- Assembler
- Linker

Part Two: UCSD p-System Linker

*UCSD p-System is a trademark of the Regents of the 1041568-1
University of California. (Part B)

- Assembler
- Linker

Part Two: UCSD p-System Linker

*UCSD p-System is & trademark of the Regents of the Copyright © 1981, Texas Instruments Incorporated
University of California. See important warranty information at back of book

This manual was developed by staff members of the Texas Instruments Education and
Communications Center.

This software is copyrighted 1979, 1981 by the Regents of the University of
California, SofTech Microsystems, Inc., Texas Instruments Incorporated, and other
copyright holders as identified in the program code. No license to copy this software
is conveyed with this product. Additional copies for use on additional machines are
available through Texas Instruments Incorporated. No copies of the software other

than those provided for in Title 17 of the United States Code are authorized by Texas
Instruments Incorporated.

UCSD Pascal and UCSD p-System are trademarks of the Regents of the University of

California. Item involved met its quality assurance standards applicable to Version
IV.UI

TABLE

GENERAL INFORMATION
1.1 Using this Manual
1.2 Set-Up Instructions
1.3 Special Keys « « « « ¢ « .

THE LINKER v sssvsoiwvwoa
2.1 Using the Linker.

OF CONTENTS

PROGRAM LINKING AND RELOCATION .
3.1 Program Linking Directives.
3.5 Pascal Host Communication

3.2.3 Stand-Alone Applications

Directives
3.1.2 External Reference Directives

3.1.3 Program Identifier Directives
3.2 Linking Program Modules . + « « + + v 4 ¢ 4 &
3.2.1 Linking with a Pascal Host Program
3.2.2 Example of Linking to Pascal Host .

INCASE OF DIFFICULTY s s v s v s s s o s a6 ¢ o

WARRANTY .

LINKER
Page 3

16
18
18
18
19
20
20
23
25

27

28

LINKER
Page 4

SECTION 1: GENERAL INFORMATION

The UCSD p—System* and the Linker diskette allow you to link programs written in
TMS9900 assembly language to programs written in UCSD Pascal , allowing those
programs to function as a single unit. This manual provides details on linking
assembly language programs on the Tl Home Computer.

The simplest configuration for running the Linker requires the TI Home Computer,
the TI Color Monitor (or a Video Modulator and a television set), the Memory
Expansion unit, the p-Code peripheral, and a Disk Memory System with at least one
Disk Memory Drive. With this equipment, plus the diskette containing the Editor and
Filer, you can link Pascal and assembly language programs. To enhance your system,
you can add Disk Memory Drives, the R5232 Interface, or other peripherals available
from Texas Instruments.

The p-System Editor (described in the UCSD p-System Editor owner's manual) allows
you to create, edit, print, and save files. After a program file has been created, you
can assemble it with the Assembler. Then, if you wish, you can use the Linker to
link several object files.

After a file has been assembled and linked, you can load and run it as described in
the UCSD p-System p-Code owner's manual.

*
trademark of the Regents of the University of California.

LINKER
Page 5

GENERAL INFORMATION

1.1 USING THIS MANUAL

This manual assumes that you already know a programming language, preferably an
assembly language. If you do not, there are many fine books available which teach
the basics of assembly language use. After you know these basics, this manual gives
the details of linking Pascal and assembly language files.

When terms that may be new to you are first used, they are defined. Section 2
explains the basics of using the Linker. Section 3 describes the detailed use of the
Linker. The last section provides service and warranty information.

LINKER
Page 6

GENERAL INFORMATION

1.2 SET-UP INSTRUCTIONS

The steps involved in creating and linking an assembly language file and Pascal file
are included in this section. Please read this material completely before proceeding.

Use your Disk Manager or the Pascal Filer to make a backup copy of the diskette
which contains the Linker. You may use this copy for your own use. The original
should be kept in a safe place.

The linking process combines a host object file which has been compiled from a
Pascal source file and one or more external subroutines which have been assembled
from assembly language programs. The combination produced is a single executable
object file. See the UCSD Pascal Compiler manual for instructions on producing
object code from a Pascal file, and the UCSD Assembler manual for instructions on
producing assembly language programs.

