand term
FAC Right-hand term
FADD EQU >06
Call: XML FADD
Output: FAC Result of addition problem.
FAC+10 Error code (>01 - overflow)
FSUB - FLOATING POINT SUBTRACTION

Purpose:

Input:

Perform subtraction in base 100.

ARG Left-hand term
FAC Right-hand term
FSU3 EQU >07

FMUL

Call: XML FSUB

Output: FAC Result of subtraction problem.
FAC+10 Error code (>01 - overflow)
- FLOATING POINT MULTIPLICATION
Purpose: Perform multiplication in base 100.
Input: ARG Multiplicand
FAC Multiplier

FMUL EQU >08

Call: XML FMUL
Qutput: FAC Result
FAC+10 Error code (»>01 - Overflow)

FDIV - FLOATING POINT DIVISION
Purpose: Perform division in base 100.
Input: ARG Dividend
FAC Divisor
FDIV EQU >09
Call: XML FDIV
Output: FAC Result

FAC+10 Error code (>01 - OQOverflow)

K-12

FCOMP - FLOATING POINT COMPARE

Purpose: Compare two base 100 numbers.

Input: ARG F

irst argument to compare

FAC Second argument to compare

FCOMP EQU >0A

Call: XML FCOMP

Output: STATUS

SADD - VALUE STACK ADDITION

Bits set according to the compare --
High bit is set if ARG is logically
higher than FAC, greater than bit is
set if ARG is arithmetically
greater than FAC, condition bit is

set if ARG and FAC are egqual.

Purpose: Perform base 100 addition of the top value on

the value

stack in VDP RAM with another value.

Input: ARG Top number on the value stack (VDP RAM

address pointed to by VSPTR) is left-

hand term.
FAC Right-hand term
SADD EQU >0B
Call: XML SADD

Output: FAC Result

FAC+10 Error code (>01 - Overflow)

SSUB - VALUE STACK SUBTRACTION
Purpose: Perform base 100 subtraction of a number from
the top of the value stack.
Input: ARG TOP number on the value stack is
left-hand term
FAC Right-hand term
SSUB EQU >0C
Call: XML SSUB
Qutput: FAC Result
FAC+10 Error code (>01 - overflow)
SMUL - VALUE STACK MULTIPLICATION

Purpose: Perform base 100 multiplication of a number

from the top of the value stack with another

number.
Input: ARG TOP number on the value stack 1is
multiplicand.
FAC Multiplier

SMUL zQU >0D

Call: XML SMUL

Output:

FAC

FAC+10

Result

Error code (>01 - Overflow)

SDIV - VALUE STACK DIVISION

Purpose:

Input:

Call:

Output:

SCOMP - VALUE

Perform base 100 division of a number from the

top of the value stack by another number,

FAC

SDIV

XML

FAC

FAC+10

Top number on the value stack-dividend
Divisor

EQU >0E

SDIV

Result

Error code (>01 - overflow)

STACK COMPARE

Purpose:

Input:

Call:

OQutput:

Compare the top number on the value stack to

another

ARG

FAC
SCOMP
IML

STATUS

number

TOP number on the value stack - first

argument

Second argument

EQU >0F

SCOMP
ARG is compared to FAC and the high,
greater than, and condition bits are
set accordingly.

K-15

RADIX 100

The internal format for floating point numbers is Radix 100.
Each number consists of 8 bytes - an exponent followed by a
7-digit Radix 100 mantissa. A single Radix 100 digit has a range
in decimal value from 0 to 99. Thus, a 7-digit Radix 100 number
will correspond to decimal precision of 13 to 14 digits. The
exponents range in value from -64 to +63, which corresponds to a
decimal range of 10-128 o 10+126, The gesult is an equivalent
decimal range from -9.999999999999 X 10+*127 through
-1.0000000000000 X 10-128; zero; and then +1.0000000000000 X
10-128 through +9.9999999999999 x 10+127.

The first byte of the eight byte number is the exponent,
biased by >40. The remaining seven bytes contain the seven-digit
mantissa, with the most significant digit first. The number is
normalized so that the decimal point is immediately after the
most significant Radix 100 digit. If the number is negative, the
first two bytes are complemented.

