~ *UcsD p-System is a trademark of the Regents of the
University of California.

. Assembler
* Linker

Part One: UCSD p-System Assembler

10415681
[Part A)

- Assembler
- Linker

Part One: UCSD p-System Assembler

*UCSD p-System is a trademark of the Regents of the Copyright © 1981, Texas Instruments Incorporated
University of California. See important warranty information at back of book.

This manual was developed by staff members of the Texas Instruments Education and
Communications Center.

This software is copyrighted 1979, 1981 by the Regents of the University of
California, SofTech Microsystems, Inc., Texas Instruments Incorporated, and other
copyright holders as identified in the program code. No license to copy this software
is conveyed with this product. Additional copies for use on additional machines are
available through Texas Instruments Incorporated. No copies of the software other

than those provided for in Title 17 of the United States Code are authorized by Texas
Instruments Incorporated.

UCSD Pascal and UCSD p-System are trademarks of the Regents of the University of

California. Item involved met its quality assurance standards applicable to Version
IV.0.

TABLE OF CONTENTS

GENERAL INFORMATION

1.1
1.2
1.3

Using this Manual « « « « ¢ ¢ ¢ o v ¢ o 0 o o

Set-Up Instructions . « « ¢« « ¢ v ¢ o « o« &«
Special KEYS « « « o ¢ ¢ s 0 0 v 0 0o 0 o o

OPERATION OF THE ASSEMBLER

2.1 Establishing Input and Output Files . . .
2.2 Responses to Listing Prompt « « « « « « .+ .
2.3 Output Modes « « « v ¢ v o o v o o s o o
2.4 Error Conditions « « « « ¢ ¢« ¢ « ¢ o ¢ o o &
FORMAT INFORMATION w0 e m . e e
3.1 Registers . « « « « ¢ ¢ ¢ o ¢ o o o o o o oo
3.1.1 Program Counter Register (PC) .
3.1.2 Workspace Pointer Register (WP) .
3.1.3 Status Register (ST) & i
3.2 Object Code Format. « « « « ¢ ¢ o « o o &
3.2.1 Byte Organization
3.2.2 Word Organization « « « « « « « «
3.2.3 Memory Organization
3.3 Source Code Format. « « « « ¢« « ¢ ¢« o o &
3.3.1 Character Set. « « « « « s + ¢ «
3.3.2 Identifiers. « « « v « o o ¢ o o s o o o
3.3.3 Character Strings. « « « « « « + .
33.4 Constants « « « ¢ « s o s o o o o o
3.3.5 EXPressions « « « « « « o ¢ s o o o
3.4 Source Statement Format . « « « « « + . .
3.4.1 LabelField+«
3.2 Op-codeField. « « « « ¢« ¢ s o s o
3.4.3 OperandField. . « « « « ¢« o 0o
3.4.4 Comment Field « « « « ¢« v o v
3.5 Source File Format . . « ¢« « ¢« ¢ 0o 0 v o

3.5.1 Assembly Routines . « « « « « « + &

25,2 Global Declarations . . « « + «
3.5.3 Absolute Sections. « « « « + « . &

ASSEMBLER
Page 3

11

. 12

17

19
20
21
22
23

24
24

. 24

24
24
30
30
30
30
31
31
5
32
32
32
38
38
39
40
40
41
41
41

. 42

TABLE OF CONTENTS

ADDRESSING MODES

4.1

4.2
4.3
4.4
4.5

INSTRUCTION FORMATS .

General Addressing Modes . . « « « « « «

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

* * 8 & ® = & = & 8 5 = s = =

L T T]

Workspace Register Addressing « « « « « ¢ ¢ ¢ ¢ ¢ o 0 0 0 v 0

Workspace Register Indirect Addressing « « + « « « « ¢ & o & &

Workspace Register Indirect Auto-Increment Addressing . . .
Symbolic Memory Addressing « « « « o o o ¢ s ¢ ¢ ¢ s s o o oo

Indexed Memory Addressing .

Program Counter Relative Addressing . .

CRU Bit Addressing . .

" & ® ® 8 8 8 = = @

Immediate Addressing. . « « « « ¢ ¢+ ¢ o &
Addressing SUMMAry .« « « « « o o « + o

5.1 Format [-- Two General Address Instructions
5.2 Format Il -- Jump Instructions. . « « « « ¢ & ¢ ¢ ¢ & o
5.2.1 Format II -- Bit I/O Instructions . . « « « « « «
5.3 Format III -- Logical Instructions . . « « « ¢ ¢« ¢« ¢ & + &
5.4 Format IV -- CRU Multi-bit Instructions
5.5 Format V -- Register Shift Instructions . . « « « « . . .
5.6 Format VI -- Single Address Instructions
5.7 Format VII -- Control Instructions. « + « « « « « « « + &
5.8 Format VIII -- Immediate Instructions
59 Format IX -- Extended Operation Instruction. . . « . .
5.9.1 Format IX -- Multiply and Divide Instructions.
ARITHMETIC INSTRUCTIONS v 580 ger W gws B g B xR B
6.1 Add Words--A « & ¢ v ¢ o o o s o s o s o
6.2 Add Bytes--AB. c e e s e s s e e e s e
6.3 Absolute Value--ABS FER- - BN -
6.4 Add Immediate--Al« .. e mE e BE e
6.5 Decrement--DEC + + ¢« ¢ ¢ ¢ s o =« =« =« » & Ve a el e e @ e
6.6 Decrement by Two--DECT+ ¢+« .. & W a
6.7 Divide-=DIV v s s & 3 @ & & 3 o &% o & o & @ & W w @
6.8 Increment-<INC i « + & s 3 s % ¢ 5 5 s s 5 o & 6 % ¥ T
6.9 Increment by Two-=INCT . « ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ s 0 ¢ s o s
6.10 Multiply--MPY R
6.11 Negate--NEG .« ¢ ¢ v v s v s o o o o s s 0 0 00 0000
6.12 Subtract Words--S o1 b m W e e e @ e e ier
6.13 Subtract Bytes--SB S
ASSEMBLER

Page 4

43
43
44
44
45
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
63
64

65
67
69
7
72
73

. 74

75
77
78
79
81
82
83

TABLE OF CONTENTS

6.14 Instruction Examples . .« « « ¢ ¢ ¢ ¢ o o s s s 0 s s s 0 s o W B

6.14.1 Incrementing and Decrementing Examples . . « « « « .+« . . . 85
6.14.2 General Example « « « o ¢« ¢ ¢ ¢ ¢ o o s 06 6 e 0a00s0e0ease B89

JUMP AND BRANCH INSTRUCTIONS ¢ et e e eeseees.90
7.1 Branch=«<B 5 o o o s 505 @ 6 0 5 0 6 e e w6 e 6 K 8 K e R 08 06w e
1.2 Branch and Link=-BL « ¢ « ¢« ¢ ¢ ¢ s s s s s 0 0o oo s esveeeososl
73 Branch and Load Workspace Pomter--BLWP. i ad AN A AP
7.4 Jump IfEQUal--JEQ .« « « s ¢ ¢« c e e e s s aseosscsscsasssesesdb
1.5 Jump If Greater Than==JGT « . «c c s e c s s s e e s s s s e s s o ess 97
7.6 Jump If Highor EQual==JHE « « « ¢ « ¢ ¢ ¢ e e s e s s s s ssseess9I8B
¥y Jump If Logical High--JH .« ¢« ¢ ¢ ¢+ ¢« ¢ e s e e e v e oo s esveesaed9
7.8 Jump If Logical Low==JL « « « « ¢ ¢ o v v s o s o s s o e s o... 100
7.9 Jump If Low or EQual==JLE .+ « ¢ ¢ ¢ « ¢ ¢ s e e s s e s s sseess 101
710 Jump If Less Than-=JLT .« ¢ ¢ e ¢ e o e e e o v eeoeoosseess 102
7.11 Unconditional Jump-=-JMP .+« « « ¢« ¢« ¢t 4 s s v v s a0 e s e 103
712 Jump If NoO Carry==JNC . « ¢« ¢ e e s s e s s s aa oo o ssessss 104
7.3 Jump If Not EQual-=INE .+ « ¢ ¢ ¢ ¢ ¢ o e s e s s s 0o oo oeeeess 105
7.14 Jump If No Overflow==JNO. « + « « ¢« v o s e s s o s s s o s e+ 106
7.15 Jump If Odd Parity-=-JOP « « + ¢ ¢ ¢« ¢ ¢ e e e s s s s s 0o seseees 107
7.6 Jump ON Carry=--JOC &« « + « + ¢ s s o s s s s s s s ss00see0e0. 108
7.17 Return with Workspace Pointer--RTWP . . « + ¢ v v v o s v v v oo« 109
TAAB EXncite--Xu « o s o o & 8 @ 5 % % % % % 6 o0 e % 8w 0w w0 owow s w e e o Al
7.19 Extended Operation--XOP . . « ¢ ¢ cceccooeoeeosseosss 111
7.20 Instruction EXamples « « « « « s ¢ s o s o s s s s s s 0o 0 s esese 113

7.20.1 Common Workspace Subroutine Example « « « « ¢ ¢ ¢« ¢« o « . 113
7.20.2 Context Switch Subroutine Example « .+ « « ¢ ¢ v v o oo o« 115
7.20.3 Passing Data to Subroutines « « « « « « ¢ ¢« o o s 0 0 a0 119
7.20.4 Extended Operations « « « « « o« s ¢ ¢ ¢ ¢ ¢ ¢ o 0 0 s 00000 121
7.20.5 Execute EXample « « « « « o s o o o s 000060000000 ass 122

COMPARE INSTRUCTIONS . « « ¢ ¢ ¢ ¢ o ¢ s s s s s s oo oosoeeesssss 123
8.1 Compare Words==C « « « ¢ s ¢ e s s s s s s s s assosoesaesssse 125
8.2 Compare Bytes-=CB + « ¢« « « s s e s s s s s o e e o osoassesss 127
8.3 Compare Immediate--CI . . « « « ¢ « ¢ ¢ e o e oo o s 0 eesess. 128
8.4 Compare Ones Corresponding=-COC « « « = « e ¢ o o s s s s s s o0 129
8.5 Compare Zeros Corresponding--CZC « « « « « ¢« o e o o o s s o s s s« 131

ASSEMBLER
Page 5

TABLE OF CONTENTS

CONTROL AND CRU INSTRUCTIONS

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Load CRU--LDCR « « « ¢« « « &
Set CRU Bit to One--SBO . .
Set CRU Bit to Zero--SBZ . .
Store CRU--STCR . « « « « « .
Test Bit--TB & ¢« « ¢ ¢ ¢ o ¢« «
Other Instructions. »
CRU Input/Output.
9.7.1 CRU I/O Instructions

9.7.2 Accessing Specific Bits
9.7.3 SBO Example . « .« . .
9.7.4 SBZ Example
9.7.5 TB Example.

LOAD AND MOVE INSTRUCTIONS . ..

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

LOGICAL
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

Load Immediate--LI.
Load Interrupt Mask Immediate--LIMI . .
Load Workspace Pointer Immediate--LWPI
Move Word--MOV« ¢ v v ¢ o o &

MOVE Byte--MOVB . 8 8 8 " »
Store Status--STST

Store Workspace Pointer--STWP

Swap BthS"SWPB - & & & 8 =
Instruction Example

INSTRUCTIONS
AND Immediate--ANDI
OR Immediate--ORI
Exclusive OR--XOR . . + . « .
Invert--INV . . .+ .4 o0 o
Clear<-CLR 5/ 35 5@ ¢ o
Set to One--SETO . +. « « « . &
Set Ones Corresponding--SOC

Set Ones Corresponding, Byte--SOCB
Set Zeros Corresponding--SZC
Set Zeros Corresponding, Byte--SZCB

-

ASSEMBLER
Page 6

133
136
137
138
139
141
142
143
143
143
144
144
144

145
147
148
150
151
153
154
155
156
157

159
161
163
165
167
169
170
171
173
175
177

TABLE OF CONTENTS

WORKSPACE REGISTER SHIFT INSTRUCTIONS 179
12.1 Shift Right Arithmetic--SRA R TS e e e der @ T 181
12.2 Shift Right Logical--SRL « « ¢ ¢« ¢ « o e s s e s s s s s s s v s e 183
12.3 Shift Left Arithmetic-=SLA . ¢« ¢ ¢ ¢ ¢ s ¢ s ¢ e o e s e s s e o0 185
12.4 Shift Right Circular--SRC « « « ¢ ¢ ¢ ¢ v s o o o o 0 0 0 0 0 0 0 . . 187
12.5 Instruction EXample « » o o« « o o o s o e oo s s oo s oesessssas 189

ASSEMBLER DIRECTIVES . . . ¢ & ¢ ¢ v ¢t v o o o o s s s s s s s w e e s 191
13.1 Procedure Delimiting Directives « « « « « « v ¢ v o e s s v s v o0 .. 194
13.2 Data and Constant Definition Directives . . « « « ¢ v « ¢ v v v o .. 196
13.3 Location Counter Modification Directives. « « « « « « « ¢ ¢« v v . . . 198
13.4 Listing Control DIireCtives « « « « o o s = o o s s s s s s oo oo oo 199
13.5 Program Linkage Directives « « « « « o o o o o o o o 0 o o 0 o 0 0 0 202
13.6 Conditional Assembly Directives « « « « « « v v ¢ v o v o o o v o .. . 204
13.7 Macro Definition DIirectives « « « « s+ o ¢ ¢ s o o s s 0o 0 000000+ 205
13.8 Miscellaneous DIir€CLiVES « « « « o« o o o + o o o s s s s s s s oo+« 206

CONDITIONAL ASSEMBLY . ¢ ¢t ¢ ¢ ¢ ¢ v 0 0 o 0 o 0 0 0 o 0 o s oo i e e 208
14.1 Conditional EXpPressions « « « « « « ¢« ¢ s s s s ¢ ¢ s s s s s 2 ¢ s s o w 209

MACROLANGUAGE : s s s i3s3 iissmams s @ssmenswemonews L10
15.1 Macro Definitions and Calls « « « « ¢« ¢+ ¢ ¢« 2 ¢ « s ¢ s s s s s s+ 0+« 211

15.2 Parameter PassiNng. « « « « « « ¢ o o s s o o s o o s s 0 s oo PR 2 &
15.3 Scope of Labels in Macros « « « « ¢« « ¢ o ¢ o e oo oo s v oo s en.ns 215
15.3.1 Local Labels as Macro Parameters « « « « « « « « « « « « . 215
ASSEMBLER OQUTPUT « ¢ ¢ ¢ ¢ o o o s s 5 s o 6 0 o s 8 ¢ 0 e a0 8882800 217
161 Source LiSting « « « o o o ¢ ¢ o o o o s s ¢ o o 0 0 0 s s s s o 8 o 218
16.2 Error Messages « o « « s o « o s s s s s 000 csossseossess 219
16.3 Code Listing « « o o o « s o s ¢ o 2 o s s s s o o o o o s § a8 EE =R 220
16.3.1 Forward References . . « « «+ « « + « o « « & SRR R AR i 220
16.3.2 External References . . « « « ¢« ¢« o ¢ v o v o o & v e w220
16.3.3 Multiple Code Lines . « « « « o ¢ v o o & & T EE T ERY. .. 220
16.4 Symbol Table . .« ¢ v v v o v 0 v v o v o o Gt my L@ e w 221
16.5 Example . « « o v o ¢ oo GERemI A ER R i E W e G i w6 e s e D22
ASSEMBLER

Page 7

TABLE OF CONTENTS

APPENDICES

17.1

17.2

17.3
17.4
17.5
17.6
171

Memory Organization

17.1.2 Memory-Mapped Devices

17.1.1 Directly Addressable Memory

Memory, CRU, and Interrupt Structure
17.2.1 CRU Allocation. « « « « « « « &

17.2.2 Interrupt Handling
Character Set + « « « « o ¢ ¢ & o &
Assembler Directive Table
Hexadecimal Instruction Table . .