There are two ways which may be used to link and run files. The first is to create
an assembly language program and assemble it as SYSTEM.WRK.CODE or in a library
using the LIBRARY utility (see the UCSD p-System Utilities manual). Then create
the Pascal program which calls the assembly language program. Then the R(un
command from the System promptline compiles the Pascal program, links it to the
assembly language program, and runs the resulting code.

The following are the steps after the Pascal program has been created and the
assembly language programs have been created and assembled.

1. Press R, for R(un. The Pascal program is compiled. Then the following
messages appear.

Linking...

Opening <your file>
Opening *SYSTEM.LIBRARY
Reading <your file>

Reading <codefile> (This is repeated for each
assembly language file to be
linked.)

Linking <your file>
Copying proc <codefile> (This is repeated for each
assembly language file to be
linked.)

LINKER
Page 7

GENERAL INFORMATION

2. The linked program is then run.

In the second way to link and run files, create the assembly language programs and
assemble them. They may be placed in a library using the LIBRARY utility (see the
UCSD p-System Utilities manual). Then create and compile the Pascal program
which calls the assembly language program(s). Link the programs with the Linker,
and then run the resulting object code with the X(ecute command from the System
promptline.

The following are the steps after the Pascal and assembly language programs have
been created and compiled or assembled.

1. If you have one disk drive, transfer the code files for the Pascal program and
assembly language program to the diskette containing the Assembler and
Linker. Use the Filer to make this transfer, as described in the UCSD
p-System Filer owner's manual. If the Pascal program plus the assembly
language program are too long to fit on this diskette, then two disk drives are
required. If you have two disk drives, the Pascal code and assembly language
code should be saved on the same diskette. If you have three disk drives,
the Pascal program may be saved on any diskette.

2. Place the diskette that contains the Linker, the Pascal code, and the code
from the assembly language program in a disk drive. If you have two or
three disk drives, place the diskette that contains the Pascal and assembly
language code in one of the drives.

3. Press L, for L(ink, to load the Linker.

4. The screen displays the message

Linking...
while the Linker is loaded.

The following prompt appears.

Host file?

LINKER
Page 8

GENERAL INFORMATION

Enter the location and name of the Pascal code file. For example, to link
the Pascal program TEST.CODE, which is contained on the diskette in the
second disk drive (#5), enter

#5:TEST
The message

Opening <file>
appears, with <file> the name of the Pascal program. The prompt

Lib file?

appears. Enter the location and name of the assembly language code file
that you wish to have linked.

The message
Opening <file>

appears, where <file> is the assembly language file to be linked. Then the
prompt

Lib file?

reappears and you can enter the location and name of another assembly
language code file that you wish to have linked. This process is repeated
until you just press <return> in response to the prompt, indicating that you
have entered all of the assembly language code files which you wish to have
linked. Then the following prompt appears.

Map name?

Enter the name of the file to which you wish the link map to be written.
The link map is described in Section 3.

LINKER
Page 9

GENERAL INFORMATION

7. The following messages appear.

Reading <hostfile>
Reading <codefile> (This is repeated for each assembly
language file to be linked.)

Then the following prompt appears.
Output file?

Enter the name of the linked file under which you wish the file saved. Note:
The name must be followed by .CODE.

8. The following messages appear.

Linking <hostfile>
Copying proc <codefile> (This is repeated for each
assembly language file to be
linked.)

9. Run the linked file with the X(ecute command, as described in the UCSD
p-System p-Code owner's manual.

If you have only one disk drive, the size of the programs which you may assemble,
compile, and link is limited to the memory available on the diskette which contains
the Compiler and the diskette which contains the Assembler and Linker. If you have
two disk drives, then the programs and their code may occupy that memory available
plus the space on the diskette which contains the program. You can compile the
largest programs if you have three disk drives.