Examples:
1) Decimal value = 12543

Floating point value = >42, >01, >19, >2B, >00, >00, >00, >00
2) Decimal value = 0.5294

Floating point value = >3F, >34, >5E, >00, >00, >00, >00, >00
3) Decimal value = 23.75

Floating point value = >40, >17, >4B, >00, >00, >00, >00, >00
4) Decimal value = -23.75

Floating point vaiue = >3F, >E9, >4B, >00, >00, >00, >00, >00

APPENDIX L 9900 ASSEMBLY LANGUAGE

The VDP chip is accessed by writing to the appropriated
memory mapped location (see Home Computer System Memory, CRU, and
Interrupt Mapping Specification). First, the VDP address pointer
is loaded by writing out, seqguentially, two bytes (low byte
first) to the VDP address location. (If the full operation is to
be a WRITE data to VDP, then the 2 byte address must be ORed with

4000).

Because of timing considerations on the VDP, there should be
a delay of at least 6 usec between a read or write operation and
loading the address pointer (or between any two VDP operations).

Data may then be moved from (to) the VDP read-(write)-data
address which will contain the content of VDP memory pointed to
by the VDP address register. After each operation the VDP address
pointer automatically increments and points to the next location.
Therefore, the address pointer does not have to be reloaded to

move blocks of VDP memory.

Rl = @MSB(LSB) two byte VDP address
R2 = @VDPWA I/0 write address

R3 = @VDPWD address to write data
R4 = @VDPRD address to read data
ORI R1,>4000 write option

MOVB @RI1LSB, *R2

MOVB R1, *R2

SLA RS8,6 delay
MOVB *R4,@LOC read data R4 = QVDPRD
MOVB @LOC, *R3 write R3 = @VDPWD

GROM is accessed by writing a two-byte address (high order
byte first) to the appropriate memory-mapped GROM write address
location. Data may then be moved from (to) the GROM read (write)
data address which will contain the contents of GROM memory
pointed to by the GROM address location. After each operation,
the GROM address pointer automatically increments and points to
the next location. Therefore, the address pointer does not have

to be reloaded to move blocks of GROM daﬁa.

R1 = @MSB(@LSB) two-byte GROM address

R2 = @GRMWA - GROM write address

R3 = @grmwd - address to write GROM data

R4 = @GRMRD - address containing current GROM data

MOVB R1l, *R2

MOVB @R1LSB, *R2

SLA RS8,16 delay
MOVB *R4,R6 move data from GROM address to R6
MOVB R6, *R3 move data from R6 to GROM address

To create sound in an Assembly Language program, you create
a sound list exactly as you would in Graphics Language. The
address of this sound list should be stored in locaion >83CC
which is CPU RAM location >CC. 1If this address is in VDP RAM,
the low order of R14 should be a 1; if the address is in GRCM,
the low order bit should be a 0. Location >83CE (CPU RAM >CE -
number of sound bytes) should contain a 1. To allow for
interrupt detection, you should do two LIMI instructions about
every 400 ianstructions.

R14LB EQU >83FD

ONE BYTE >01

SOUND

DATA
MOV
MOVB

SOCB

LIMI

LIMI

>700 *Sound list in VDP RAM
@SOUND, @>83CC
@ONE, @>83CE

@ONE,GR14LB
(400 - 500 Instructions)

2 Sees interrupts greater or equal to 2

0 No interrupts exéept reset or load

APPENDIX M PROGRAMMER/PLANNER STANDARDS

PURPOSE

The purpose of this notebook is two fold. First, it
is designed to set forth the conventions to be applied
across all Home Computer software in order to minimize
customer confusion. Our software should be viewed as being
of the utmost quality, and one way to accomplish this is to
make the interface between the customer and the Home Compu-
ter as much the same as is possible, regardless of which
package he is using. Secondly, it is designed to help re-
duce our development cycle time. One way to accomplish
this is through the use of common subroutines and functions
These can be coded and checked out only once.

This guide is meant to be an evolutionary document,

therefore, your inputs are requested and updates made to it
from time to time.

2.0 SCREEN PROCESSING AND FUNCTION KEY USAGE

The Primary interface between our software and the
customer is through the monitor. This occurs with four
basic types of screens:

o MASTER MENU - tells user basic package options and
requires one user response.

o SUBMENU - used when a given option in turn has
several suboptions, requires one user
response.

o PROMPTS - used to get necessary data from the
user to process currently selected op-
tions, may be one or more screens.

o DISPLAYS - provides user with result of selected
option.

The interface between these screens can lead to a
very large confusion factor if not handled properly.

2.1 MASTER MENU

Example format would be:

INVESTMENT ANALYSIS |

STOCKS

BLACK-SCHOLES OPTIONS PRICING
OPTION WRITING

OPTION SPREADS

BONDS

BASIC FINANCIAL TOOLS

. .