Alphabetical Instruction Table
Program Development with Multi-Drive Systems

17.7.1 Two-Drive System . . .
17.7.2 Three-Drive system

" e 8 8 ®

INCASE OF DIFFICULTY . ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 6000000 0

wARRANTY L] - - - - - . & = = = = - - - - - - - - - - - -

ASSEMBLER
Page 8

224
225
225
228
230
230
231
233
236
239
242
245
245
245

246

247

SECTION 1: GENERAL INFORMATION

The UCSD p-System* Assembler allows you to write programs in the powerful
assembly language of the TMS9900 microprocessor built into the TI-99/4 and
TI-99/4A Home Computers. The TMS9900 has all of the features expected from an
advanced microprocessor, including both byte- and word-oriented commands, a variety
of addressing modes, and fast context switching.

The use of assembly language instead of a higher-level language, such as BASIC or
Pascal, has several advantages. The execution of assembly language programs is
much faster. In addition, assembly language gives you access to all machine
resources, including functions not available from higher-level languages.

An assembly language consists of symbolic names which represent machine
instructions, memory addresses, or program data. The instructions are mnemonic
codes, which are easier to use and remember than the symbols of object code. In
addition, you use expressions as operands and can use decimal numbers in expressions
and as operands. Further, the use of assembly language relieves you of the tedious
task of writing machine language instructions and keeping track of binary machine
addresses within the program.

An assembly language program (called source code) is converted by an assembler into
a sequence of machine instructions (called object code). Assemblers create either
relocatable or absolute object code. Relocatable code includes information that
allows a loader to place it in any available area of memory, while absolute code must
be loaded into a specific area of memory. Symbolic addresses in programs that are
assembled to relocatable object code are called relocatable addresses.

With the UCSD p-System, you can develop assembly language programs that run under
the control of a host program in Pascal or another high-level language.

*
trademark of the Regents of the University of California.

ASSEMBLER
Page 9

GENERAL INFORMATION

The UCSD p-System Assembler, in conjunction with the Linker and some support
programs, meets this need. It is a single-pass assembler modeled after The Last
Assembler (TLA), developed at the University of Waterloo. The basic concept behind
both the TLA and the UCSD p-System Assembler is the use of a central
machine-independent core that is common to all versions of the UCSD p-System
Assembler. This central core is augmented with machine-specific modules to handle
the architecture of each specific machine.

The simplest configuration for running the Assembler requires the TI Home Computer,
the TI Color Monitor (or a video modulator and a television set), the Memory
Expansion unit, the p-Code peripheral, and a Disk Memory System with at least one
Disk Memory Drive. With this equipment, plus the diskette containing the Editor and
Filer and the diskette containing the Assembler, you can develop and assemble
programs. To enhance your system, you can add Disk Memory Drives, the R5232
Interface, or other peripherals available from Texas Instruments.

[f you are using the Assembler to develop your own programs, first create the files
with the UCSD p-System Editor (sold separately). Next, assemble the program you
created with the Assembler. Then, to link several files, use the Linker. (For more
detailed information, refer the the UCSD p-System Editor manual and the UCSD
p-System Linker manual.)

The Assembler is a one-pass assembler, with the ability to patch forward references
after the fact.

The Assembler predefines registers and optionally produces a list of the source and
object code and the symbol table.

After a file has been assembled and linked, you can load and run it as described in
the UCSD p-System p-Code owner's manual.

ASSEMBLER
Page 10

GENERAL INFORMATION

1.1 USING THIS MANUAL

This manual assumes that you already know a programming language, preferably an
assembly language. If you do not, there are many fine books available which teach

the basics of assembly language use. After you know these basics, this manual gives
the details of TMS9900 assembly language.

This manual provides details on assembling programs on the TI Home Computer and
includes explanations of the following.

e Using the Assembler.

e All TMS9900 assembly language instructions and pseudo-instructions.

e Assembler output.

When terms that may be new to you are first used, they are defined. Section 2
explains the basics of using the Assembler. Sections 3 through 13 are a detailed
description of the TMS9900 assembly language. Sections 14 through 16 discuss
conditional assembly, the use of macro language, and assembler output. Section 17 is
the Appendix. The last section provides service and warranty information.

ASSEMBLER
Page 11

GENERAL INFORMATION

1.2 SET-UP INSTRUCTIONS

The steps involved in creating and linking an assembly language file and Pascal file
are included in this section. Please read this material completely before proceeding.

Use your Disk Manager or the Filer to make a backup copy of the diskette which
contains the Assembler. You may use this copy for your own use. The original
should be kept in a safe place.

Note: For the recommended placement of files on a multi-drive system, see the
Appendix.

1 Be sure that the Memory Expansion unit, the p-Code peripheral, and the
Disk Memory System are attached to the computer and turned on. Refer
to the appropriate owner's manuals for product details.

2. To create an assembly language program, use the p-System Editor. Insert
the Editor diskette into a disk drive.

E Turn on the monitor and computer console. The System promptline
appears. Note: If you turn on the computer before inserting a diskette
in a disk drive, you must insert a diskette and then press I to initialize the
System before you can proceed.

4, Press E, for E(dit, to load the Editor.

5. Refer to the the UCSD p-System Editor owner's manual for detailed
directions on entering a program. When you have completed your program,
press Q for Q(uit. Then press W for W(rite.

6. Remove the Editor diskette and insert the diskette on which you wish to
save the assembly language program. If you have one disk drive, the
assembly language program must be saved on the diskette that contains the
Assembler and Linker. If the assembly language program is too long to fit
on this diskette, then two disk drives are required.

7. Enter the filename for the assembly language program and press <return>.

ASSEMBLER
Page 12

8.

10.

GENERAL INFORMATION

Place the diskette that contains the Assembler and Linker and the
assembly language program to be assembled in a disk drive.

Press A, for A(ssemble, to load the Assembler.
The screen displays the message
Assembling...
while the Assembler is loaded. If the workfile, SYSTEM.WRK.TEXT,
exists, that file is assembled, the assembly language code produced is saved
as SYSTEM.WRK.CODE, and you may proceed to step 1l.
1f SYSTEM.WRK.TEXT does not exist, the following prompt appears.
Assemble?
Enter the location and name of the assembly language program which you
wish to have assembled. For example, to assemble the program
TESTA.TEXT, which is contained on the diskette in disk drive 2 (i##5), enter
#5: TESTA
Next the prompt
To what codefile?
appears. Enter the location and name of the file to which you wish the
code to be saved. For example, if you wish the code to be saved as
TESTA.CODE on the diskette in disk drive 2 (#5), enter

#5: TESTA

If you wish the code to be saved as SYSTEM.WRK.CODE on the diskette in
disk drive 1 (#4), just press <return>.

ASSEMBLER
Page 13

GENERAL INFORMATION

11.

12.

13,

14.

15.

l6.

Next the prompt
Output file for assembled listing: (<cr> for none)

appears. If you wish to have the output file saved, enter the location and
file name. Otherwise press <return>.

While the file is being assembled, an account of the progress and any error
messages are displayed. The following is the display when a small
assembly language program named TESTA is assembled.

9900 Assembler IV.0 [a.3]

<0 >

TESTA

<5 p

Assembly complete: 3 lines

0 errors flagged on this assembly
A description of the meaning of this display is given in Section 17.

When the assembling process is finished, the System promptline reappears.
If you have only one disk drive, you must transfer the completed code to
the diskette which contains the Compiler. Use the Filer to make this
transfer, as described in the UCSD p-System Filer owner's manual.

Next you must create and compile a Pascal program to call the assembly
language program. To create a Pascal program, use the System Editor.
Insert the Editor diskette into a disk drive.

Press E, for E(dit, to load the Editor.

Refer to the the UCSD p-System Editor owner's manual for detailed
directions on entering a program. When you have completed your program,
press Q for Q(uit. Then press W for W(rite.

Remove the Editor diskette and insert the diskette on which you wish to
save the Pascal program. If you have one disk drive, the Pascal program
must be saved on the diskette that contains the Compiler. If the Pascal
program plus the assembly language program are too long to fit on this
diskette, then two disk drives are required.

ASSEMBLER
Page 14

L7,

18.

19.

20.

21.

22.

23.

24.

GENERAL INFORMATION

Enter the filename for the Pascal program and press <return>.

If you wish, the assembly language code may be put in a library, such as
SYSTEM.LIBRARY, by using the utility LIBRARY. (See the UCSD
p-System Utility owner's manual.) Then the code may be R(un. The
compilation process is as described in step 21, and the linking is done as
part of the R(un process, and proceeds as described in step 22. The file is
then run.

If you do not wish to put the assembly language code into a library, then
you must compile the Pascal code, link the assembly language code to the
Pascal code, and X(ecute the program. These steps are described below.

Place the diskette that contains the Compiler, the Pascal program to be
compiled, and the code from the assembly language program in a disk
drive.

Press C, for C(ompile, to load the Compiler.

Refer to the the UCSD p-System Compiler owner's manual for detailed
directions on creating and compiling a program.

If you are R(unning the program, the linking process continues as described
in the UCSD p-System Linker manual. Your program is then run.
Otherwise, when the compiling process is finished, the System promptline
reappears.

The assembly language code must be linked with the Pascal code in order
to run the files. If you have one disk drive, transfer the code files for the
Pascal program and assembly language program to the diskette containing
the Assembler and Linker. Use the Filer to make this transfer, as
described in the UCSD p-System Filer owner's manual. If the Pascal
program plus the assembly language program are too long to fit on this
diskette, then two disk drives are required. If you have two disk drives,
the Pascal code and assembly language code should be saved on the same
diskette. If you have three disk drives, the Pascal program may be saved
on any diskette.

Refer to the UCSD p-System Linker manual for detailed instructions on
linking Pascal and assembly language programs.

ASSEMBLER
Page 15

GENERAL INFORMATION

25, If you are R(unning the file, it is now run. Otherwise, when the linking
process is finished, the System promptline reappears. You may run the
linked file with the X(ecute command, as described in the UCSD p-System
Editor owner's manual.

If you have only one disk drive, the size of the programs which you may assemble,
compile, and link is limited to the memory available on the diskette which contains
the Compiler and the diskette which contains the Assembler and Linker. If you have
two disk drives, then the programs and their code may occupy that memory available
plus the space on the diskette which contains the program. You can compile the
largest programs if you have three disk drives. See the Appendix for information on
using multi-drive systems.

ASSEMBLER
Page 16

GENERAL INFORMATION

1.3 SPECIAL KEYS

In this manual, the keys that you press are indicated by surrounding them with <angle
brackets>. The name <return> is used when the Pascal prompts on the screen refer
to <return> or <cr> (carriage return). You should press the <ENTER> key. Pressing
any key for more than approximately half a second causes that key to be repeated.

To obtain lower-case letters, press the key with the letter on it. To obtain all
upper-case letters on the TI-99/4, use the alpha lock toggle to change to upper-case.
On the TI-99/4A you may use the alpha lock toggle or press the <ALPHA LOCK> key.
To obtain a single upper-case letter on the TI-99/4 when the computer is in
lower-case mode, simultaneously press the key and the small space key on the left
side of the keyboard or the space bar. On the TI-99/4A, press the key and <SHIFT>.

Name TI-99/4 TI-99/4A Action
 SHIFTF FCTN 1 Deletes a character.
<ins> SHIFT G FCTN 2 Inserts a character.
<{flush> SPACE 3 FCTN 3 Stops writing output to the screen.
<break> SPACE 4 FCTN 4 Stops the program and initializes the
System.
<{stop> SPACE 5 FCTN 5 Suspends the program until this key is
pressed again.
<alpha lock> SPACE 6 FCTN 6 or Acts as a toggle to convert uppper-case
ALPHA LOCK letters to lower-case and back again.
<{screen left> SPACE 7 FCTN 7 Moves the text displayed on the screen to
the left 20 columns at a time.
<{screen right> SPACE 8 FCTN 8 Moves the text displayed on the screen to
the right 20 columns at a time.
<line del> SHIFT Z FCTN 9 Deletes the current line of information.
{ SPACE 1 FCTNF Types the left brace.
} SPACE 2 FCTN G Types the right brace.
[SPACE 9 FCTN R Types the left bracket.
] SPACE 0 FCTN T Types the right bracket.
<etx/eof> SHIFT C CTRL C Indicates the end of a file.
<esc> SPACE . CTRL . Tells the program to ignore previous text.
<tab> SHIFT A CTRL I Moves the cursor to the next tab.
<{up-arrow> SHIFTE FCTNE Moves the cursor up one line.
<left arrow> or SHIFT S FCTN S Moves the cursor to the left one
<backspace> character.
ASSEMBLER

Page 17

GENERAL INFORMATION

Name TI-99/4 TI-99/4A Action

{right-arrow> SHIFT D FCTN D Moves the cursor to the right one
character.

<{down-arrow> SHIFT X FCTN X Moves the cursor down one line.

<return> ENTER ENTER Tells the computer to accept the

information you type.

ASSEMBLER
Page 18

SECTION 2: OPERATION OF THE ASSEMBLER

To access the Assembler, press A when the System promptline is displayed. This
command executes the file named SYSTEM.ASSMBLER. (Note the missing E in the
filename. This is required for conformance with the Filer's restrictions on file name
lengths.) If this is not the name of the desired assembler version, be sure to save
the existing file SYSTEM.ASSMBLER under a different name before changing the
desired assembler's name to SYSTEM.ASSMBLER.