LINKER
Page 10

GENERAL INFORMATION

1.3 SPECIAL KEYS

In this manual, the keys that you press are indicated by surrounding them with <angle
brackets>. The name <return> is used when the Pascal prompts on the screen refer
to <return> or <cr> (carriage return). You should press the <ENTER> key. Pressing
any key for more than approximately half a second causes that key to be repeated.

To obtain lower-case letters, press the key with the letter on it. To obtain all
upper-case letters on the TI-99/4, use the alpha lock toggle to change to upper-case.
On the TI-99/4A you may use the alpha lock toggle or press the <ALPHA LOCK> key.
To obtain a single upper-case letter on the TI-99/4 when the computer is in
lower-case mode, simultaneously press the key and the small space key on the left
side of the keyboard or the space bar. On the TI-99/4A, press the key and <SHIFT>.

Name TI-99/4 TI-99/4A Action
 SHIFTF FCTN 1 Deletes a character.
<ins> SHIFT G FCTN 2 Inserts a character.
<flush> SPACE 3 FCTN 3 Stops writing output to the screen.
<break> SPACE 4 FCTN 4 Stops the program and initializes the
System.
<{stop> SPACE 5 FCTN 5 Suspends the program until this key is
pressed again.
<alpha lock> SPACE 6 FCTN 6 or Acts as a toggle to convert uppper-case
ALPHA LOCK letters to lower-case and back again.
<{screen left> SPACE 7 FCTN 7 Moves the text displayed on the screen to
the left 20 columns at a time.
<{screen right> SPACE 8 FCTN 8 Moves the text displayed on the screen to
the right 20 columns at a time.
<line del> SHIFT Z FCTN 9 Deletes the current line of information.
{ SPACE 1 FCTNF Types the left brace.
} SPACE 2 FCTN G Types the right brace.
[SPACE 9 FCTN R Types the left bracket.
] SPACED FCTN T Types the right bracket.
<etx/eof> SHIFT C CTRL C Indicates the end of a file.
{esc> SPACE . CTRL . Tells the program to ignore previous text.
<{tab> SHIFT A CTRL I Moves the cursor to the next tab.
<{up-arrow> SHIFTE FCTNE Moves the cursor up one line.
<{left arrow> or SHIFT S FCTN S Moves the cursor to the left one
<backspace> character.
LINKER

Page 11

GENERAL INFORMATION

Name TI-99/4 TI-99/4A Action

<right-arrow> SHIFT D FCTN D Moves the cursor to the right one
character.

<down-arrow> SHIFT X FCTN X Moves the cursor down one line.

<return> ENTER ENTER Tells the computer to accept the

information you type.

LINKER
Page 12

SECTION 2: THE LINKER

The UCSD p-System Linker allows EXTERNAL code to be linked to Pascal and other
p-code based languages. EXTERNAL routines are procedures, functions, or processes
that are written in TMS9900 assembly language and follow the System's calling and
parameter-passing rules. These routines are declared EXTERNAL in the host
program and must be linked before the program is run. The Linker can also link
separately assembled pieces of a single assembly language program. The Linker links
code by installing the internal linkages that allow the pieces to function as a unified
whole.

When a program which must be linked is R(un, the Linker automatically searches
*SYSTEM.LIBRARY for the necessary external routines (See the p-System Utilities
manual). In all other cases (for example, if you use X(ecute instead of R(un or if the
library is not SYSTEM.LIBRARY), you must link the code before executing it. To
link code without R(un, access the Linker by pressing L when the System promptline
is displayed.

When the Linker is called automatically and cannot find the needed code in
*SYSTEM.LIBRARY, it responds with an error message as shown below.

Proc,
Func,
Global,
or Public <identifier> undefined

Then the System promptline is redisplayed.

LINKER
Page 13

THE LINKER

2.1 USING THE LINKER

When you access the Linker, it asks for several file names and displays the names of
what it is linking as it reads and links code together. The first prompt asks for the
host file.

Host file?

The host file is the file into which the external routines are to be linked. File name
conventions apply here, so .CODE is automatically appended to all file names unless
you except type * and press <return> or a file name that ends in a period (.). Typing

* and pressing <return> or simply pressing <return> causes the Linker to use
*SYSTEM.WRK.TEXT.