U W
- . -

YOUR CHOICE? _

The use¢ would maka his selesc:zion by keying in a 1l-
ané pressing ENTER; any Qotaer response would Causé an &cr:o
tone.

6

2.2

SUBMENU

If option "1" was selected in 2.1, tﬁe following
submenu would appear:

STOCKS

1. STOCK PERFORMANCE

2. THEORETHICAL STOCK PRICE
USING REQUIRED RETURN

3. EXPECTED RETURN WITH THE
CURRENT STOCK PRICE

YOUR CHOICE? _

The users now have 2 possible paths to take. The
normal path is to select a 1-3 on the keyboard (any other
entry produces an error tone). The second path is to re-
turn to the menu that got them here (in this case the
Master Menu). The SHIFT-2Z or BACK key should be used to
accomplish this. The SHIFT-W or BEGIN key could also be
used.

PROMPTS

For example, if "1" is selected in 2.2, the following
prompt screen might appear:

I STOCK PERFORMANCE

INCOME TAX BRACKET (%)2 _ _ _ i

CAPITAL GAINS TAX RATE (%)?

DIVIDEND DPERIODS PSR YEAR? _ _ _

|
TOTAL DIVIDEND PERIODS? _ _ _ @ {
|
|

The cursor is located at the first prompt. Here the
user has 3 options:

1. He can key in the requested value, press ENTEF
and move to the next prompt.

2. If a "NULL" response is acceptable and the user
wishes not to enter a value, he can simply press
ENTER and move to the next prompt.

3. The user can decide that "STOCK PERFORMACE" was
not really what he wanted to do. He can press
the SHIFT-Z key and return to the menu that got
him here (in this case the "STOCK" submenu).

The last prompt on the screen is a special case.
Here again, the user keys in the requested value and
presses ENTER. At this point, rather than automatically
going to the next logical process, the following should
appear at the bottom of the screen:

SCREEN IS COMPLETE
PRESS PROC'D, REDO, ERASE

Where:

PROC'D means that the user is ready for the program
to accept the data just given it and it should proceed to
the next logical function - i.e., process data, ask for
more prompts, etc.

REDO means that the user wants to change some of the
data just input so the program should in effect move the
cursor back to the first entry (still showing or
re-displaying the user's last responses) and let the user
move through the prompts via the ENTER key changing the
ones he wants to.

ERASE means that the user doesn't want the program to
use any data just given it - i.e., abort. In this case, the
program should erase the screen and start it over, thus
wiping out the user's last responses.

The user can also press BACK (SHIFT-Z) - it has the
same conotation as ERASE, in that all data input on current
screen is lost, but it takes the user back to the menu that
lead him to this prompt screen.

There are several special cases that aris= in
orocessing a scr2en Oof prompts:

REQUIRED AND OPTIONAL PROMPTS:

Where at all possible, all reguired prompts (prompts
that must be answered to solve the problem), should come

M-4

first and be grouped together. While the user is in the
required prompt area, the only valid function keys are:

ENTER - to get to the next prompt

ERASE - erase screen and start it over

REDO - change a previously entered value on
current screen

BACK - takes user back to the last menu screen

BEGIN - takes user back to the Master Menu

QUIT - takes user back to the color bar screen

When the user has completed all required prompts and
is in the optional prompt area, the above keys are valid
with the addition of: '

PROC'D - takes user immediately to the screen
complete line.

REDO CYCLE:

If the user has completed all reqguired prompts and
then presses REDO, he is reviewing previously entered data
on the current screen. Once he has made corrections, he
can press PROC'D which will automatically take him to the
"SCREEN IS COMPLETE" 1line. This allows him to bypass
entries that regquire no changes rather than having to press
ENTER to get to the bottom of the screen.

WHAT-IF MODE:

Sometimes the WHAT-IF mode of processing is
desirable. This occurs when the user has input a series of
prompts and upon obtaining the results, wishes to vary one
or more parameters and see the resultant change.

The last answer display screen should end with the
following:

PRESS REDO, BACK, BEGIN

Where BACK would take the user backward to the first
prompt screen redisplaying previous answers to the prompts,
BEGIN would take the user back to the Master Menu, and REDO
would take the user back to the prior screen (if there is
one) .

While processing in the WHAT-IF mode, you can run
into the situation where a variable number of parameters

can be supplied. For example, the first time through a
variable cash flow analvsis the user might have selected L0
different cash flows. When he enters the WHAT-IF moce, he
may only want to use 5 cash flows but is redisplayec the 10

he previously input.