The Assembler has two associated support files: an op-codes file and an error file.
These should always be stored along with the Assembler code file.

For the Assembler to run correctly, the proper op-codes file must be present on some
on-line diskette, with the name 9900.0PCODES. This file contains all predefined
symbols (instruction and register names) and their corresponding values for the
associated assembly language. If this file is not on-line, the Assembler displays

9900 not on any vol
and stops the assembly.
The Assembler also has its own error file, named 9900.ERRORS, which contains a list

of error messages. This file need not be present for running the Assembler, but it
can greatly aid in removing the syntax errors from a newly written program.

ASSEMBLER
Page 19

OPERATION OF THE ASSEMBLER

2.1 ESTABLISHING INPUT AND OUTPUT FILES

When the Assembler is first accessed from the promptline, it attempts to open the
work file as its input file. If a work file exists, the first prompt is the listing
prompt described in Section 2.2 and the generated code file is named
SYSTEM.WRK.CODE. If no work file exists, the following prompt appears.

Assemble?

Type the file name of the file you wish to have assembled and press <return>. To
stop the assembly, simply press <return>. Otherwise, the next prompt is as follows.

To what codefile?

Type the desired name of the output code file and press <return>. Pressing only
<return> causes the Assembler to name the output *SYSTEM.WRK.CODE. Entering $
causes the code file to be created with the same filename prefix as the source file.
The Assembler then displays its standard listing prompt.

ASSEMBLER
Page 20

OPERATION OF THE ASSEMBLER

2.2 RESPONSES TO LISTING PROMPT

Before assembling begins, the following prompt appears on the screen.

9900 Assembler IV.0 [A.3]
Output file for assembled listing: (KCR> for none)

You can respond with one of the following.

The <esc> key and <return>, which stops the assembly and returns to the
System promptline. If you type a file name and then decide to stop Assembler
execution, press <line del>, followed by <esc> and <return>.

CONSOLE: or #1:, either of which sends an assembled listing of the source
program to the screen during assembly.

PRINTER: or #6:, either of which which sends an assembled listing to a
printer.

REMOUT: or #8:, either of which which sends an assembled listing to a
printer.

A <return>, which causes the Assembler to suppress generation of an assembled
listing and ignore all listing directives.

Any other response, which causes the Assembler to write the assembled listing

to a text file of that name. Any existing text file of that name is removed in
the process.

For instance, the following response causes a list file named LISTING.TEXT to be
created on disk drive 2.

#5:1isting

It is your responsibility to ensure that the specified unit is on-line. The Assembler
prints an error message and stops the assembly process if it attempts to open an
off-line I/O unit.

ASSEMBLER
Page 21

OPERATION OF THE ASSEMBLER

2.3 OUTPUT MODES

If the listing generated by the Assembler is sent to some unit other than the screen
or if no listing is generated, the Assembler writes a running account of the assembly
process on the screen for your benefit.

One dot appears on the screen for every line assembled. On every 50th line the
number of lines currently assembled is shown on the left side of the screen

surrounded by angle brackets.

When an include file directive is processed by the Assembler, the screen displays the
current source statement in the form:

. INCLUDE <file name>
This allows you to keep track of which include file is currently being assembled.

At the end of the assembly, the screen shows the total number of lines assembled in
the source program and the total number of errors found in the source program.

ASSEMBLER
Page 22

OPERATION OF THE ASSEMBLER

2.4 ERROR CONDITIONS

When the Assembler finds an error, it prints the current source statement, if it is
applicable to the error, and the error number. (This does not apply to undefined
labels and System errors.) It then attempts to retrieve and print an error message
from the errors file. If the errors file cannot be opened because the file is not on
an on-line device or there is not enough memory, no additional message appears.
This is followed by the prompt

<sp> (continue), <esc> (terminate), E(dit

A space continues the assembly. An escape stops the assembly. Pressing E invokes
the Editor. The Assembler considers certain System errors to be fatal. These errors
stop the assembly regardless of the response given to the above prompt.

If you press E, the System accesses the Editor, which opens the file containing the
error and positions the cursor at the location where the error occurred. This works
correctly when the source program is wholly contained in one file. When include
files are used, you should set up the input and output files manually (see Section 2.1)
for the Editor to position the cursor in the file that contains the error.

In most cases, pressing <spacebar> restarts the assembly process with no problems.
Since assembly language source statements are independent with respect to syntax, it
is not difficult for the Assembler to continue generating a code file. Thus, a code
file exists at the end of an assembly if you press <spacebar> for every (nonfatal)
error prompt that appears. Of course, the code produced may not reflect what you
intended with your source program.

At the end of an assembly, an error message is printed for each undefined label.
You can ignore occurrences of undefined labels if they are irrelevant to the desired
execution of the code file.

In addition to generating a code file, the Assembler makes use of a file which is
removed from the diskette upon normal termination of the assembly. Occasionally a
System error may occur that prevents the Assembler from removing this file. If this
happens, a new file named LINKER.INFO may appear. It can be removed because it
is useless outside of the assembly process.

ASSEMBLER
Page 23

SECTION 3: FORMAT INFORMATION

This section discusses how the TI Home Computer and the TMS9900 microprocessor
allow you to use Registers, transfer vectors, Workspaces, source statement formats,
expressions, constants, symbols, terms, and character strings. It also describes the
format of object code, source code, source statements, and source files.

3.1 REGISTERS

A register is a memory word that serves a specific purpose. Registers in Random
Access Memory (RAM) are called "software" registers. A set of 16 consecutive
registers is called a "workspace."

Three "hardware" registers are located in the CPU itself. They are the Program
Counter Register, the Workspace Pointer Register, and the Status Register.

3.1.1 Program Counter Register (PC)

The Program Counter Register (PC) keeps track of the location of the next

instruction in memory. The PC manages the program and maintains a sequential and
orderly flow of instructions.

3.1.2 Workspace Pointer Register (WP)

The Workspace Pointer Register (WP) contains the address of the current software
workspace.

3.1.3 Status Register (ST)

The Status Register (ST) contains indications of the present status of the computer.
Each bit of the status register is initialized to zero when the computer is turned on.
Then, as each instruction is performed, the computer indicates the status by changing
the appropriate "switches" as a result of that instruction. By this method the bits

are set (changed to 1) and reset (changed to 0) by machine instructions. Status bits
have the following meanings.

ASSEMBLER
Page 24

FORMAT INFORMATION

Bit
Name Number Meaning

L> 0 Logical greater than

A> 1 Arithmetic greater than
EQ 2 Equal

& 3 Carry

ov 4 Overflow

oP 5 Odd parity

X 6 Extended operation

- 7-11 Reserved
INT. 12-15 Interrupt mask
MASK

In the diagrams in this manual, bits that are checked or set have a caret () printed

under them. The following is a representation of the Status Register with the L> and
EQ bits set.

Status Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL> IA> [EQIC |OVIOPIX |--cccccccaaaae | INT. MASK |

The following table indicates the bits in the Status Register that may be affected by
the various assembly language instructions.

ASSEMBLER
Page 25

FORMAT INFORMATION

Status Bits Affected by Ins.l:rut':l:ia:msl

Mnemonic L> A> EQ C OV OP X Mnemonic_ L> A> EQ C 0OV OP X
A X X X X X - - JOP - - = - - - -
AB X X X X X X - LDCR X X X X - 2 -
ABS X X X X X - - LI X X X - - - -
Al X X X X X - - LIMI - - = - - - -
ANDI X X X - - = - LWPI - - - = = = -
B - - - = = = - MOV X X X - - - =
BL - - - - - - - MOVB X X X - - X -
BLWP - - - - = = - MPY - - - - - - -
O X X X - - - - NEG X X X X X - -
cB X X X - - X - ORI X X X - - - -
CI X X X - - = - RTWP X X X X X X X
CLR - - - - = = - S X X X X X - -
coc - - X - - = - SB X X X X X X -
CczC - - X - - - - SBO e o m m om
DEC X X X X X - - SBZ - - = - - - -
DECT X X X X X - - SETO - - - - - -
DIV - - - = X - - SLA X X X X X - -
INC X X X X X - - SOC X X X - - - -
INCT X X X X X - - sSOCB X X X - - X -
INV X X X - - = = SRA X X X X - - -
JEQ - - - = = = - SRC X X X X - - -
JGT - - - - = - - SRL X X X X - - -
JH - - - - - = - STCR X X X - - 2 -
JHE - - - - = = - STST - - - = - - -
JL S STWP - - = - - - -
JLE - - - - - - - SwWPB - = - - - - -
JLT - - - - - = - SZC X X X - - - -
JIMP - - - - - - - SZCB X X X - - X -
INC - - - - = - - 8 - - X - - = -
JINE - - - - - = - X 3 3 3 3 3 3 3
JNO - - - - = = - XOP 3 3 3 3 3 3 3
JOC - - - - = = - XOR X X X - - - -
Notes:

1In addition to these instructions, the instructions CKOF, CKON, IDLE, LREX, and
RSET are included for completeness. None affect any status bits or have any other
useful effect on the Home Computer.

2 . s %
When an LDCR or STCR instruction transfers eight or fewer bits, the OP bit is set
or reset as in byte instructions. Otherwise, these instructions do not affect the OP
bit.

The X instruction does not affect any status bit. The instruction executed by the X
instruction sets status bits normally. When an XOP instruction is implemented by
software, the XOP bit is set, and the subroutine sets status bits normally.

ASSEMBLER
Page 26

FORMAT INFORMATION

3.1.3.1 Logical Greater Than--(L>)

The logical greater than bit is set when an unsigned number is compared with a
smaller unsigned number. Note that the most significant bit represents 2°~ in a word
and 2" in a byte rather than the sign of the number.

3.1.3.2 Arithmetic Greater Than--(A>)

The arithmetic greater than bit is set when a signed number is compared with a
smaller signed number. The most significant bits of the words or bytes being
compared represent the sign of the number, zero for positive or one for negative.
For positive numbers, the remaining bits represent the binary value. For negative
numbers, the remaining bits represent the two's complement of the binary value.

3.1.3.3 Equal--(EQ)

The equal bit is set when the two words or bytes being compared are equal. The
significance of equality is the same whether the comparison is between unsigned
binary numbers or two's complement numbers.

3-1-3.4 C&PPY—-(C)

The carry bit is set by a carry of 1 from the most significant bit (sign bit) of a word
or byte during arithmetic and shift operations. Thus the carry bit is used by shift
operations to store the last bit shifted out of the Workspace Register being shifted.

3.1.3.5 Overflﬂw--(OV)

The overflow bit is set when the result of an arithmetic operation is too large or too
small to be represented correctly in two's complement representation.

In addition operations, the overflow bit is set when the most significant bits of the
operands are equal and the most significant bit of the result is not equal to the most
significant bit of the destination operand.

In subtraction operations, the overflow bit is set when the most significant bits of the
operands are not equal and the most significant bit of the result is not equal to the
most significant bit of the destination operand.

ASSEMBLER
Page 27

FORMAT INFORMATION

For a divide operation, the overflow bit is set when the most significant 16 bits of
the dividend are greater than or equal to the divisor.

For an arithmetic left shift, the overflow bit is set if the most significant bit of the
workspace register being shifted changes value.

For the absolute value and negate instructions, the overflow bit is set when the
source operand is the maximum negative value (8000H).

In byte operations the odd parity bit is set when the parity of the result is odd and is
reset when the parity is even. The parity of a byte is odd when the number of bits
having values of one is odd. When the number of bits having values of one is even,
the parity of the byte is even. The odd parity bit is equal to the least significant bit
of the sum of the bits in the byte.

3.1.3.7 Extended Operation--(X)

The extended operation instruction (XOP) is available in some TI-99/4A computers.
The only way to determine if your computer supports this instruction is to try it.
(See Section 7.19.) Extended operation instructions permit a limited extension of the
existing instruction set to include additional instructions. In the computer, these
additional instructions are implemented by software routines.

When the program contains an XOP instruction that is software implemented, the
computer locates the XOP Workspace Pointer (WP) and Program Counter (PC) words
in the XOP reserved memory locations and loads the WP and PC. Then the computer
transfers control to the XOP instruction set through a context switch. When the

context switch is complete, the XOP workspace contains the calling routine's return
data in Workspace Registers 13, 14, and 15.

The extended operation bit is set when the software implemented extended operation
is initiated.

ASSEMBLER
Page 28

FORMAT INFORMATION

3.1.3.8 Interrupt Mask

The interrupt mask is status bits 12 through 15. Any device with a level number less
than or equal to the value in the interrupt mask is permitted by the TMS9900
microprocessor to interrupt a running program. Thus if the interrupt mask has a
value of 2 (binary 0010), any device with a level of 0, 1, or 2 may interrupt a running
program. On the TI Home Computer, all interrupts are on level 2. Thus only values
of 0 and 2 are useful.

Note: The p-System is not designed to allow interrupts, and assembly language
programs that enable interrupts probably cannot return to the calling program or to
the System.

ASSEMBLER
Page 29

FORMAT INFORMATION

3.2 OBJECT CODE FORMAT

The internal representation of the object code and data is dependent on bytes, words,
and memory organization. The following sections describe the organization of these
basics.

3.2.1 Byte Organization

A byte consists of eight bits. The bits can represent eight binary values or a single
character of data. The bits can also represent a one-byte machine instruction or a
number which is interpreted either as a signed two's-complement number in the range
of -128 through 127 or an unsigned number in the range of 0 through 255.

3.2.2 Word Organization

A word consists of sixteen bits, or two adjacent bytes, in memory. A word can
contain a one-word machine instruction, any combination of byte quantities, a number
which can be interpreted either as a signed two's-complement number in the range of
-32,768 through 32,767, or an unsigned number in the range of 0 through 65,535.

3.2.3 Memory Organization

The TI Home Computer is based on the TMS9900 microprocessor, which is word
oriented and byte addressable. The instructions and data words are constrained to
word boundaries. A word boundary is defined as an even byte address.

In the Assembler, data directives are defined such that they produce integral numbers
of words. You are responsible for maintaining word alignment of instructions and
data words. Failure to do so is flagged with an error message. Nonalignment occurs
when a directive creates an odd number of data bytes.

The two bytes that make up a 16-bit word are termed the most-significant and
least-significant byte, or MSB and LSB respectively. The computer treats the first
byte as the MSB and the second byte as the LSB.