The Linker then asks for the names of library files in which external routines are to
be found.

Lib file?

Any number of library files can be specified. The prompt reappears until you press
<return> without typing a file name. Typing * and pressing <return> opens
*SYSTEM.LIBRARY. The success of opening each library file is reported. If you
enter the name of a file that is not on line, the message

Type <sp>(continue), <esc>(terminate)

appears. Press the space bar to enter another file name, or <esc> to terminate the
linking process.

The code file produced by the Linker contains routines in the order in which they
were given as contained in the library files. The code file first contains routines
from the host file, followed by library file routines, all in their original order.

LINKER
Page 14

THE LINKER

The following is a sample portion of a run of the Linker.

Prompt Your Input

Lib file? *{return>
Opening *SYSTEM.LIBRARY

Lib file? FIX.B<return>

No file FIX.8.CODE

Type <sp>(continue), <esc>(terminate) {space>

Lib file? FIX.9<return>
Opening FIX.9.00DE

bad seg name

Type <sp>(continue), <esc>(terminate) {space>
Lib file?

When the names of all library files have been entered, the Linker reads all the
necessary routines from the designated code files. It then asks for a destination for
the linked code output.

Output file?

This is a code file name and is often the same as the host file. The .CODE suffix
must be included. If you just press <{return>, output is to the work file,
*SYSTEM.WRK.CODE.

After the last prompt the Linker starts linking. During linking, the names of all of
the routines being linked are displayed. A missing or undefined routine causes the
Linker to stop with the <identifier> undefined message described above. If linking is
successful, you have a unified code file that can be X(ecuted if it contains p-code.
See the UCSD p-Code manual for detailed instructions.

LINKER
Page 15

SECTION 3: PROGRAM LINKING AND RELOCATION

The Assembler produces either absolute or relocatable object code that can be linked
to create executable programs from separately assembled or compiled modules.

Program linking directives generate information required by the Linker to link
modules. Some of the advantages of linking are as listed below.

e Long programs can be divided into separately assembled modules to avoid a
long assembly, reduce the symbol table size, and encourage modular
programming techniques.

e Modules can be shared by other linked modules.

e Utility modules can be added to the System Library for use as external
procedures by a large number of programs.

e Pascal programs can directly call assembly language procedures.

The Assembler generates linker information in both relocatable and absolute code
files. The Linker accesses this information during the linking process and removes it
from the linked code file.

Relocatable code includes information that allows a loader program to place that
code anywhere in memory, while absolute code files, also called core image files,
must be loaded into a specific area of memory to execute properly. Assembly
procedures running in the UCSD p-System environment must always be relocatable,
since the loading and relocation process is performed by the interpreter at a load
address determined by the state of the System.

Code segments which contain statically relocatable code remain in main memory
throughout the existence of their host program (or unit) and are position-locked for
that duration. Thus, relocatable code can maintain and refer to its own internal data
space (or spaces). In addition, statically relocatable code saves some space because
its relocation information does not have to remain present throughout the existence
of the program.

LINKER
Page 16

PROGRAM LINKING AND RELOCATION

The directives .PROC and .FUNC designate statically relocatable routines, while
.RELPROC and .RELFUNC designate dynamically relocatable routines. See The
UCSD p-System Assembler manual for more information on these directives. Code
segments which contain dynamically relocatable code do not necessarily occupy the
same location in memory throughout their host's existence, but are maintained in the
code pool along with other dynamic segments, and can be swapped in and out of main
memory while the host program (or unit) is running. Thus, dynamically relocatable
code cannot maintain internal data spaces. This means that data which is meant to
last across different calls of the assembly routine must be kept in host data segments
using the directives .PRIVATE and .PUBLIC.

In the following example, data space is embedded in the code, but the code does not
maove.

.PROC FOON
-WORD SPACE
.END

In this example, the code moves, but data space is allocated in the host compilation
unit's global data segment.