The way to terminate such a string of data would be
for him to press ENTER after inputing the Sth item. The
cursor then moves to the 6th item and the user would press
CLEAR to put nulls in the field and then press ENTER. The
cursor then moves to the standard message at the bottom of
the screen and when PROC'D is pressed, it would disregard
items 6 through 10.

The user also requires a certain amount of latitude
while dealing with one specific prompt. If he wishes to
clear a field and start over, he presses CLEAR (SHIFT-C)
which clears the field and moves the cursor back to the
first position in the field. The user also needs to move
the cursor either left or right :to make corrections. This
should be done with the LEFT and RIGHT keys (SHIFT-S and
SHIFT-D respectively).

DISPLAYS
Displays are totally package dependent. Some will
have headings because they are displaying answers or data

and some will not because they are games, pictures, etc.

The key, though , is that the user needs to know
what to do when through with the display.

If a display is multiple screens of data, the formats
should be:

TO CONTINUE, PRESS PROC'D

SCREEN IS COMPLETE: i
PRESS REDO, BACK, BEGIN i

FIRST SCREEN:

The last line "TO CONTINUE PRESS PROC'D" tells the
user that there is more data to follow, and to see it they
must press PROC'D. The only other valid keys at this
point are QUIT, BACK (WHAT-IF mode) and BEGIN.

SECOND SCREEN:

The next to last line "SCREEN IS COMPLETE" tells the
user that there is no more data to be looked at. The next
line "PRESS REDO, BACK, BEGIN" tells the user his options
at this time. !

REDO would take the wuser back to the display
screen prior to this one, if there were more than one.

BACK would put the user in the WHAT-IF mode and take
him take him back to the first series of prompts redis-
playing previous entries. .

BEGIN would take the user back to the Master Menu.
Of course, QUIT is also valid at this point.

If it is necessary to look at data that is wider than
will fit on the screen, then sideward scrolling 1is
required. This should be accomplished with the LEFT and
RIGHT keys. The LEFT key moves the data to the left, i.e.,
allows the user to view the right hand side of the data,
and the RIGHT key moves the data to the right, i.e.,
allows the user to view the left hand side of the data.

e s

UYL A VY (AN " | e RV I T TR]

SQ = QUIT - _
=7 = BACK ,
. = REDO
ST = ERASE COLOR BAR |
SV = PROCEED (PROC'D) i
E = ENTER
SC = CLEAR | ANY KEY
SS = LEFT ARROW
SD = RIGHT ARROW GROM MENU l
K = SINGLE KEY STROKE K % N
SW 3 ‘
! MASTER MENU
i 1 >
+ 2
i 3
i ; N
| SZ, SW |] SUB MENU
+ . 1 >
:]2
| E =
; ; |
| | | }
! PROMPTS
e " il —
; | /]
| | 52 ¥, E SR. ST
B - g _E i
! SC, SS, SD !
: S rM ,
; ! PROPTS | :
i Sz A SR, 5T !
3 —
I_T ;
. v ,
| A i
i L DISPLAY
| | |
i 1 | f
!
| l SV SR '
| DISPLAY i

M-€

SCREEN FORMATS

If the format the user sees is basically the same in
any package he uses, he will feel much more comfortable and
we will project the idea of coherent, well designed
software.

MENUS, SUBMENUS

These categories are for the most part single
response screens and upon keying in a number followed by

ressing ENTER takes the user immediately to the option he
as selected.

The first menu the user sees should be the MASTER
MENU for the package he is running. It should lead him to
ALL options in the package. The format should be:

PACKAGE NAME

l. OPTION - 1
2. OPTION - 2
3. OPTION - 3

YOUR CHOICE? _

The number of characters in an option has some
limitations. See the discussion on the size of a prompt in
Section 3.2.

The color of the blocks can be left to the planner's
discretion, but should be consistent throughout a package.
A suggestion would be: package name, option block and
choice blaock should have the sams mecdium rad paciground;
with the background outside of the blscks being cyan.

Submenus have the same formats as the master menu.

M-S

PROMPTS

The format of a prompt depends entirely upon the
question being asked and the age of the expected user. In
general, the younger the user, the more explicit the prompt
has to be.

The format for a prompt screen should be:

SCREEN TITLE

3

PROMPT?

PROMPT?

PROMPT?

The backgound colors are left up to the planner's
discretion. As a suggestion, the background for the screen
title block and the prompt block should be the same color
as that of the package name block in the menu screen
(medium red), and the main background color (outsice the
blocks) should be cyan (same as menus).