ASSEMBLER
Page 30

FORMAT INFORMATION

3.3 SOURCE CODE FORMAT

Source code must be in a specific format in order to be translated into object code.
This format requires using acceptable characters, identifiers, character strings,
constants, and expressions.

3.3.1 Character Set

The following characters are used to construct source code.
e Upper- and lower-case letters: A through Z and a through z
e Numerals: 0 through 9

@ Special symbols: '@ #$ % " & *()<>~[J.,/3:""'+-=7

e Space character and tab character
3.3.2 Identifiers

Identifiers consist of an alphabetical character followed by a series of alphanumeric
characters and/or underscore characters. Upper- and lower-case and the underscore
character are not significant. This definition of identifiers is equivalent to the
Standard Pascal definition. For example, all of the following identifiers are
equivalent.

FormArray
FORM_ARRAY
formarray

Identifiers can be used in label and constant definitions, machine instructions,
assembler directives, macro identifiers, and label and constant references.

Predefined identifiers are reserved by the Assembler as symbolic names for machine
instructions and registers and cannot be used as names for labels, constants, or
procedures. The dollar sign ($) is the location counter character. This is a
character which, when used in an expression, represents the current value of the
location counter in the program during the assembly process.

ASSEMBLER
Page 31

FORMAT INFORMATION

3.3.3 Character Strings

A character string is written as a series of ASCII characters surrounded by double
quotes. A string can contain up to 80 characters, but cannot cross source lines. A
double quote can be embedded in a character string by entering it twice; for example,
"This contains "embedded"" double quotes." The Assembler directive .ASCII requires
a character string for its operand. Strings also have limited uses in expressions.

3.3.4 Constants

Numeric constants may be binary, decimal, hexadecimal, or octal. Character
constants of up to two characters may be used. The radix (base) of an integer
constant lacking a trailing radix character is set to the Assembler's current default
radix. The initial default radix for the TI Home Computer is decimal (base 10).

3.3.4.1 Binary Constants

A binary integer constant is a series of bits or binary digits (0, 1) followed by the
letter T. The range of values is O through 1111111111111111T for a word constant
and 0 through 11111111T for a byte constant.

The following are examples of valid binary constants.

oT
gli1o000100T
111017

3.3.4.2 Decimal Constants

A decimal integer word constant is written as a series of numerals (0 through 9)
followed by a period. Its range of values is -32,768 through 32,767 as a signed
two's-complement number. As a byte constant, its range of values is -128 through
127 as a signed two's-complement number or O through 255 as an unsigned number.

The following examples show valid decimal constants.

001
256
-4096

ASSEMBLER
Page 32

FORMAT INFORMATION

3.3.4.3 Hexadecimal Constants

A hexadecimal integer word constant is written as a series of up to four significant
hexadecimal numerals (0 through 9, A through F) followed by the letter H. The
leading numeral of a hexadecimal constant must be a numeric character, so a dummy
0 (zero) must precede a value that starts with A through F. The range of values is 0
through FFFF.

The following examples show valid hexadecimal constants.

0AH
100H
OFFFEH The leading 0 is required here.

Byte constants have the same syntax but can have at most two significant
hexadecimal numerals with a range of 0 through FF.

3.3.4.4 Octal Constants

An octal integer word constant is written as a series of up to six significant octal
numerals (0 through 7) followed by the letter Q. The range of values is 0 through
177777. Byte constants can have at most three significant octal numerals, with a
range of 0 through 377.

The following are examples of valid octal constants.

17Q
457Q
177776Q

ASSEMBLER
Page 33

FORMAT INFORMATION

3.3.4.5 Character Constants

Character constants are special cases of character strings and can be used in
expressions. The maximum length is two characters for a word constant and one
character for a byte constant.

The following are examples of valid character constants.
IIAII

IIBC“
n YA"

An assembly-time constant is written as an identifier that has been assigned a
constant value by the .EQU directive (see Section 13.2). The constant's value is
completely determined at assembly time from the expression following the directive.
Assembly-time constants must be defined before you refer to thems

3.3.5 Expressions

Expressions can be used as symbolic operands for machine instructions and Assembler
directives. An expression can be any one of the following.

e A label, which might refer to a defined address or an address farther down in
the source code (implying that the label is presently undefined), an externally
referenced address, or an absolute address.

® A constant.

® A series of labels or constants separated by arithmetic or logical operators.

e The null expression, which evaluates to O (zero).

An expression containing more than one label is a valid expression under certain
circumstances. In the following examples, R1, R2, and R3 are relocatable labels, and
Al, A2, and A3 are absolute values.

ASSEMBLER
Page 34

FORMAT INFORMATION

Example Description

R1-R2 Subtracting a relocatable value from another relocatable value yields
an absolute value.

R1-R2+Al Any number of absolute values may be added to an absolute value to
obtain an absolute value.

R1+R2-R3 If the number of relocatable values added together is exactly one
more than the number of relocatable values subtracted, the result is
a relocatable value.

R1+Al+A2 Any number of absolute values may be added to a relocatable value
to obtain a relocatable value.

Al/A2 An absolute value divided by another absolute value gives an

absolute value.
Al*A2 An absolute value multiplied by another absolute value gives an
absolute value.

It is illegal to add together two relocatable values, to multiply relocatable values, to
multiply a relocatable value by an absolute value, or to negate a relocatable value.

In relocatable programs, absolute expressions cannot be used as the operands of
instructions which require location-counter-relative address modes.

An expression can contain no more than one externally defined label, and the label's
value must be added to the expression. An expression containing an external
reference cannot contain a forward-referenced label, and the rest of the expression
must be absolute.

An expression can contain no more than one forward-referenced identifier. A
forward-referenced identifier is assumed to be a relocatable label defined farther
down in the source code. Any other identifiers must be defined before they are used
in an expression. An expression containing a forward-referenced label cannot also
contain an externally defined label.

ASSEMBLER
Page 35

FORMAT INFORMATION

The following operators are available for use in expressions.

Unary operations:
+ Plus
= Minus (two's-complement negation)
Logical not (one's-complement negation)

Binary operations:

+ Plus

- Minus

" Exclusive OR

* Multiplication

/ Signed integer division (DIV)

/| Unsigned integer division (DIV)

% Unsigned remainder division (MOD)
! Bitwise OR

& Bitwise AND

The following operators are available for use only with conditional assembly
directives.

= Equal
<O Not equal

The symbols below can be used as alternatives to the single-character definitions
presented above. Occurrences of these alternative definitions require at least one
blank character both before and after them.

LOR = !
LAND = &
LNOT = 7
LXKOR = 7
MOD = %

The Assembler evaluates expressions from left to right; there is no operator
precedence. All operations are performed on word quantities. Unary operators are
available only with constants and absolute addresses. Angle brackets (< and >) must
enclose subexpressions which contain embedded unary operators.

ASSEMBLER
Page 36

FORMAT INFORMATION

Angle brackets can also be used in expressions to override the left-to-right evaluation
of operands. Subexpressions enclosed in angle brackets are completely evaluated
before the rest of the expression is evaluated.

The following are examples of valid expressions. The default radix is decimal.

CNST+4

BELOW-2

2-TIMER

3*2+MACRO

BLBD+3%*2

650/2-PAST

-4%12+<6/2>

85+42+<-5>

0!11&<70>

0 .OR 1 .AND <.NOT 0>

The sum of the value of identifier CNST
and 4.

The result of subtracting 2 from the value
of identifier BELOW.

The result of subtracting the value of
identifier TIMER from 2. TIMER must be
absolute.

The product of 3 times 2 added to the
value of the identifier MACRO.

The sum of the identifier BLBD and 3,
which is multiplied by 2. BLBD must be
absolute.

The result of dividing 650 by 2 and
subtracting the value of identifier PAST
from the quotient. PAST must be absolute.

Null expression: result is constant 0.
The result of negative 4 times 12 added to
6 divided by 2. This evaluates to -45

(decimal).

The sum of 85, 2, and negative 5. This
evaluates to 82 (decimal).

Zero or 1 and not zero. This evaluates to
l.

This is the same expression as above. It
evaluates to 1.

ASSEMBLER
Page 37

FORMAT INFORMATION

3.4 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which can contain
machine instructions, Assembler directives, comments, or nothing (a blank line).

Each source statement is defined as one line of a text file. Assembly language
identifiers can be either upper-case or lower-case alphabetic characters. Source
statements are divided into a label field, an op-code field, an operand field, and a
comment field.

3.4.1 Label Field

The label field begins in the left-most character position of each source line. Macro
identifiers and machine instructions must not appear in the start of the label field,
but Assembler directives and comments can appear there.

The Assembler supports the use of both standard labels and local (reusable) labels. A
standard label is an identifier that appears in the label field of a source statement.
It can optionally be terminated by a colon (which is not used when referring to the
label). As in Pascal, only the first eight characters of the label are important; the
rest are ignored by the Assembler. Also, as in Pascal, the underscore character is not
significant.

The following are examples of valid labels.

BIOS

L3456: Referred to as "L3456"

THE _KIND

LONG LABEL The ninth character is ignored

A standard label is a symbolic name for a unique address or constant and can be
declared only once in a source program. A label is optional for machine instructions
and for many of the Assembler directives. A source statement consisting of only a
label is a valid statement which has the effect of assigning the current value of the
location counter to the label. This is equivalent to placing the label in the label
field of the next source statement that generates object code. Labels defined in the
label field of the .EQU directive (see Section 13.2) are assigned the value of the
expression in the operand field.

ASSEMBLER
Page 38

FORMAT INFORMATION

Local labels are non-mnemonic labels which allow source statements to be labeled
without taking up storage space in the symbol table. They can contribute to the

cleanliness of program design by reserving the use of mnemonic label names for
conceptually more important sections of code.

Local labels have a dollar sign ($) in the first character position, with the remaining
characters being digits. As in regular labels, only the first eight digits are
significant. The scope of a local label is limited to the lines of source statements
between the declarations of consecutive standard labels. Thus, the jump to label $4 in
the following example is illegal.

LABEL1
LI R1, SOURCE
MOV @LEN,R2
$3 MOVB *R1+,R0
JEQ $4 ; Illegal use of label.
DEC R2
INE $3 ; Legal use of label.
LABEL?Z2
SETO R2
$4 0% 3

Up to 21 local labels can be defined between two standard labels. Upon encountering
a standard label, the Assembler removes all existing local label definitions. Thus, all
local label names must be redefined after that point. Local labels cannot be used in
the label field of the .EQU directive (see Section 13.2).

3.4.2 Op-code Field

The op-code field begins with either the first nonblank character following the label
field or the first nonblank character following the left-most character position when
the label is omitted. The op-code field is terminated by one or more blanks. The

op-code field contains an identifier which can be one of the following types.

@ Machine instruction
e Assembler directive

e Macro call

ASSEMBLER
Page 39

FORMAT INFORMATION

3.4.3 Operand Field

The operand field begins with the first nonblank character following the op-code field
and is terminated by an optional number of blanks. The operand field can contain as
many expressions as are required by the preceding op-code.

3.4.4 Comment Field

The comment field, which can be preceded by an optional number of blanks, begins
with a semicolon (;) and extends to the end of the source line. The comment field
can contain any printable ASCII characters. The comment field is listed on
assembled listings but has no other effect on the assembly process.

ASSEMBLER
Page 40

FORMAT INFORMATION

3.5 SOURCE FILE FORMAT

Assembly source files are generated with the UCSD P-System Editor, which is
described in the Editor manual, and saved as files of type TEXT. A source file is
constructed from assembly routines (procedures and functions) and global declarations.

3.5.1 Assembly Routines

A source file can contain more than one assembly routine. Each assembly routine
ends when the following routine begins. Each routine in a source file is a separate
entity and contains its own relocation information. Each assembled routine can be
referred to individually by a Pascal host program during linking.

Assembly routines must begin with a .PROC, .FUNC, .RELPROC, or .RELFUNC
directive. The last routine in the source file must be terminated by the .END
directive. See Section 13.1 and the UCSD p-System Linker manual for a description
of these directives.

At the end of each routine, the Assembler's symbol table is cleared of all but

predefined and globally declared symbols, and the Location Counter (LC) is reset to
Zero.

3.5.2 Global Declarations

An assembly routine cannot directly access objects declared in another assembly
routine, even if the routines are assembled in the same source file. However, it is
occasionally desirable for a set of routines to share a common group of declarations.
Therefore the Assembler allows global data declarations.

Any objects declared before the first occurrence of a .PROC or .FUNC directive in a
source file can be referred to by all subsequent assembly routines. No code can be
generated before the first procedure delimiting directive. Thus, the "global" objects
are limited to the directives that do not generate code (.EQU, .REF, .DEF, .MACRO,
.LIST, etc.).

ASSEMBLER
Page 41

FORMAT INFORMATION

3.5.3 Absolute Sections

You may find it necessary to access absolute addresses in memory, regardless of

where an assembly routine is located in memory. For instance, a program may need
to access Read Only Memory (ROM) routines. Absolute sections allow you to define
labels and data space using the standard syntax and directives with the extra ability

to specify absolute (non-relocatable) label addresses starting at any location in
memory.

Absolute sections are initiated by the directive .ASECT (for absolute section) and
terminated by the directive .PSECT (for program section, which is the default setting
during assembly). When the .ASECT directive is encountered, the Absolute section
Location Counter (ALC) becomes the current location counter. The .ORG directive
can be used to set the ALC to any desired value. Label definitions are
non-relocatable and are assigned the current value of the ALC. The data directives
.WORD, .BLOCK, and .BYTE increment the ALC (instead of the regular LC).

Data directives in an absolute section cannot place initial values in the locations
specified as they can when used in the program section. Thus, you can use absolute
sections for constructing a template of label and memory address assignments.

The equate directive (.EQU) can be used in an absolute section, but the labels can
only be equated to absolute expressions. The only other directives allowed within an
absolute section are .LIST, .NOLIST, .END, and the conditional assembly directives.

Absolute sections can appear as global objects.
The following is a simple example of an absolute section.

JASECT ; Start absolute section.

.ORG 8374H ; Set ALC to 8374 hexadecimal.
s Note that no data values are
assigned.

Label assignments below.

s e

KBD .BYTE Keyboard select.

KEYVAL .BYTE ; Key selected.

JOYyY .BYTE 3y Joystick y-position.

JOYX .BYTE ; Joystick x-position.
.BLOCK 4

STATUS .BYTE ; Keyscan status return.
.PSECT ; End absolute section.

ASSEMBLER
Page 42

SECTION 4: ADDRESSING MODES

This section describes the addressing modes used in assembly language. Examples of
programming in each addressing mode are included.