.RELPROC FQOON
.PRIVATE SPACE

LEND

The following is an example of something that does not work. In it, the code moves
and the data is embedded in the code, thus destroying the data.

.RELPROC FOON
-WORD SPACE

.

-END

Code pool management is described in the Internal Architecture Guide.

LINKER
Page 17

PROGRAM LINKING AND RELOCATION

3.1 PROGRAM LINKING DIRECTIVES

This section describes overall usage of linking directives. Because all linking of
assembly procedures involves word quantities, it is not possible to define and refer to
data bytes or assembly-time constants externally. Arguments of these directives
must match the corresponding name in the target module (a lower-case Pascal
identifier matches an upper-case assembly name and vice versa) and must not have
been used before their appearance in the directive. All following references to the
arguments are treated by the Assembler as special cases of labels. These external
references are resolved by the Linker and/or interpreter by adding the link-time and
run-time offsets to the existing value of the word quantity in question. Thus, any

initial offsets generated by the inclusion of external references and constants in
expressions are preserved.

3.1.1 Pascal Host Communication Directives

The directives .CONST, .PUBLIC, and .PRIVATE allow the sharing of constants and
data between an assembly procedure and its host compilation unit. See Section 3.2.2
for an example.

.CONST Accesses globally declared constants in the host compilation unit.
All references to arguments of .CONST are replaced by the Linker
with a word containing the value of the host's compile time constant.

.PUBLIC Accesses globally declared variables in the host compilation unit.
This directive can be used to set up pointers to the start of
multi-word variables in host programs because it is not limited to
single-word variables.

.PRIVATE Declares variables in the global data segment of the host compilation
unit that are inaccessible to the host. The optional length attribute
of the arguments allows multi-word data spaces to be allocated. The
default data space is one word.

3.1.2 External Reference Directives

The directives .REF and .DEF allow separately assembled modules to share data space
and subroutines. See Section 3.2.2 for examples.

LINKER
Page 18

PROGRAM LINKING AND RELOCATION

.DEF Declares a label defined in the current program as accessible to other
modules. Note, however, that it is invalid to .DEF a label that has

been equated to a constant expression or an expression containing an
external reference.

REF Declares a label that exists and is defined with .DEF in another
module to be accessible to the current program.

3.1.3 Program Identifier Directives

The directives .PROC, .FUNC, .RELPROC, .RELFUNC, and .END delimit source

programs. Every source program (relocatable or absolute) must contain at least one
pair of delimiting directives (see the UCSD p-System Assembler manual).

The identifier argument of the .PROC or .RELPRQOC directive serves two functions.
First, it is referred to by the Linker when linking an assembly procedure to its
corresponding host. Second, it can be referred to as an externally declared label by
other modules. Specifically, in a source program the declaration

.PROC FOON ; Procedure heading.

is functionally equivalent to the following statements in the assembly environment.

.DEF FOON ; FOON can be externally
referenced.
FOON ; Declare FOON as a label.
Thus, one assembly module can call other external and eventually linked assembly
modules by name. The FUNC and .RELFUNC directives link an assembly function

directly to a System host program. They are not intended for linking with other
assembly modules.

The optional integer argument after the procedure identifier is referred to by the
Linker to determine if the number of words of parameters passed by the System
host's external procedure declaration matches the number specified by the assembly

procedure declaration. The integer argument is not relevant when linking with other
assembly modules.

LINKER
Page 19

PROGRAM LINKING AND RELOCATION

3.2 LINKING PROGRAM MODULES

For information on linking with the System's high-level languages other than Pascal,
refer to the documentation for that particular language.

3.2.1 Linking with a Pascal Host Program

External procedures and functions are assembly language routines declared in Pascal
programs. To run Pascal programs with external declarations, you must compile the
Pascal program, assemble the external procedure or function, and link the two code
files. The linking process can be simplified by adding the assembled routine to the

System Library using the LIBRARY program. (See the UCSD p-System Utilities
manual.)