As a rule of thumb, the prompt and its answer should
fit on one line of the screen (28 characters). Each
guestion should be followed by a "?" and underscores to
represent the maximum size of the answer. For example:

AMOUNT INVESTED? _ _ _ _ _ _ _ _
The cursor and the underscore should be the same color, and
that color should be the light version of the backgrounc.
As suggested above, the background around the prompts would
be medium red:; therefore, the cursor and the undersccre
would be lignt redg.

The cursor is a 7X8 dot character, and the underscocre is a
1X4 dot character.

™o facilitate the conva*sion of suz packages f:tom U.8: o
another language, we s5acull K2ep the SIOmMZLS a5 stcrt as
possinie. As a rule of thumb, it will take 23% more room

[Te QT

to say the same thing in a foreign language than 1in
English. We need to keep this in mind, because we would
also like for the prompt and answer to still fit on one
line after it is converted to another language.

M-10

I1f we will leave a blank line following each prompt,
then the answer can be moved to that line, if required,
when we translate. For example in U.S. we might say:

IS THIS CORRECT (Y/N)? _
and when translated to French they might say:

EST-CE CORRECT (OUI = 1/NON = 2)

-

The YES/NO prompt is a special type. In the U.S. the
term (Y/N) is acceptable, but as illustrated above "yes" in
a foreign language does not start with a "Y". Since we do
not know what languages we will be translating to, we will
use "1" for YES and "2" for NO in the foreign language.
Therefore, all of our packages should accept a "Y" or "1"
for YES and a "N" or "2" for NO.

Another type of prompt we need to pay special
attention to is the "DATE" prompt. Everyone, except the
U.S., thinks of dates in DAY/MONTH/YEAR format.

For ease of processing, all packages should process
dates only in one format---MONTH/DAY/YEAR. Therefore, each
package must check a language flag (see MULTI-LINGUAL
PLANNING) to determine the format and if non-U.S. then it
must reverse the order when accepting or displaying dates.

The format for the date prompt will depend upon the
age of the expected user, but if at all possible should be
as follows:

TODAY'S DATE? __ / F

People in the U.S. will automatically input MM/DD/YY
and elsewhere, they will input DD/MM/YY. We can determine
order by knowing if the package is U.S. or not.

If the planner feels that the date needs to be more
explicit, then the following format should be used:

TODAY'S DATE:
MONTH? _ DAY? _ YEAR? _

Note that the prefix "19" is being dropped from the
year. With the underscore it is obvious that the last two
digits are all that is regquired, plus it give us 2 extra
characters on the line.

In packages that require data logic (difference
between two dates, etc.) the second format should be used.
This is especially true if a package l1like this is to be
marketed in the U.K. or Canada with nc changes from the

M-11

U.S. version. In this case, we need it absolutely clear
that the date order is MM/DD/YY, as we have no way of
telling whether the package is being run in the U.S. or
U.K.

MULTI-LINGUAL PLANNING

In designing packages that will be translated from
U.S. to a foreign language there are several items that
must be taken into consideration. Some of these have
already been discussed under PROMPT FORMATS (3.2.) The
following items are also required to make the conversion as
easy and inexpensive as possible:

1. All text must be located in one GROM. If this is
not possible, then a concerted effort should be
made to reduce the amount of text so it will fit.
Only after all possibilities have been explored,
should we go to 2 GROMS for text.

2. If the package uses the cassette DSR, then in the
text GROM we must leave 400 bytes of free space
to allow for the inclusion of an override DSR.
This is the only way the DSR text can be
translated from U.S. to a foreign language.

3. We must also leave 150 bytes of free space to
allow for the inclusion of an override powerup
program so that the introductory (color bar)
screen can be translated.

4. Most foreign languages take more room than U.S.
As a rule of thumb, we need to take the total
number of characters we have in U.S. text and
leave 25% of this number as free space to allow
for the translation. For example, if we have
2000 characters of U.S. text, then we need 25% of
2000 or 500 bytes of free space.

5. The use of keys which relate to English should be
avoided. For example:

PRESS P TO PRINT
Instead, we should use numbers. For example:

PRESS 1 TO PRINT

6. The entry point to all packages should be in the
tax= GROM and saouid set a language f_2ag %2 ..1a¢g
what language :a32 package is in, A va_ue 3% zerc
should be used for U.S. This flag then can be

tested in the mainline program to tell date
formats. This same flag can alsc be used by the

M-12

text formatter to tell which language is being
used if the package contains several languages at
one time,

All text should be stored in the text formatter
along with the cursor position for prompts.

This cursor position will be returned to the
mainline program which can use it to call the
ACCEPT subroutine to get the answer to the
prompt.