4.1 GENERAL ADDRESSING MODES

A source operand is the number, address, string, etc., which is to be manipulated or
operated upon. A destination operand is the address where the result of the
performed manipulation is stored. Instructions that specify a general address for a
source or destination operand may be in one of five addressing modes. These
addressing modes and their uses are discussed in this section.

The following lists the T-field value, which indicates the type of addressing mode (see
Section 5), and gives an example for each of the addressing modes.

Addressing Modes

Addressing Mode T-field value Example
Workspace Register 00 5
Workspace Register Indirect 01 *7
Symbolic Memory ™’ 10 @LABEL
Indexed Memory ™’ . 10 @LABEL(5)
Workspace Register Indirect Auto-increment 11 *7+

Notes:
1The instruction requires an additional word for each T-field value of 10. The
additional word contains a memory address.
2The four-bit field immediately following the T-field value of 10,, called the S
(for a source operand) or D (for a destination operand) field, is set to zero by the
Assembler.

The T-field value of 10_ indicates both symbolic and indexed memory addressing
modes. If the four-bit ?ield which follows it contains a zero value, it is a
symbolic addressing mode. If it is non-zero, it is an indexed addressing mode,
and the non-zero value is the number of the index register. Therefore,
Workspace Register 0 cannot be used for indexing.

ASSEMBLER
Page 43

ADDRESSING MODES

4.1.1 Workspace Register Addressing

Workspace Register addressing specifies the Workspace Register that contains the
operand. A Workspace Register address is specified by a value of 0 through 15,

optionally preceded with an "R". For example, Workspace Register 8 may be referred
to as "8" or "R8".

Examples:
MOV R4,R8 ;Copies the contents of Workspace Register 4 into
Workspace Register 8.
MQV 4,8 ;Same as the preceding example.
CcoC R15,R10 ;Compares the bits of Workspace Register 10 that
correspond to the one bits in Workspace Register
15 to one.

4.1.2 Workspace Register Indirect Addressing

Workspace Register indirect addressing specifies a Workspace Register that contains

the address of the operand. An indirect Workspace Register address is preceded by
an asterisk (*).

Examples:

A *R7,*R2 ;Adds the contents of the word at the address in
Workspace Register 7 to the contents of the word
at the address in Workspace Register 2 and places
the sum in the word at the address in Workspace
Register 2.

MOV *R7,R0 ;Copies the contents of the word at the address

given in Workspace Register 7 into Workspace
Register 0.

ASSEMBLER
Page 44

ADDRESSING MODES

4.1.3 Workspace Register Indirect Auto-Increment Addressing

Workspace Register indirect auto-increment addressing specifies a Workspace Register
that contains the address of the operand. After the address is obtained from the
Workspace Register, the Workspace Register is incremented by 1 for a byte
instruction or by 2 for a word instruction. A Workspace Register auto-increment
address is preceded by an asterisk and followed by a plus sign (+).

Examples:
S *R3+,R2 ;Subtracts the contents of the word at the address
in Workspace Register 3 from the contents of
Workspace Register 2, places the result in
Workspace Register 2, and increments the address
in Workspace Register 3 by two.
CB R5,*R6+ ;Compares the first byte of the contents of

Workspace Register 5 with the contents of the byte
at the address in Workspace Register 6 and

increments the address in Workspace Register 6 by
one.

4.1.4 Symbolic Memory Addressing

Symbolic memory addressing specifies the memory address that contains the operand.
A symbolic memory address is preceded by an "at" sign (@).

Examples:

S @FIX1,@LIST4 ;Subtracts the contents of the word at location
FIX1 from the contents of the word at location
LIST4 and places the difference in the word at
location LISTA4.

& RO,@STORE ;Compares the contents of Workspace Register 0
with the contents of the word at location STORE.

MOV @12,@7CH ;Copies the word at address O00CH into location
007CH.

ASSEMBLER
Page 45

ADDRESSING MODES

4.1.5 Indexed Memory Addressing

Indexed memory addressing specifies the memory address that contains the operand.
The address is the sum of the contents of a Workspace Register and a symbolic
address. An indexed memory address is preceded by an "at" sign (@) and followed by
a term enclosed in parentheses. The Workspace Register specified by the term
within the parentheses is the index register. Workspace Register 0 may not be
specified as an index register.

Examples:
A @2(R7),R6 ;sAdds the contents of the word found at the
address computed by adding 2 to the contents of
Workspace Register 7 to the contents of Workspace
Register 6 and places the sum in Workspace
Redgister 6.
MOV R7,@LIST4-6(R5) ;Copies the contents of Workspace Register 7 into

a word of memory. The address of the word of
memory is the sum of the contents of Workspace
Register 5 and the value of symbol LIST4 minus 6.

ASSEMBLER
Page 46

ADDRESSING MODES

4.2 PROGRAM COUNTER RELATIVE ADDRESSING

Program Counter relative addressing is used only by jump instructions. A Program
Counter relative address is written as an expression that corresponds to an address at
a word boundary. The Assembler evaluates the expression and subtracts the sum of
the current location plus two. One-half of the difference is the value placed in the
object code. This value must be in the range of -128 through +127. When the
instruction is in relocatable code (that is, when the Location Counter is relocatable),
the relocation type of the evaluated expression must match the relocation type of the
current Location Counter. When the instruction is in absolute code, the expression
must be absolute.

Example:

JMP THERE ;Jumps unconditionally to location THERE.

ASSEMBLER
Page 47

ADDRESSING MODES

4.3 CRU BIT ADDRESSING

The CRU, or Communications Register Unit, is a command-driven bit-addressable 1/O
interface. An instruction can set, reset, or test any bit in the CRU array or move
data between the memory and CRU data fields. The CRU software base address is
contained in the 16 bits of Workspace Register 12. From the CRU software base
address, the processor is able to determine the CRU hardware base address and the
resulting CRU bit address.

The CRU bit instructions use a well-defined expression that represents a displacement
from the CRU base address (bits 3 through 14). The displacement, in the range of
-128 through +127, is added to the base address in Workspace Register 12. See
Section 9 for more information.

Example:

SBO 8 ;Sets CRU bit to one at the CRU address 8 greater
than the CRU base address.

ASSEMBLER
Page 48

ADDRESSING MODES

4.4 IMMEDIATE ADDRESSING

Immediate instructions use the contents of the word following the instruction word as
the operand of the instruction. The immediate value is an expression, and the
Assembler places its value in the word following the instruction. Immediate

instructions that require two operands have a Workspace Register address preceding
the immediate value.

Example:

LI R5,1000H ;Places 1000H into Workspace Register 5.

ASSEMBLER
Page 49

ADDRESSING MODES

4.5 ADDRESSING SUMMARY

The following table shows the addressing mode required for each instruction of the
Assembler instruction set. The first column lists the instruction mnemonic. The
second and third columns specify the required address, listed below.

G - General address:

Workspace Register address

Indirect Workspace Register address

Symbolic memory address

Indexed memory address (RO not allowed)

Indirect Workspace Register auto-increment address
WR - Workspace Register address
PC - Program counter relative address
CRU - CRU bit address
[- Immediate value
* - The address into which the result is placed when two operands are

required
Instruction Addressing

First Second First Second
Mnemonic Operand Operand Mnemonic Operand Operand
A G G* LDCR G Note 1
AB G G* LI WR* I
ABS G - LIMI I -
Al WR* I LREX - -
ANDI WR* I LWPI I -
B G B MOV G G*
BL G - MOVB G G*
BLWP G - MPY G WR*
G G G NEG G -
CB G G ORI WR* I
CI WR I RSET - -
CKOF - - RTWP - -
CKON - - S G G*
CLR G - SB G G*
cocC G WR SBO CRU B
CZE G WR SBZ CRU -
DEC G - SETO G -
DECT G - SLA WR* Note 2
DIV G WR* SOC G G*
IDLE - - S0CB G G*
INC G - SRA WR* Note 2
INCT G - SRE WR* Note 2
INV G - SRL WR* Note 2

ASSEMBLER

Page 50

First Second
Mnemonic Operand Operand
JEQ P -
JGT PC -
JH PC -
JHE PC -
Ju PC -
JLE PC -
JLT PC -
JMP PC -
JNC PC -
JNE B -
JNO PC -
JOC PC -
JOP PC -

Notes:

ADDRESSING MODES

First Second
Mnemonic Operand Operand
STCR G* Note 1
STST WR -
STWP WR -
SWPB G -
SZC G G*
SZCB G G*
B8 CRU -
X G -
XOP G Note 3
XOR G WR*

1The second operand is the number of bits to be transferred, from 0 throudh 15,

with 0 meaning 16 bits.
The second operand is the shift count, from 0 through 15.

0 indicates that the

count is in bits 12 through 15 of Workspace Register 0. When the count is 0 and
bits 12 through 15 of Workspace Register 0 equal 0, the count is 16.

The second operand specifies the extended operation, from 0 through 15.

The

disposition of the result may or may not be in the first operand address, as
determined by you.

ASSEMBLER

Page 51

SECTION 5: INSTRUCTION FORMATS

An assembler instruction occupies one word (16 bits) of memory. Each word is
divided into appropriately sized bit fields which are arranged in one of nine formats.
These formats are discussed below and are referred to in the discussions of the
instructions in the following sections. You must clearly understand addressing modes,
as described in Section 4, before reading this section.

Each format contains one or more of the following bit fields.

Op-Code - Machine operation code.

B - Byte indicator: 1 for byte instructions, 0 for word instructions.
Td - Type of addressing mode of the destination operand.

D - Destination operand.

Ts - Type of addressing mode of the source operand.

5 - Source operand.

DISP - Displacement value (signed).

C - Count (bit count).

W - Workspace register.

ASSEMBLER
Page 52

INSTRUCTION FORMATS

5.1 FORMAT I -- TWO GENERAL ADDRESS INSTRUCTIONS

The operand field of Format I instructions contains two general addresses separated
by a comma. The first address is the source address and the second is the
destination address. The Format I mnemonic operation codes are listed below and
discussed in subsequent sections.

A Add words

AB Add Bytes

C Compare words

CB Compare Bytes

MOV MOVe word

MOVB MOVe Byte

S Subtract words

SB Subtract Bytes

SOC Set Ones Corresponding
SOCB Set Ones Corresponding, Byte
5Z2C Set Zeros Corresponding

SZCB Set Zeros Corresponding, Byte

Example:

SUM A @LABELL,*R7 ;Adds the contents of the word at
location LABEL1 to the contents of
the word at the address in
Workspace Register 7 and places the
sum in the word at the address in
Workspace Register 7. SUM is the
location of the instruction.

Format I instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IOP-CODE| B | Td | D | Ts | S I

When either Ts or Td (but not both) equal binary 10, the instruction occupies two
words of memory. The second word contains a memory address used with S or D to
develop the effective address. When both Ts and Td equal binary 10, the instruction
occupies three words of memory. The second word contains the memory address of
the source operand, and the third word contains the memory address of the
destination operand.

ASSEMBLER
Page 53

INSTRUCTION FORMATS

5.2 FORMAT II -- JUMP INSTRUCTIONS

Format II instructions use Program Counter (PC) relative addresses coded as
expressions corresponding to instruction locations on word boundaries. The Format II
jump mnemonic operation codes are listed below and discussed in subsequent sections
See Section 5.2.1 for a discussion of the Format II CRU bit 1/O instructions.

JEQ Jump if EQual
JGT Jump if Greater Than
JH Jump if logical High
JHE Jump if High or Equal
JL Jump if logical Low
JLE Jump if Low or Equal
JLT Jump if Less Than
JMP unconditional JuMP
JNC Jump if No Carry
INE Jump if Not Equal
JNO Jump if No Overflow
JOC Jump On Carry
JOP Jump if Odd Parity
Example:
NOW JMP BEGIN ;Jumps unconditionally to the instruction at

location BEGIN. The address of location BEGIN
must not be greater than the address of location
NOW by more than 128 words, nor less than the
address of location NOW by more than 127
words.

Format II instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| OP - CODE | DISP |

The signed displacement value is shifted one bit position to the left and added to the
contents of the Program Counter after the Program Counter has been incremented to
the address of the following instruction. In other words, it is a displacement in
words from the instruction address plus two.

ASSEMBLER
Page 54

INSTRUCTION FORMATS

5.2.1 Format II -- Bit I/O Instructions

In addition to jump instructions, the CRU bit I/O instructions also follow Format II.
The operand field of Format II CRU bit I/O instructions contains a well-defined
expression which evaluates to a CRU bit address, relative to the contents of
Workspace Register 12. The Format II CRU bit I/O instructions are listed below and

discussed in subsequent sections. See Section 5.2 for a discussion of the Format 11
jump instructions.

SBO Set Bit to logic One
sBZ Set Bit to logic Zero
B Test Bit
Example:
SBO 5 ;Sets a CRU bit to one.
ASSEMBLER

Page 55

INSTRUCTION FORMATS

5.3 FORMAT III -- LOGICAL INSTRUCTIONS

The operand field of Format III instructions contains a general address followed by a
comma and a Workspace Register address. The general address is the source address.
The Workspace Register address is the destination address. The Format III mnemonic
operation codes are listed below and discussed in subsequent sections.

cOoC Compare Ones Corresponding
CZC Compare Zeros Corresponding
XOR eXclusive OR
Example:
COMP XOR @LABELS8(R3),R5 ;Performs an exclusive OR operation

on the contents of a memory word
and the contents of Workspace
Register 5 and places the result in
Workspace Register 5. The address
of the memory word is the sum of
the contents of Workspace Register
3 and the value of the symbol
LABELS.

Format III instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| OP -CODE | D | Ts | S |

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address of the source operand.

ASSEMBLER
Page 56

INSTRUCTION FORMATS

5.4 FORMAT IV -- CRU MULTI-BIT INSTRUCTIONS

The operand field of Format IV instructions contains a general address followed by a
comma and a well-defined expression. The general address is the memory address
from which or into which bits are transferred. The CRU address for the transfer is
the contents of bits 3 through 14 of Workspace Register 12. The well-defined
expression is the number of bits to be transferred and must have a value of 0 through
15. A 0 value specifies a 16 bit transfer. For eight or fewer bits the general
address is a byte address. For nine or more bits the general address is a word address.

The Format IV mnemonic operation codes are listed below and discussed in subsequent
sections.

LDCR LoaD CRU
STCR STore CRU

Example:

LDCR *R6+,8 ;Places eight bits from the byte of memory at the address in
Workspace Register 6 into eight consecutive CRU lines and
increments Workspace Register 6 by 1.

Format IV instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| OP -CODE | C | Ts | S I

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address for the source operand.