A Pascal host program declares a procedure to be external with a syntax similar to
that of a forward declaration. The procedure heading is given (possibly with a
parameter list), followed by the keyword "EXTERNAL". Calls to the external
procedure use Pascal syntax, and the Compiler checks to be sure that the calls agree
in type and number of parameters with the external declaration. All parameters are
pushed on the stack in their order of appearance in the parameter list of the

declaration. Thus, the rightmost parameter in the declaration is on the top of the
stack.

Assembly language programs can use registers RO through R7. The stack pointer is
register R10. Return is through register R11 with

B *R11

To pop a value off the stack, use an instruction of the form
MOV *R10+,R1

To push a value on the stack, use instructions of the form

DECT R10
MOV R1, *R10

In both of these examples, R1 can be replaced by any address.

LINKER
Page 20

PROGRAM LINKING AND RELOCATION

It is your responsibility to ensure that the assembly language routine maintains the
integrity of the stack. This includes removing all parameters passed from the host,
preserving any machine resources in use by the interpreter, and making a clean return
to the Pascal environment using the return address originally passed to it. If
something goes wrong, the System may cease to function, requiring rebooting, because
assembly routines are outside the scope of the Pascal environment's run-time error
facilities.

An external function is similar to a procedure but with some differences that affect
the way in which parameters are passed to and from the Pascal environment. The
external function call pushes one or four words on the stack (four for a function of
type real and one for all other types) before any parameters have been pushed. The
words are part of the System's function calling mechanism and are irrelevant to
assembly language functions. The assembly routine must remove these one or four
words before returning the function's result. The assembly routine must push the
proper number of words (four for type real, one otherwise) containing the function
result onto the stack before passing control back to the host.

The ability of external procedures to pass any variables as parameters gives you
complete freedom to access the machine-dependent representations of
machine-independent Pascal data structures. However, with this freedom comes the
responsibility of respecting the integrity of the Pascal run-time environment. This
section lists the System's parameter passing conventions for all data types. However,
it does not describe the data representations because they are complex and are best
found by examination.

Parameters can be passed either by value or by name (also known as variable
parameters). For purposes of assembly language manipulation, variable parameters
are handled in a more straightforward fashion than value parameters.

Variable parameters are referred to through a one-word pointer passed to the
procedure. Thus, the procedure declaration

procedure pass by name(var i,j: integer; var q: some type);
external;

passes three one-word pointers on the stack. The top of stack is a pointer to q,
followed by pointers to j and i.

LINKER
Page 21

PROGRAM LINKING AND RELOCATION

A Pascal external procedure declaration can contain variable parameters lacking the
usual type declaration, thus enabling variables of different Pascal types to be passed
to an assembly routine through a single parameter. Untyped parameters are not
allowed in normal Pascal procedure declarations.

For example, the procedure declaration
procedure untyped var(var i; var q: some_type); external;
contains the untyped parameter i.

The way value parameters are handled depends on their data type. The following
types are passed by pushing copies of their current values directly on the stack:
Boolean, character, integer, real, subrange, scalar, pointer, set, and long integer. For
instance, the declaration

procedure pass_by value(i: integer; r: real); external;

passes an eight byte real number which contains the value of the real variable r
followed by one word which contains the value of the integer variable i.

Variables of type RECORD and ARRAY are passed by value in the same manner as
variable parameters; pointers to the actual variable are pushed onto the stack.
Variables of type PACKED ARRAY OF CHAR and STRING are passed by value with
a segment pointer.

Pascal procedures protect the original variables by using the passed pointer to copy
their values into a local data space for processing. Assembly procedures should
respect this convention and not alter the contents of the original variables.

A segment pointer consists of two words on the stack. The first word (the top of the
stack) contains either the value O or another pointer. If the value passed is a
variable, the second word (the top of the stack minus 2 bytes) points to the
parameter and the first word is O.

LINKER
Page 22

PROGRAM LINKING AND RELOCATION

If the first word is not 0, the value passed is a string constant. The best way to get
the value is to use a dummy Pascal procedure to pass the pointer to the string, as
shown in the following example.