As mentioned in 3.2, prompts should be as short
as possible so that the prompt and answer, when
translated, can still fit on one line.

If the prompt will be too large to meet the one
line requirement when translated, then a blank
line must be left directly under the prompt so
that the answer can be moved to this line when
translation is done.

13

=
[

it

3

(yauis Byep)

(yaers qns)

09

. ' TS 1A (3 15 I m
o - =- | e f e " N
T T T e | 0 T osnavis 1% 2 N
TR T L1S40A 0L s it i
0 Il-ﬂm_ S S Y6 o N Z@—.—:E (__n C_-m Ve Vi
—wm i | m_..w -) =1ur2__. m.: . o . bS o hE Gl

T |I|mw.| I am I E:_:ZC.: Bl . - . BS BE Bl
o . e o 6 | xaorw | s T - (
99 T | aaore | s | w 91

T @ w | e | s | 5¢ 51
vl v CowmAn w | e ve bl

€8 €6 (08<) W1SONS EL €S , €€ £l

. 28 % ov<Iwistvaze | 000 S 2t 2

19 16 el s e "

08 06 WWSWH QL e | 0t 01

v 18 19 1v 1 10

v ' wn T T w3 10

ov as T | T T e | W 10

v N 9 | - N Tw | o, . 2

gV 88 | W o 'Y . 10

W Ve Tve | w - vz Vo

Y 68 o e | e | 4 60
T2 - @ | “w | w | 82 90
........... " T T N . (z (0
wdlr Bl-l o mw.r - m¢| . - 9 : 90

B sy 58 R B Y T T T g 50
T T T Tw v T w |l T Tw | K13 v
T T T w | T | o | w | - £z £o
— w7 TTTTwl| T T T w . w 20

10
00

¢ N9

1AVII

Wa-Nd?d

- FIGURE M.3

SPRITE TABLE VOP REG (1) =
TE=| YPT XPT CHAR COL.VELO- Y x | sPRITE=| YPT XPT CHAR.COLVELD- Y
CITY CITY
g | >300 >780 16| >340 >7C0
1] >304 >784 17 >344 >1c4
2| >308 >788 18| >348 >7C8
31| >30C >78C 19| >34cC >7CC
4| >310 >790 20| >350 >700
5| >314 >79%4 21| >354 >704
§ | >318 >798 22| >3s8 >708
7| >31¢C >79C 23| >3sC >170C
8| >320 >7A0 28| >360 >7E0
g | >324 >1A4 25| >384 >7E4
10 | >328 >7A8 26| >168 >7ES
11| >32€ | >7AC 27| >38C >TEC
12 | >330 >780 28| >370 >7F0
13| >334 >784 29| >374 SSH
14 | >338 >788 30| >378 >1FB
15 | >33¢C >78C 31| >37¢C >7FC |
CHAR.| RAM | DATA CHAR| RAM DATA CHAR.| RAM DATA cma.{ RAM DAT
0 | >400 >33 | >4C0 >80 | >580 >Cc3 | >840
>81 | =408 >89 | >4C8 >81 | >588 >C3 | >648
>82 | >410 | >3A | >400 >82 | >530 >CA | >830 |
>83 | >418 >38 | >408 >B83 | >538 >C8 | >633
. >84 | >420 >8C | >4E0 >B84 | >5A0 >CC | >&80
>85 | >428 >30 | >4E3 >85 | >5A8 | >C0 | >688 |
>86 | >430 >S9E | >4F0 >86 | >380 | >CE | >870 |
>87 | >438 >3F | >4F8 >g7 | >388 | >CF | >678 |
>88 | >440 >AQ | >500 >88 | >5C0 | >00 | >620 |
>89 | >448 >A1 | >508 >389 | >3C8 >01 | >688 |
>8A | >450 | >A2 | >510 >8A | >300 >02 | >630 |
>88 | >d58 | >A3 | >518 >88 | >508 >03 | >638 |
>8C | >460 | >A4 | >520 >B8C | >5E0 >04 | >6A0|
>80 | >468 | >A5 | >528 >80 | >5E8 >05 | >8A8 |
>3E | >470 | >A6 | >530 >BE | >5F0 >06 | >830 |
>8F | >478 | >A7 | >538 >BF | >573 | >07 | >888 |
>80 | >a80 | >A8 | >540 | >C0 | >800 | >08 | >5C0 |
>31 38 | | >Ag | >348 | >C% | >508 | >09 | >33
>82 | >80 | >AA | >320 | >C2 610 | >0A : >500
>a3 | >498 | >AB | >538 >¢3 | >818 | >0B ! >308 |
-84 | >440 | >AC | >580 >C3 | >820 | >0C | >620
>35 | >4A8 | >AD | >588 | >C5 | >628 | >00 | >6E8
>36 | >480 | >AE | >570 | >C§ | >630 | >0E | >570 |
>97 ’was | SAF | >578 . >C7 | >838 ‘ >OF Paﬁa \