ASSEMBLER
Page 57

INSTRUCTION FORMATS

5.5 FORMAT V -- REGISTER SHIFT INSTRUCTIONS

The operand field of Format V instructions contains a Workspace Register address
followed by a comma and a well-defined expression. The contents of the Workspace
Register are shifted a number of bit positions specified by the well-defined
expression. When the term equals zero, the shift count must be placed in bits 12-15
of Workspace Register 0. The Format V mnemonic operation codes are listed below
and discussed in subsequent sections.

SLA Shift Left Arithmetic
SRA Shift Right Arithmetic
SRC Shift Right Circular
SRL Shift Right Logical
Example:
SLA R6,4 ;Shifts the contents of Workspace Register 6 to the left 4 bit

positions and replaces the vacated bits with zeros.

Format V instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP - OODE I C I W |

ASSEMBLER
Page 58

INSTRUCTION FORMATS

5.6 FORMAT VI -- SINGLE ADDRESS INSTRUCTIONS

The operand field of Format VI instructions contains a general address. The Format
VI mnemonic operation codes are listed below and discussed in subsequent sections.

ABS ABSolute value

B Branch

BL Branch and Link
BLWP Branch and Load Workspace Pointer
CLR CLeaR

DEC DECrement

DECT DECrement by Two
INC INCrement

INCT INCrement by Two
INV INVert

NEG NEGate

SETO SEt To One
SWPB SwaP Bytes

X eXecute
Example:
CNT INC R7 ;Adds one to the contents of Workspace Register

7 and places the sum in Workspace Register 7.
CNT is the location into which the instruction is
placed.

Format VI instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| OP -CODE | Ts | S |

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address of the source operand.

ASSEMBLER
Page 59

INSTRUCTION FORMATS

5.7 FORMAT VII -- CONTROL INSTRUCTIONS

Format VII instructions require no operand field. The Format VII mnemonic
operation codes are listed below and discussed in subsequent sections. All but the
last instruction have no effect on the TI Home Computer.

CKOF ClocK OFf

CKON ClocK ON

IDLE IDLE

LREX Load or REstart eXecution
RSET ReSET

RTWP ReTurn with Workspace Pointer

Example:

RTWP ;Returns control to the calling program and restores the context of the
calling program by placing the contents of Workspace Registers 13, 14,
and 15 into the Workspace Pointer Register, the Program Counter, and
the Status Register.

Format VII instructions are assembled as follows.

6 1 2 3 4 5 6 7 8 9 14 11 12 15 14 15
| OP -CODE | ol ol ol o] 0l

The op-code field contains 11 bits that define the machine operation. The five least
significant bits are zeros.

ASSEMBLER
Page 60

INSTRUCTION FORMATS

5.8 FORMAT VIII -- IMMEDIATE INSTRUCTIONS

The operand field of Format VIII instructions contains a Workspace Register address
followed by a comma and an expression. The Workspace Register is the destination
address, and the expression is the immediate operand. The Format VIII mnemonic
operation codes are listed below and discussed in subsequent sections.

Al Add Immediate
ANDI AND Immediate

CI Compare Immediate
LI Load Immediate
ORI OR Immediate

There are two additional Format VIII instructions that require only an expression in
the operand field. The expression is the immediate operand. The destination is
implied in the name of the instruction. These instructions are listed here.

LIMI Load Interupt Mask Immediate
LWPI Load Workspace Pointer Immediate

Another modification of Format VIII requires only a Workspace Register address in
the operand field. The Workspace Register address is the destination. The source is
implied in the name of the instruction. The following mnemonic operation codes use
this modified Format VIII.

STST STore STatus
STWP STore Workspace Pointer

Examples:
ANDI R4,000FH ;Performs an AND operation on the contents of Workspace
Register 4 and immediate operand OO0OFH.
LWPI WRK1 ;Places the address defined for the symbol WRKI1 into the
Workspace Pointer Register.
STWP R4 ;Places the contents of the Workspace Pointer Register into

Workspace Register 4.

ASSEMBLER
Page 61

INSTRUCTION FORMATS

Format VIII instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| OP -CODE [o] W I

A zero bit separates the two fields. The instructions that have no Workspace
Register operand place zeros in the W field. The instructions that have immediate

operands place the operands in the word following the word that contains the op-code,
i.e., these instructions occupy two words each.

ASSEMBLER
Page 62

INSTRUCTION FORMATS

5.9 FORMAT IX -- EXTENDED OPERATION INSTRUCTION

The extended operation instruction can be used on some TI Home Computers. See
Section 7.19 for more information.

The operand field of the Format IX extended operation instruction contains a general
address and a well-defined expression. The general address is the address of the
operand for the extended operation. The term specifies the extended operation to be
performed and must be in the range of 0 through 15. The Format IX mnemonic
operation code is listed below and discussed in subsequent sections. See Section 5.9.1
for a discussion of the Format IX multiply and divide instructions.

XOP eXtended OPeration
Example:
XOP @LABEL(R4),12 ;Performs extended operation 12 using the

address computed by adding the value of symbol
LABEL to the contents of Workspace Register 4.

Format IX instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
I OP - CODE I D | Ts | S I

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address for the source operand.

ASSEMBLER
Page 63

INSTRUCTION FORMATS

5.9.1 Format IX -- Multiply and Divide Instructions

The operand field of Format IX multiply and divide instructions contains a general
address followed by a comma and a Workspace Register address. The general address
is the address of the multiplier or divisor, and the Workspace Register address is the
address of the Workspace Register that contains the multiplicand or dividend. The
Workspace Register address is also the address of the first of two Workspace
Registers to contain the result. The Format IX multiply and divide instructions are
listed below and discussed in subsequent sections. See Section 5.9 for a discussion of
the Format 1X extended operation instruction.

MPY MultiPlY
DIV DIVide
Example:
MPY @ACC,R9 ;Multiplies the contents of Workspace Register 9

by the contents of the word at location ACC
and places the product in Workspace Registers 9
and 10, with the 16 least significant bits of the
product in Workspace Register 10.

Multiply and divide instructions are assembled in the same format as shown in Section
5.9, except that the D field contains the Workspace Register operand.

ASSEMBLER
Page 64

SECTION 6: ARITHMETIC INSTRUCTIONS

The following arithmetic instructions are described in this section.

Instruction Mnemonic Section
Add words A 6.1
Add Bytes AB 6.2
ABSolute value ABS 6.3
Add Immediate Al 6.4
DECrement DEC 6.5
DECrement by Two DEET 6.6
DIVide DIV 6.7
INCrement INC 6.8
INCrement by Two INCT 6.9
MultiPlY MPY 6.10
NEGate NEG 6.11
Subtract words S 6.12
Subtract Bytes SB 6.13

Examples are given in Section 6.14.
Each instruction consists of the following information.

® A heading, consisting of the instruction name and mnemonic name
e The op-code

e The syntax definition

e An example of the instruction

e The definition of the instruction

e The status bits affected

e The execution results

® Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

ASSEMBLER
Page 65

ARITHMETIC INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field. Use of the label field is
optional. When it is used, the label is assigned the address of the instruction. The
Assembler advances to the location of a word boundary (even address) before
assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.
() Indicates "the contents of."
=> Indicates "replaces."

* % Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
Page 66

ARITHMETIC INSTRUCTIONS

6.1 ADD WORDS--A
Op-code: AO000 (Format I)
Syntax definition:
[<label>] b A b <gas>,<gad> b [<comment>]

Example:

LABEL A @ADR1(R2),@ADR2(R3) ;Adds the word at the address found
by adding ADR1 to the contents of
Workspace Register 2 to the word at
the address found by adding ADR2
to the contents of Workspace
Register 3 and puts the result in the
word at the second address.

Definition:
Adds a copy of the source operand (word) to the destination operand (word) and
replaces the destination operand with the sum. The computer compares the sum
to zero and sets/resets the status bits to indicate the result of the comparison.

When there is a carry of bit zero, the carry status bit is set. When there is an
overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LA [EQIC IOVIOPIX Jescecrsnaascna | INT. MASK |

Execution results:
(gas) + (gad) => (gad)

ASSEMBLER
Page 67

ARITHMETIC INSTRUCTIONS

Application notes:
The A instruction adds both signed and unsigned integer words. For example, if

the address labeled TABLE contains 3124H and Workspace Register > contains 8H,
the instruction

A R5,@TABLE

results in the contents of TABLE changing to 312CH and the contents of
Workspace Register 5 not changing. The logical and arithmetic greater than
status bits are set and the equal, carry, and overflow status bits are reset.

ASSEMBLER
Page 68

ARITHMETIC INSTRUCTIONS

6.2 ADD BYTES--AB
Op-code: BO000 (Format I)
Syntax definition:
[<label>] b AB b <gas>,<gad> b [<comment>]

Example:

LABEL AB R3,R2 ;Adds the left byte of Workspace Register 3 to
the left byte in Workspace Register 2 and places

the result in the left byte of Workspace Register
2.

Definition:
Adds a copy of the source operand (byte) to the destination operand (byte) and
replaces the destination operand with the sum. When the source or destination
operand is addressed in the Workspace Register mode, only the leftmost byte (bits
0 through 7) of the addressed Workspace Register is used. The computer compares
the sum to zero and sets/resets the status bits to indicate the results of the
comparison. When there is a carry of the most significant bit of the byte, the
carry status bit is set. When there is an overflow, the overflow status bit is set.
The odd parity bit is set when the bits in the sum (destination operand) establish
odd parity and is reset when the bits in the sum establish even parity.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILY A EGIE IOVIOPIX |-vvevccsnanmes | INT. MASK |

Execution results:
(gas) + (gad) => (gad)

ASSEMBLER
Page 69

ARITHMETIC INSTRUCTIONS

Application notes:
The AB instruction is used to add signed or unsigned integer bytes. For example,
if Workspace Register 3 contains 7400H, memory word 2122H contains 0F 318H
and Workspace Register 2 contains 2123H, the instruction

AB R3,*R2+

changes the contents of memory word 2122H to OF38CH because 74H (the value
in Workspace Register 3) plus 23H (the value in memory byte 2123H) is 8CH.

The left byte of memory word 2122H is unchanged. The contents of Workspace
Register 2 are changed to 2124H, while the contents of Workspace Register 3
remain unchanged. The logical greater than, overflow, and odd parity status bits
are set, while the arithmetic greater than, equal, and carry status bits are reset.

ASSEMBLER
Page 70

ARITHMETIC INSTRUCTIONS

6.3 ABSOLUTE VALUE--ABS
Op-code: 0740 (Format 1V)
Syntax definition:

[<label>] b ABS b <gas> b [<comment>]

Example:

LABEL ABS *2 ;Replaces the contents of the word starting at
the address in Workspace Register 2 with its
absolute value.

Definition:

Computes the absolute value of the source operand and replaces the source
operand with the result. The absolute value is the two's complement of the
source operand when the sign bit (bit zero) is equal to one. When the sign bit is
equal to zero, the source operand is unchanged. The computer compares the

original source operand to zero and sets/resets the status bits to indicate the
results of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TA>TEQIC JOVIOPIX |--oceemeaae | INT. MASK |

Execution results:
(gas) => (qgas)

Application notes:
The ABS instruction is useful for taking the absolute value of an operand. For

example, if the third word in array LIST contains the value OFF3CH and
Workspace Register 7 contains the value 4H, the instruction

ABS @LIST(R?)

changes the contents of the third word (bytes 4 and 5) in array LIST to 00C4H.
The logical greater than status bit is set, while the arithmetic greater than and
equal status bits are reset.

ASSEMBLER
Page 71

ARITHMETIC INSTRUCTIONS

6.4 ADD IMMEDIATE--AI
Op-code: 0220 (Format III)
Syntax definition:
[<label>] b Al b <wa>,<iop> b [<comment>]
Example:

LABEL Al R2,7 ;Adds 7 to the contents of Workspace Register
2.

Definition:
Adds a copy of the immediate operand (the contents of the word following the
instruction word in memory) to the contents of the Workspace Register specified
in the wa field and replaces the contents of the Workspace Register with the
results. The computer compares the sum to zero and sets/resets the status bits
to indicate the result of the comparison. When there is a carry of bit zero, the
carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IO TASTEQIC TovVIOPIX [----cccacaaa-- [INT. MASK |

Execution results:
(wa) + iop => (wa)

Application notes:
The Al instruction adds an immediate value to the contents of a Workspace
Register. For example, if Workspace Register 6 contains a zero, the instruction

Al Ré6,12

changes the contents of Workspace Register 6 to 12. The logical greater than
and arithmetic greater than status bits are set, while the equal, carry, and
overflow status bits are reset.

ASSEMBLER
Page 72

ARITHMETIC INSTRUCTIONS

6.5 DECREMENT--DEC
Op-code: 0600 (Format 1V)
Syntax definition:

[<label>] b DEC b <gas> b [<comments>]

Example:
LABEL DEC R2 ;jDecrements the contents of Workspace Register
2 by 1.
Definition:

Subtracts a value of one from the source operand and replaces the source operand
with the result. The computer compares the result to zero and sets/resets the
status bits to indicate the result of the comparison. When there is a carry of bit

zero, the carry status bit is set. When there is an overflow, the overflow status
bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>IA> |EQIC |OVIOPIX |--=ccceeaaa--- | INT. MASK |

Execution results:
(gas) - 1 => (gas)

Application notes:
The DEC instruction subtracts a value of one from any addressable operand. The

DEC instruction is also useful in counting and indexing byte arrays. For example,
if COUNT contains a value of 1, the instruction

DEC @COUNT

results in a value of zero in location COUNT and sets the equal and carry status
bits while resetting the logical greater than, arithmetic greater than, and

overflow status bits. The carry bit is always set except on transition from zero
to minus one.

ASSEMBLER
Page 73

ARITHMETIC INSTRUCTIONS

6.6 DECREMENT BY TWO--DECT
Op-code: 0640 (Format 1V)
Syntax definitions:
[<label>] b DECT b <gas> b [<comment>]
Example:
LABEL DECT @ADDR ;Decrements the contents of ADDR by 2.
Definition:
Subtracts two from the source operand and replaces the source operand with the
result. The computer compares the result to zero and sets/resets the status bits
to indicate the result of the comparison. When there is a carry of bit zero, the

carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> [EQIC |OVIOPIX |--cecmcmaaaa o | INT. MASK |

Execution results:
(gas) - 2 => (qgas)

Application notes:
The DECT instruction is useful in counting and indexing word arrays. Also, the
DECT instruction enables you to subtract a value of two from any addressable
operand. For example, if Workspace Register PRT, which has been equated to 3,
contains a value of 2C10H, the instruction

DECT PRT

changes the contents of Workspace Register 3 to 2COEH. The logical greater
than, arithmetic greater than and carry status bits are set, while the equal and
overflow status bits are reset.