Program constant_string_example;

const a_string = 'This is a constant string';

Procedure assembly call(var fake_string:string); external;
Procedure pass_constant(a_parm:string);

{ This procedure makes the System copy the constant string to
a variable. The variable is then passed to the assembly
language program, which can access the copy as discussed
above. }

begin { pass_constant |}
assembly call(a_parm);
end;

begin {main program |}
pass_constant(a_string);
end.

3.2.2 Example of Linking to Pascal Host

In the following example, the host program passes control to the beginning of an
assembly procedure, regardless of whether machine instructions are present.
Therefore, all data sections allocated in the procedure must either occur after the
end of the machine instructions or have a jump instruction branch around them.

LINKER
Page 23

PROGRAM LINKING AND RELOCATION

PROGRAM EXAMPLE ; { Pascal host program }
const size = 80;
var i,j,k: integer;
lstl: array [0..9] of char;
{ PRT and LST2 get allocated here }
procedure do_nothing; external;
function null_func(xxyxx,z: integer): integer; external;
begin
do_nothing;
j := null_func(k,size);
end.
.PROC DONOTHING ; Underscores are not significant
in Pascal.

Can get size constant in host
... and also these two global
variables.

DEF TEMP1 ; This allows NULLFUNC to get
templ.
Code starts here.

LCONST S1ZE
.PUBLIC 1,LST1

5
5

’
B *R11 ; Does nothing.

TEMP1 WORD ; End of procedure DONOTHING.

.FUNC NULLFUNC,2 ;Two words passed.

H

3

.PRIVATE PRT,LST:9 10 words of private data.

.REF TEMP1 Refers to data templ in
DONOTHING.
; Code starts here.

MOV *R10+,TEMP1 ; Get value of Z.

MOV *R10+,PRT ; Get value of XXYXX.

MOV *R10+,JUNK ; Get one junk word since we
return a one word value.

MOV LST,LST ; Perform null action.

DECT R10 ; Return result.

MOV LST+4,*R10)

B *R11 ; Returns to calling program.

JUNK -WORD ; Data starts here.
LEND

LINKER
Page 24

PROGRAM LINKING AND RELOCATION

3.2.3 Stand-Alone Applications

The System does not include a linking loader or an assembly language debugger
because the System architecture is not conducive to running programs (whether high-
or low-level) that must reside in a dedicated area of memory. You are responsible
for loading and executing the object code file. This can be done by the System with
the understanding that the existing environment may be jeopardized in the process.

With the .ABSOLUTE and .ORG directives, you can create an object code file suitable
for use as an absolute core image. .ABSOLUTE creates nonrelocatable object code
and .ORG can be used to initialize the location counter to any starting value. A
source file headed by .ABSOLUTE should not have more than one assembly routine
because sequential absolute routines do not produce continuous object code and cannot
be successfully linked with one another to produce a core image.

The code file format consists of a one-block code file header followed by the absolute
code and terminated by one block of linker information. Thus, stripping off the first
and last block of the code file leaves a core image file. The use of .ABSOLUTE
should be limited to one routine because, although linker information is generated, it
is difficult to link absolute code files to produce a correct core image file.

The following paragraphs describe one method of loading and executing absolute code
files with the System. The program outlined is not the only solution. You could also
use the System intrinsics to read and/or move the code file into the desired memory
location, but this requires a knowledge of where the interpreter, Operating System,
and user program reside so that you do not accidentally overwrite them and possibly
cause the System to cease to function, requiring rebooting. The program outlined
below allows the most freedom in loading core images. The only constraint is that
the assembly code itself is not overwritten while being moved to its final location.

Note that in most cases loading object code into arbitrary memory locations while the
System is resident adversely affects the System because the absolute assembly
language program is then on its own, and rebooting may be necessary to revive the
System.

LINKER
Page 25

PROGRAM LINKING AND RELOCATION

The loader program should consist of the following.
A Pascal host program that calls two external procedures.

One or more linkable absolute code files to be loaded. (.RELPROCs are not
allowed.)

A small assembly procedure MOVE_AND_GO that moves the above object code

files from their System load address to their proper locations and transfers
control to them.