"-15

o~ — Ca~ - -
T B 2 u em.n) B EEE 93< 1< < N 097 <
| Hoa< | sa< o< Gi< Nk G0< - Gl (- Gil=
B | fas< pi< 23< Vi< < Vi< N vii< e Vi~
1 lug< < 13< fi< i< 0= INES £ - -
. i< i< Vi< 1< Vi< < Vi 2= V- -
o 6i<| 14< 163< 13< 60 ik 60 < 1) i< b
) |8a< 04< |83< 03< = loa< B < - niy - 0n-
o 0109 M0103 | 4010 WO 109 W00 M010D STALE SRR 0109 STIRILE
S 034 <wvu | ona=wvu | ova<wwu | ood<wvi [003 <wve | 0s3<wvn [ovie wva | 001wy [020 WYN | ot Wyl
R e 195 | oe1as!| ezras| szras| cszias| vzaas| Geras| o veras| o €c1As | 2 1S
Jy< V< = 16< e -] 1] - o<l T T o=l L T s T
< gv< < 96< < o= I 0= 1< 09 < 15< -
Ove| " sv< 06< {s6< Ig< < ae< Gl< (10 - (15- _
ave| || Jwv< aw<| | | |ve<| ~|os< vp< W= vL- 99< -)G \
av<| | | lev<| n6<| | | |eo=| | las< [R< RS L= ke 19< %5 |
vee| | | eve VG< w<| | | |ve< 2h< Vi< i< V9« 79~ e /
6v<| tv< oo<| | | |we<| | | |e8< 1< 6L< =l fY< 19 6%~ A
V< ov< go<| | | loo<| | | leo<| < Bl< < w0 - 09- 85— X
© w0102 | w0 | worwa | wot0n | cwoim U010 07102 HO10) MO0 NOT10) SRR
ovn<wvy | ooa<wvy | 020 <wvu | osa<wvu | ovd<wvu | ood<wvu | ooo<wvu | osa<wvy | ovn<wvy | oon- wva |00V WYY
1z13s| 0z13S|° et 13as| gr13s| 1 13S| 9v1as| sLLAS| wviLAS| ELLAS| AL IAS | 1L s
5= M |v< 0 |tw< o [4e< i i< (| 1z< /|te< i< (1< w-l 1 <]
gs<| | [alawe| | |nfou<] | |4 |se<| | |<]oe<| | |9]32< 0z< E 91 - 90<
G5 nlov<| | |wlsv< 3 |oe< = e 5 |oz< =|st< %= §l< 1< G0
V< | 1lov<| | |2]ov< oloc<| | |5 |ve< v |az< “fvz=< s | Vi< < bii<
gs<| | |slav<] | [wlee< | |a|ne<| * lee< ¢ |nz< v | ez< w a1 Cl< an< £0<
mmn e eee| R U N O O O O L |Vi< wlzz<l | | v i< Vi< 20«
is<| | |olev<| | |1]w<| | |v|et< 6lie<| | | 1]oz< (|1z< i |61< < (i) < 0=
05< dlsv<| | [nlov<| | |@|sc<| | |8]0t< 0|ez<) |oz< ig|B1< 0l< B0 < 00+
T w0109 | Tworwa | worea | :woiwod | :woi0d ;40109 w0103 | 10109 W0 109 0100 0100
oav<wnvi | ovv<wvu | sov<wvu | 026<wvu | ose<wvu | oo<wvu | 00G<wvu | 038<wvu | o8B<WVu | OUR- WV | 00B<WVY
“ortas | T euas| sias| ci3s| 913s| sGi3as| v13s € 13S Z 13S | 138 0 13S
N S S T 3TL1L

b NOT

FIGURE M.5

HCME COMPUTER "GRCM" DEVELOPMENT

PROJECT:

TeExAS INSTRUMENTS

2

o

i

A
I T

VICEQ/COPY:

AUDIC/TCNES:

T 7978 Tezas insirumenis incsrocrated

ALPHABETICAL INDEX

Addressing Modes
Direct

Immediate
Indgxed

Indexed Indirect
Indirect

Top of Stack

ASCII Character Sets

Bit Reversal
Cassette DSR

CPU RAM

Destination Address

Floating Point Subroutines
ATN
CFI
CNS
cos
CSN
EXP
FADD
FCOMP
FDIV
FMUL
FSUB
INT
LOG
PWR
SADD
SCOMP
SDIV