ASSEMBLER
Page 74

ARITHMETIC INSTRUCTIONS

6.7 DIVIDE--DIV
Op-code: 3CO00 (Format IX)
Syntax definition:

[<label>] b DIV b <gas>,<wad> b [<comment>]

Example:

LABEL DIV @ADR(R2),R3 ;Divides the contents of the words in
Workspace Register 3 and Workspace
Register 4 by the contents of the
memory location pointed to by ADR
plus Workspace Register 2 and stores
the integer result in Workspace
Register 3 with the remainder in
Workspace Register 4.

Definition:
Divides the destination operand (a consecutive two-word area of workspace) by a
copy of the source operand (one word), using unsigned integer rules. Places the
integer quotient in the first of the two-word destination operand area and places

the remainder in the second word of that same area. This division is graphically
represented as follows.

Destination Operand Workspace Registers:

Workspace Register(n) |Workspace Register(n+1l)

0 15 |0 15
N e b [>
Resulting Quotient Resulting Remainder
R et >
Dividend

Source operand:
Addressable Memory
Divisor

The first of the destination operand Workspace Registers, shown above, is

ASSEMBLER
Page 75

ARITHMETIC INSTRUCTIONS

addressed by the contents of the D field. The dividend is right justified in this
2-word area. When the division is complete, the quotient (result) is placed in the
first Workspace Register of the destination operand (represented by n) and the

remainder is placed in the second word of the destination operand (represented by
n+1).

When the source operand is greater than the first word of the destination
operand, normal division occurs. If the source operand is less than or equal to
the first word of the destination operand, normal division results in a quotient
that cannot be represented in a 16-bit word. In this case, the computer sets the
overflow status bit, leaves the destination operand unchanged, and cancels the
division operation.

If the destination operand is specified as Workspace Register 15, the first word of
the destination operand is Workspace Register 15 and the second word of the

destination operand is the word in memory immediately following the workspace
area.

Status bits affected:
Overflow

g 1 2 3 & 5 6 7T 8 _9 1011 12 15 14 15
IL>IA>IEQIC |OVIOPIX |==-cccecocannx | INT. MASK |

Execution results:
(wad and wad +1) divided by (gas) => (wad) and (wad) + 1
The quotient is placed in wad and the remainder is placed in wad + 1.

Application notes:
The DIV instruction performs a division. For example, if Workspace Register 2

contains a zero and Workspace Register 3 contains 12, and the contents of LOC is
5, the instruction

DIV @L0oGC,2

results in 2 in Workspace Register 2 and 2 (the remainder) in Workspace Register
3. The overflow status bit is reset. If Workspace Register 2 contained the
value 5, the value contained in the two-word destination operand equals 327,692
and division by the value 5 results in a quotient of 65,538, which cannot be

represented in a 16-bit word. This attempted division sets the overflow status
bit and the computer cancels the operation.

ASSEMBLER
Page 76

ARITHMETIC INSTRUCTIONS

6.8 INCREMENT--INC
Op-code: 0580 (Format VI)
Syntax definition:

[<label>] b INC b <gas> b [<comment>]

Example:
LABEL INC COUNT ;Increments the contents of the address pointed
to by COUNT by 1.
Definition:

Adds one to the source operand and replaces the source operand with the result.
The computer compares the sum to zero and sets/resets the status bits to
indicate the result of the comparison. When there is a carry of bit zero, the
carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 4 2 3 4 5 6 7 8 9 10 1l .12 135 14 15
IL>IA>EQIC |OVIOPIX |-=-ccecacaaaa- | INT. MASK |

Execution results:
(gas) + 1 => (gas)

Application notes:

The INC instruction may be used to count and index byte arrays, add a value of
one to an addressable memory location, or set flags. For example, if COUNT
contains a zero, the instruction

INC @COUNT

places a 1 in COUNT and sets the logical greater than and arithmetic greater
than status bits, while the equal, carry, and overflow status bits are reset.

ASSEMBLER
Page 77

ARITHMETIC INSTRUCTIONS

6.9 INCREMENT BY TWO--INCT
Op-code: 05CO0 (Format VI)
Syntax definition:

[<label>] b INCT b <gas> b [<comment>]

Example:

LABEL INCT R3 sIncrements the contents of Workspace Register
3 by 2.

Definition:
Adds a value of two to the source operand and replaces the source operand with
the sum. The computer compares the sum to zero and sets/resets the status bit
to indicate the result of the comparison. When there is a carry of bit zero, the
carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> |[EQIC |OVIOPIX l--oc-cocaaaa-- | INT. MASK |

Execution results:
(gas) + 2 => (gas)

Application notes:
The INCT instruction may be used to count and index word arrays and add the
value of two to an addressable memory location. For example, if Workspace

Register 5 contains the address (2100H) of the fifteenth word of an array, the
instruction

INCT 5

changes Workspace Register 5 to 2102H, which points to the sixteenth word of
the array. The logical greater than and arithmetic greater than status bits are
set, while the equal, carry, and overflow status bits are reset.

ASSEMBLER
Page 78

ARITHMETIC INSTRUCTIONS

6.10 MULTIPLY--MPY
Op-code: 3800 (Format IX)
Syntax definition:
[<label>] b MPY b <gas>,<wad> b [<comment>]
Example:

LABEL MPY @ADDR,R3 j;Multiplies the contents of Workspace Register 3
by the value of ADDR. The result is right
justified in the 32 bits of Workspace Register 3
and Workspace Register 4.

Definition:
Multiplies the first word in the destination operand (a consecutive 2-word area in
workspace) by a copy of the source operand and replaces the 2-word destination
operand with the result. The multiplication operation may be graphically
represented as follows.

Destination operand Workspace Registers:

Workspace Register(n) |Workspace Register(n+1)

0 15 |B 15
P >
Multiplicand
R i A A U R A R >
Product

Source operand:

Addressable Memory

Multiplier

ASSEMBLER
Page 79

ARITHMETIC INSTRUCTIONS

The first word of the destination operand, shown on the previous page, is
addressed by the contents of the D field. This word contains the multiplicand
(unsigned value of 16 bits) right-justified in the Workspace Register (represented
by workspace n above). The 16-bit, unsigned multiplier is located in the source
operand. When the multiply operation is complete, the product appears
right-justified in the entire 2-word area addressed by the destination field as a
32-bit unsigned value. The maximum value of either_input operand is 65,535 and
the maximum value of the unsigned product is 65,535 .

If the destination operand is specified as Workspace Register 15, the first word of
the destination operand is Workspace Register 15 and the second word of the
destination operand is the memory word immediately following the workspace
memory area.

Status bits affected:
None

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>TA> |EQIC IoVIOPIX |---ccccaaaaaa- | INT. MASK |

Execution results:
(gas) * (wad) = (wad) and (wad)+1

The product (32-bit magnitude) is placed in wad and wad + 1, with the most
significant half in wad.

Application notes:
The MPY instruction performs a multiplication. For example, if Workspace
Register 5 contains 18, Workspace Register 6 contains 1B31H, and memory
location NEW contains 5, the instruction

MPY @NEW,5
changes the contents of Workspace Register 5 to 0 and Workspace Register 6 to

90. The source operand is unchanged. The Status Register is not affected by
this instruction.

ASSEMBLER
Page 80

ARITHMETIC INSTRUCTIONS

6.11 NEGATE--NEG
Op-code: 0500 (Format VI)
Syntax definition:
[<label>] b NEG b <gas> b [<comment>]

Example:

LABEL NEG R2 ;Replaces the contents of Workspace Register 2
with its additive inverse.

Definition:
Replaces the source operand with the two's-complement of the source operand.
The computer determines the two's-complement value by inverting all bits of the
source operand and adding one to the resulting word. The computer then
compares the result to zero and sets/resets the status bits to indicate the result
of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC JovIoPIX |--ececeeeaa e | INT. MASK |

Execution results:
-(gas) => (gas)

Application notes:
The NEG instruction changes the contents of an addressable memory location its
additive inverse. For example, if Workspace Register 5 contains the value
0A342H, the instruction

NEG R5
changes the contents of Workspace Register 5 to 5CBEH. The logical greater

than and arithmetic greater than status bits are set, while the equal status bit is
reset.

ASSEMBLER
Page 81

ARITHMETIC INSTRUCTIONS

6.12 SUBTRACT WORDS--5
Op-code: 6000 (Format I)

Syntax definition:

[<label>l b S b <gas>,<gad> b [<comment>]

Example:
LABEL S R2,R3 ;Subtracts the contents of Workspace Register 2
from the contents of Workspace Register 3.
Definition:

Subtracts a copy of the source operand from the destination operand and places
the difference in the destination operand. The computer compares the difference
to zero and sets/resets the status bits to indicate the result of the comparison.
When there is a carry of bit zero, the carry status bit is set. When there is an
overflow, the overflow status bit is set. The source operand remains unchanged.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> [EQIC |OVIOPIX |-cccccacaamaa- | INT. MASK |

Execution results:
(gad) - (gas) => (gad)

Application notes:
The S instruction subtracts signed integer values. For example, if memory
location OLDVAL contains a value of 1225H and memory location NEWVAL
contains a value of 8223H, the instruction

S @OLDVAL,@NEWVAL
changes the contents of NEWVAL to 6FFEH. The logical greater than, arithmetic

greater than, carry, and overflow status bits are set, while the equal status bit is
reset.

ASSEMBLER
Page 82

ARITHMETIC INSTRUCTIONS

6.13 SUBTRACT BYTES--SB
Op-code: 7000 (Format I)
Syntax definition:

[<label>] b SB b <gas>,<gad> b [<comment>]

Example:
LABEL SB R2,R3 ;Subtracts the leftmost byte of Workspace
Register 2 from the leftmost byte of Workspace
Register 3.
Definition:

Subtracts a copy of the source operand (byte) from the destination operand (byte)
and replaces the destination operand byte with the difference. When the
destination operand byte is addressed in the Workspace Register mode, only the
leftmost byte (bits 0-7) in the Workspace Register is used. The computer
compares the resulting byte to zero and sets/resets the status bits accordingly.
When there is a carry of the most significant bit of the byte, the carry status bit
is set. When there is an overflow, the overflow status bit is set. If the result
byte establishes odd parity (an odd number of logic one bits in the byte), the odd
parity status bit is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILYIAD JEQIC JOVIOPIX |«ecmceccncnancns | INT. MASK |

Execution results:
<gad> - <gas> => <gad>

ASSEMBLER
Page 83

ARITHMETIC INSTRUCTIONS

Application notes:
The SB instruction subtracts signed integer bytes. For example, if Workspace
Register 6 contains the value 121CH, memory location 121CH contains the value
2331H, and Workspace Register 1 contains the value 1344H, the instruction

SB *6+,1
changes the contents of Workspace Register 6 to 121DH and the contents of

Workspace Register 1 to OF044H. The logical greater than status bit is set, while
the other status bits affected by this instruction are reset.

ASSEMBLER
Page 84

ARITHMETIC INSTRUCTIONS

6.14 INSTRUCTION EXAMPLES

This section includes several arithmetic instruction examples for further clarification.
The application of these instructions is not necessarily limited to that given.

6.14.1 Incrementing and Decrementing Examples

There are two decrement and two increment instructions that may be used for various
types of control when passing through a loop, indexing through an array, or operating
within a group of instructions.

The incrementing and decrementing instructions available for use with the Assembler
ares:

INCrement (INC)
INCrement by Two (INCT)
DECrement (DEC)
DECrement by Two (DECT)

The single increment and decrement instructions are useful for indexing byte arrays
and for counting byte operations. The increment by two and decrement by two
instructions are useful for indexing word arrays and for counting word operations.
The following sections provide some examples of these operations.

6.14.1.1 Increment Instruction Example

The example program shows how the INC instruction is useful in byte operations.
The program searches a character array for a character with odd parity. To
terminate the search, the last character contains zero. The search begins at the
lowest address of the array and maintains an index in a Workspace Register. The
character array for this example is called Al and is also the relocatable address of
the array. The code is shown on the next page.

ASSEMBLER
Page 85

ARITHMETIC INSTRUCTIONS

SETO R1 ;Set counter index to -1 (OFFFFH).
SEARCH INC R1 sIncrement index.

MOVB @Al(R1),R2 ;Get character.

JOP ODDP sJump if found.

JNE SEARCH ;Continue search if not zero.
ODDP

6.14.1.2 Decrement Instruction Example

To illustrate the use of a DEC instruction in a byte array, this example inverts a
26-character byte array and places the results in another array of the same size
called A2. The contents of Al are defined with a data .ASCII statement as follows.

Al LASCII "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Array A2 is defined with the .BLOCK statement as follows.
A2 .BLOCK 26

The sample code for the solution is:

LI R5,26 ;Counter and index for Al.
LI R4,A2 ;Address of AZ.
INVRT MOVB (@A1-1(R5),*R4+ ;Invert array (Note 1).
DEC RS ;Reduce counter.
JGT INVRT ;Continue if not complete.
Note:

l@Al(RS) addresses the elements of array Al in descending order as Workspace

Register 5 is decremented. *R4+ addresses array A2 in ascending order as
Workspace Register four is incremented.

ASSEMBLER
Page 86

ARITHMETIC INSTRUCTIONS

Array A2 contains the following as a result of executing this sequence of code:
A2 ZYXWVUTSRAPONMLKJIIHGFEDCBA

The JGT instruction used to terminate the loop allows Workspace Register 5 to serve
both as a counter and as an index register.

A special quality of the DEC instruction allows you to simulate a jump greater than
or equal to zero instruction. Since DEC always sets the carry status bit except when
changing from zero to minus one, it can be used in conjunction with a JOC
instruction to form a JGE loop. The example below performs the same function as
the preceding example.

Al ASCII "ABCDEFGHIIJKLMNOPQRSTUVWXYZ"
A2 BLOCK 26
LI R5,25 ;Counter and index for Al.
L1 R4,A2 ;Address of AZ.
INVRT MOVB @AL(R5),*R4+ ;Invert array.
DEC R5 ;sReduce counter.
JOC INVRT ;Continue if not complete.

Note: Since the use of JOC makes the loop execute when the counter is zero, the
counter is initialized to 25 rather than 26 as in the preceding example.

6.14.1.3 Decrement by Two Instruction Example

To illustrate the use of a DECT instruction in processing word arrays, this example
adds the elements of a word array to the elements of another word array and places

the results in the second array. The contents of the two arrays are initialized as
follows.