A small assembly language procedure LOAD_ADDRESS that returns the System
load addresses of the previously mentioned assembly code to the host program.

The absolute code files are assembled to run at their desired locations, and
MOVE_AND_GO contains the desired load addresses of each core image. Both
LOAD_ADDRESS and MOVE_AND_GO have external references to the core images
which are used to calculate the System load address and code size of each image file.
The whole collection is linked and executed, with the Pascal host performing the
following actions.

e Print the result of calling LOAD_ADDRESS to determine whether the area of

memory in which the System loaded the assembly code overlays the known
final load address of the core images.

e Issue a prompt to continue so that the program can be stopped if a conflict
does arise.

e Call MOVE_AND_GO.

LINKER
Page 26

SECTION 4: IN CASE OF DIFFICULTY

1. Be sure that the diskette you are using is the correct one. Use the L(dir (list
directory) command in the Filer to check for the correct diskette or program.

2. Ensure that your Memory Expansion unit, P-Code peripheral, and Disk System are
properly connected and turned on. Be certain that you have turned on all peripheral
devices and have inserted the appropriate diskette before you turn on the computer.

3. If your program does not appear to be working correctly, end the session and
remove the diskette from the disk drive. Reinsert the diskette, and follow the
"Set-Up Instructions" carefully. If the program still does not appear to be working
properly, remove the diskette from the disk drive, turn the computer and all
peripherals off, wait 10 seconds, and turn them on again in the order described above.
Then load the program again.

4, If you are having difficulty in operating your computer or are receiving error
messages, refer to the "Maintenance and Service Information" and "Error Messages"
appendices in your User's Reference Guide or UCSD p-System P-Code manual for
additional help.

5. If you continue to have difficulty with your Texas Instruments computer or the
UCSD p-System Pascal Compiler package, please contact the dealer from whom you
purchased the unit or program for service directions.

LINKER
Page 27

THREE-MONTH LIMITED WARRANTY
HOME COMPUTER SOFTWARE MEDIA

Texas Instruments Incorporated extends this consumer warranty only to the original
consumer purchaser.

WARRANTY COVERAGE

This warranty covers the case components of the software package. The components
include all cassette tapes, diskettes, plastics, containers, and all other hardware
contained in this software package ("the Hardware"). This limited warranty does not
extend to the programs contained in the software media and in the accompanying
book materials ("the Programs").

The Hardware is warranted against malfunction due to defective materials or
construction. THIS WARRANTY IS VOID IF THE HARDWARE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN
MATERIAL OR WORKMANSHIP.

WARRANTY DURATION

The Hardware is warranted for a period of three months from the date of original
purchase by the consumer.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,

EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USER.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you in
those states.

LINKER
Page 28

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also have other rights that
vary from state to state.

PERFORMANCE BY TI UNDER WARRANTY

During the three-month warranty period, defective Hardware will be replaced when it
is returned postage prepaid to a Texas Instruments Service Facility listed below. The
replacement Hardware will be warranted for a period of three months from the date
of replacement. TI strongly recommends that you insure the Hardware for value
prior to mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U. S. Residents: Canadian Residents only:

Texas Instruments Service Facility Geophysical Services Incorporated

P. O. Box 2500 41 Shelley Road

Lubbock, Texas 79408 Richmond Hill, Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following Texas Instruments
offices for additional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service
6700 Southwest 105th 831 South Douglas Street

Kristin Square, Suite 110 El Segundo, California 90245
Beaverton, Oregon 97005 (213) 973-1803

(503) 643-6758

LINKER
Page 29

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or using the
software media.

TI does not warrant the Programs will be free from error or will meet the specific
requirements of the consumer. The consumer assumes complete responsibility for any
decisions made or actions taken based on information obtained using the Programs.
Any statements made concerning the utility of the Programs are not to be construed
as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,

REGARDING THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE
SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT
EXCEED THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER,
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY
KIND WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE
PROGRAMS.

Some states do not allow the exclusion or limitation of implied warranties or

consequential damages, so the above limitations or exclusions may not apply to you in
those states.

LINKER
Page 30