-y

Sa
SQR
SSUB

TAN

o
[
@

LI |
ETuU~1uU=ann-3u

1
N — V'S

I m W Lo w W ww ww
|
- w

W —
]
Y

{ IR R B I |
o o

I 1
- MW =

(R O O I T O]
[I S — i @ L U e N gy o, R T LS TV o T
I i w

1
o = WU -
=)

AR ARMNATRARAARARRAR A" A" R
|

ALPHABETICAL INDEX
Page 2

Function Keys

GPL Assembler

GPL Directives

BASE
DATA
END
EQU
GROM
LIST
LISTM
ORG
PAGE
TITLE
UNL
UNLM

GPL Instructions

ABS
ADD
ALL
AND

BACK
BR

BS

CALL
CARRY

CASE
CEQ

CGE
CGT

CH

|
(L]

Ca

CLOG

CLR
COINC

o
[\
1]

-

X
[
(o -J)V]

o> -
[
— W

e e Ee P
|
ErErNSFWEEFEWMDNDNDWND

L

1
- =3

1

an

1

o

[I O T (N R N B |
—_— W o U W=~ OO 0L 000N a O s 0O ©
-] =] — - - -

mEErDEDI- L EDERPED EEP -FPD &P
1

ALPHABETICAL INDEX
Page 3

GPL Instructions (Cont.)

D

DA
DABS
DADD
DAND
DCASE
DCEQ
DCGE
DCGT
DCH
DCHE
DCLOG
DCLR
DC2Z
DD
DDEC
DDECT
DDIV
DEC
DECT
DEX
DINC
DINCT
DINV
DIV
DM
DMUL
DNEG
DOR
DS
DSLL ~
DSRA
DSRC
DSRL
DST
DSUB
DXOR
EX
EXIT

FETCH
FMT
GT

a

HOME
1/0

I
B
-J

|
H
O o

-

-

o\

Lo 3 T -ST O, RVESE, P SN S N« o T =N
]] I
= L Ln) w W

ALPHABETICAL INDEX

Page 4

GPL Instructions (Cont.

INC
INCT
INV
M
MOVE
MUL
NEG
OR
OVF

POP
PUSH
RAND
RB
RTN
RTNC
S

SB
SCAN
SLL
SRA
SRC
SRL
ST
SUB
TER
XML

XOR

GPL Macro Instructions
SCALL
SCASE
SELSE
SEND
SFOR - TO
SFOR - DOWNTO
SGOTO
SIF - GOTO
SIF - THEN

camoamam

S3END
SUNTIL
SWHILE

)

[I T

I

D’b:vnnum»bﬁsw:bnﬂwnwm
LM UnurdvinmnoygyI gy Oy Ay =1

ALPHABETICAL INDEX

Page 5
GPL Timing
Handsets
Joystick Codes
Remote
Wired

Instruction Formats

Keyboards
40-Key

Remote
Label
Monitor

Multicolor Mode

Pattern Color Table

Pattern Generator Sets
Multicolor Mode
Normal Mode
Text Mode

Pattern Name Teable
Multicolor Moce
Normal Mode

Text Mode

Patterns (Characters)

Peripheral Access Block (PAB)

llv]

- . -
ConRVenTians

rogrammin

(18]

Radix 100 Numbers

= |
I W
N

1Y

(I | [
- 0w

u:wtnCJ?IJCJU
HI=WON~oH o

o~

[|
- -

-

omHHWDDoDOoOo
i
g WU N Lo

(ANN]

1 [
(e,

- = -

[N NEY! NS
i 1
HorR NSNS N

D W
[
RN

ALPHABETICAL INDEX
Page 6

Reference Documents
Sample Program
Sound

Source Operand ¥

Sprites
Sprite Attribute Block (SAB)
Sprite Descriptor Block (SOB)
Sprite Velocity Block (SVB)

Block

~ation

ation

Control Registers

1 I |
_ a=] W W

Tww W
[
-

jo ofite ofite ofite o
(] i
—_ N

1
U =

USER'S RESPONSE SHEET

Graphics Programming Language User's Guide

December 3, 1979

User's Name Telephone

COMPANY Date

Please list any discrepancy found in this manual by page,
paragraph, figure, or table number in the following space. If
there are any other suggestions that you wish to make, feel free
to include them. Thank you.

LOCATION IN MANUAL COMMENT/SUGGESTION