Al .WORD 500,300,800,1000,1200,498,650,3,27,0
A2 .WORD 36,192,517,29,315,807,290,40,130,1320
ASSEMBLER

Page 87

ARITHMETIC INSTRUCTIONS

The sample code that adds the two arrays is as follows.

LI R4,20 ;Initialize counter (Note 1).
SUMS A @Al-2(R4),@A2-2(R4) ;Add arrays (Note 2).
DECT R4 ;Decrement counter by two.
JGT SUMS sRepeat addition.
Notes:

1Tht:': counter is preset to 20 which is the number of bytes in the array.
The addressing of the two arrays through the use of the at sign (@) is indexed by
the counter, which is decremented after each addition.

The contents of the A2 array after the addition process are as follows.

A2 536,492,1317,1029,1515,1305,940,43,157,1320

There is another method by which this addition process may be accomplished. This
method is shown in the following code.

LI R4,10 sInitialize counter (Note 1).
11 R5,Al ;Load address of Al (Note 2).
LI R6,A2 sLoad address of A2 (Note 2).
SUMS A *R5+,*R6+ ;Add arrays (Note 3).
DEC R4 ;Decrement counter.
JGT SUMS ;Repeat addition (Note 4).
Notes:

Lrhe counter is preset to 10 (the number of elements in the array).

This address is incremented each time an addition takes place. The increment
is via the auto-increment function (+).

The * indicates that the contents of the register are to be used as an address,
and the + indicates that it is to be automatically incremented by two each time
he instruction is executed.

Workspace Register 4 is only greater than zero for ten executions of the DEC
instruction, so control is transferred to SUMS nine times after the initial
execution.

After execution, the contents of array AZ are the same for this method as for the
first.

ASSEMBLER
Page 88

ARITHMETIC INSTRUCTIONS

6.14.2 General Example

The following program illustrates several of the arithmetic instructions. The program
consists of a calling program and a subroutine. The subroutine produces the result of
the function X-(I3*Y|+5) where X and Y are variable data, treated as signed integers,
and passed to the subroutine from the calling program.

To simplify the example, no error checking is included in the subroutine, and it is
assumed that the product of 3*Y is in the range of a signed 16-bit word (-32,768

through 32,767).

;CALLING PROGRAM

BL @CALC ;Call subroutine.
VAR WORD 37 ;X value.
WORD 1804 ;Y value.
MOV 0,RESULT ;Save result.
RESULT .BLOCK 2
CALC MOV *R11+,R0 ;Put X value in Register 0.
MOV *R11+,R1 ;Put Y value in Register 1.
ABS R1 ;Take absolute value of Y.
MPY @THREE,1 ;Take 3 times absolute value of Y.
Al R2,5 sAdd 5 to previous result.
S R2,R0 ;Subtract previous result from X.
B *R11 ;Return.
THREE WORD 3 ;Constant.
ASSEMBLER

Page 89

SECTION 7: JUMP AND BRANCH INSTRUCTIONS

The following jump and branch instructions are described in this section.

Instruction Mnemonic Section
Branch B 7.1
Branch and Link BL 7.2
Branch and Load Workspace Pointer BLWP 7.3
Jump if EQual JEQ 7.4
Jump if Greater Than JGT 7.5
Jump if High or Equal JHE 7.6
Jump if logical High JH 1.7
Jump if logical Low JL 7.8
Jump if Low or Equal JLE 79
Jump if Less Than JLT 7.10
Unconditional JuMP JMP 7.11
Jump if No Carry JNC 7.12
Jump if Not Equal JINE 71.13
Jump if No Overflow JNO 7.14
Jump if Odd Parity JOP 7.15
Jump On Carry JOC 7.16
ReTurn Workspace Pointer RTWP 7.17
EXecute X 7.18
EXtended OPeration XOP 7.19

Examples are given in Section 7.20.

Branch instructions transfer control either unconditionally or conditionally according
to the state of one or more bits of the Status Register. The conditional branch
(jump) instructions and the status bit or bits tested are shown on the next page.

ASSEMBLER
Page 90

Mnemonic

JH
JL
JHE
JLE
JGT
T’
JEQ
INE
Joc
INC
INO

JOP

+

'XXXXlC

JUMP_AND BRANCH INSTRUCTIONS

Status Bits Tested by Jump Instructions

Jump if:

| R DR N | xlxxxxm
X X |Q

||xxll"""l0

L>=1 and EQ=0
L>=0 and EQ=0
L>=1 or EQ=1
L>=0 or EQ=1
A>=1

A>=0 and EQ=0
EQ=1

EQ=0

c=1

C=0

ov=0

OP=1

+Only JGT and JLT use signed arithmetic comparisons. The others are unsigned

(logical) comparisons.

For all jump instructions, a displacement of zero results in execution of the next
A displacement of -1 results in execution of the same
instruction (a single-instruction loop).

instruction in sequence.

Each instruction's description consists of the following information.

A heading, consisting of the instruction name and mnemonic name

The op-code

The syntax definition
An example of the instruction

The definition of the instruction

The status bits affected
The execution results

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

ASSEMBLER
Page 91

JUMP AND BRANCH INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.
() Indicates "the contents of."
=2 Indicates "replaces."

* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
Page 92

JUMP_AND BRANCH INSTRUCTIONS

7.1 BRANCH--B
Op-code: 0440 (Format VI)
Syntax definition:
[<label>] b B b <gas> b [<comment>]
Example:
LABEL B @THERE ;Transfers control to location THERE.
Definition:
Replaces the Program Counter contents with the source address and transfers

control to the instruction at that location.

Status bits affected:
None.

o X 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IAS IEQIC IOVIOPIX lccecccccanaaaas | INT. MASK |

Execution results:
(gas) => (PC)

Application notes:
The B instruction transfers control to another section of code to change the

linear flow of the program. For example, if the contents of Workspace Register
3 is 21CCH, the instruction

B *R3
causes the word at location 21CCH to be used as the next instruction, because

this value replaces the contents of the Program Counter when this instruction is
executed.

ASSEMBLER
Page 93

JUMP _AND BRANCH INSTRUCTIONS

7.2 BRANCH AND LINK--BL
Op-code: 0680 (Format VI)
Syntax definition:

[<label>] b BL b <gas> b [<comment>]

Example:

LABEL BL @SUBR ;Calls SUBR as a common Workspace subroutine.

Definition:
Places the source address in the Program Counter, places the address of the
instruction following the BL instruction (in memory) in Workspace Register 11,
and transfers control to the new Program Counter contents.

Status bits affected:
None.

g 1 2 3 4 5 6. 7 8 9 10 11 12 15 14 15
IL>IA>IEQIC |OVIOPIX |-c-cecceaeaaae | INT. MASK |

Execution results:

(old PC) => (Workspace Register 11)
(gas) => (PC)

Application notes:
The BL instruction returns linkage. For example, if the instruction

BL @TRAN

occurs at memory location 04BCH, this instruction has the effect of placing
memory location TRAN in the Program Counter. Since the instruction BL
@TRAN requires two words of machine code (which are placed at addresses
04BCH and 04BEH), the word address immediately following the second word is
04COH so that value is the address placed in Workspace Register 11.

ASSEMBLER
Page 94

JUMP_AND BRANCH INSTRUCTIONS

7.3 BRANCH AND LOAD WORKSPACE POINTER--BLWP
Op-code: 0400 (Format VI)
Syntax definition:

[<label>] b BLWP b <gas> b [<comment>]

Example:

LABEL BLWP @VECT ;Branches to subroutine at address (@VECT+2)
and executes context switch.

Definition:
Places the source operand in the Workspace Pointer and the word immediately
following the source operand in the Program Counter. Places the previous
contents of the Workspace Pointer in the new Workspace Register 13, places the
previous contents of the Program Counter (address of the instruction following
BLWP) in the new Workspace Register 14, and places the contents of the Status
Register in the new Workspace Register 15. When all store operations are
complete, the computer transfers control to the new Program Counter.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> [EQIC |OVIOPIX |-=cccccecaaa-- | INT. MASK |

Execution results:
(gas) => (WP)
(gas + 2) => (PC)
(old WP) => (Workspace Register 13)
(old PC) => (Workspace Register 14)
(ST) => (Workspace Register 15)

Application notes:
The BLWP instruction links to subroutines, program modules, or other programs
that do not necessarily share the calling program's workspace. See Section 7.20.3
for an example of using the BLWP instruction.

ASSEMBLER
Page 95

JUMP_AND BRANCH INSTRUCTIONS

7.4 JUMP IF EQUAL--JEQ
Op-code: 1300 (Format II)
Syntax definition:
[<label>] b JEQ b <exp> b [<comment>]

Example:

LABEL JEQ LOC ;Jumps to LOC if EQ = 1.

Definition:
When the equal status bit is set, transfers control by adding the signed

displacement in the instruction word to the Program Counter and then placing the
sum in the Program Counter to transfer control.

Status bits tested:
Equal.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>IA> |EQIC |OVIOPIX |-=----"-""---- | INT. MASK |

Jump if: EQ =1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[IL>TA>EQIC JovIoPIX [----ccccaaaa-- | INT. MASK |

Execution results:

If the equal bit is equal to 1: (PC) + Displacement => (PC).
If the equal bit is equal to 0: (PC) => (PC).

Application notes:
The JEQ instruction transfers control when the equal status bit is set.

ASSEMBLER
Page 96

JUMP_AND BRANCH INSTRUCTIONS

7.5 JUMP IF GREATER THAN--JGT
Op-code: 1500 (Format II)
Syntax definition:

[<label>] b JGT b <exp> b [<comment>]
Example:

LABEL JGT THERE ;Jumps to THERE if A> = 1.

Definition:
When the arithmetic greater than status bit is set, adds the signed displacement
in the instruction word to the Program Counter and places the sum in the
Program Counter. Transfers control to the new Program Counter location.

Status bits tested:
Arithmetic greater than.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC |OVIOPIX |---cceceaaaaa- | INT. MASK |

Jump if: A> =1

Status bit affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L2 1A IEQIC |[ONICPIX [esorermmascsn | INT. MASK |

Execution results:
If the arithmetic greater than bit is equal to 1: (PC) + Displacement => (PC).
If the arithmetic greater than bit is equal to 0: (PC) => (PC).

Application notes:

The JGT instruction transfers control if the arithmetic greater than status bit is
set.

ASSEMBLER
Page 97

JUMP AND BRANCH INSTRUCTIONS

7.6 JUMP IF HIGH OR EQUAL--JHE
Op-code: 1400 (Format II)
Syntax definition:

[<label>] b JHE b <exp> b [<comment>]

Example:
LABEL JHE BLBD ;Jumps to location BLBD if either EQ or L> is
set.
Definition:

When the equal status bit or the logical greater than status bit is set, adds the
signed displacement in the instruction word to the Program Counter and replaces
the contents of the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IO TASTEQIC TOVIOPIX |eccccecaaaaaa- [INT. MASK |

Jump if: L>=1lorEQ=1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I TAYTEQIC ToviIoPIX [---cccccaaaaa- | INT. MASK |

Execution results:
If the logical greater than bit is equal to 1 or the equal bit is equal to 1:
(PC) + Displacement => (PC).
If the logical greater than bit and the equal bit are equal to 0: (PC) => (PC).

Application notes:
The JHE instruction transfers control when either the logical greater than or
equal status bit is set.

ASSEMBLER
Page 98

JUMP AND BRANCH INSTRUCTIONS

7.7 JUMP IF LOGICAL HIGH--JH
Op-code: 1B00 (Format II)
Syntax definition:

[<label>] b JH b <exp> b [<comment>]
Example:

LABEL JH CONT ;1f L> equals 1 and EQ equals 0, skips to CONT.

Definition:
When the equal status bit is reset and the logical greater than status bit is set,
adds the signed displacement in the instruction word to the contents of the
Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILY A IEQIC IOVIOPIX |-scccsnsancses | INT. MASK |

Jump if: L>=1and EQ =0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC JovIoPIX T----c-acaoao-- | INT. MASK |

Execution results:
If the logical greater than bit is equal to 1 and the equal bit is equal to O:
(PC) + Displacement => (PC).
If the logical greater than bit is equal to 0 or the equal bit is equal to 1:
(PC) => (PC)s

Application notes:
The JH instruction transfers control when the equal status bit is reset and the
logical greater than status bit is set.

ASSEMBLER
Page 99

JUMP AND BRANCH INSTRUCTIONS

7.8 JUMP IF LOGICAL LOW--JL
Op-code: 1A00 (Format II)
Syntax definition:

[<label>] b JL b <exp> b [<comment>]

Example:

LABEL JL PREVLB ;If L> and EQ are reset, jumps to PREVLB.

Definition:
When the equal and logical greater than status bits are reset, adds the signed
displacement in the instruction word to the Program Counter contents and
replaces the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TA> |EQIC |OVIOPIX |-cccececcaaaa- | INT. MASK |

Jump if: L>=0and EQ =0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> [EQIC |oVIOPIX |-==ceccaaa----- | INT. MASK |

Execution results:
If the logical greater than bit and the equal bit are equal to 0O:
(PC) + Displacement => (PC).
If the logical greater than bit is equal to 1 or the equal bit is equal to 1:
(PC) => (PC).

Application notes:
The JL instruction transfers control when the equal and logical greater than
status bits are reset.

ASSEMBLER
Page 100

JUMP AND BRANCH INSTRUCTIONS

7.9 JUMP IF LOW OR EQUAL--JLE
Op-code: 1200 (Format II)
Syntax definition:
[<label>] b JLE b <exp> b [<comment>]
Example:
LABEL JLE THERE sJumps to THERE when EQ = 1 or L> = 0.
Definition:
When the equal status bit is set or the logical greater than status bit is reset,
adds the signed displacement in the instruction word to the contents of the
Program Counter and replaces the Program Counter with the sum.

Note: JLE is not "jump if less than or equal."

Status bits tested:
Logical greater than, equal.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>STEQIC |OVIOPIX T--eccccaaaaao-o | _INT. MASK |

Jump if: L>=0orEQ =1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TA>TEQIC |OVIOPIX |--ccemeae e e | _INT. MASK |

Execution results:
If the logical greater than bit is equal to O or the equal bit is equal to 1:
(PC) + Displacement => (PC).
If the logical greater than bit is equal to 1 and the equal bit is equal to O:
(PC) => (PC).

Application notes:
The JLE instruction transfers control when the equal status bit is set or the
logical greater than status bit is reset.

ASSEMBLER
Page 101

JUMP AND BRANCH INSTRUCTIONS

7.10 JUMP IF LESS THAN--JLT
Op-code: 1100 (Format II)
Syntax definition:
(<label>] b JLT b <exp> b [<comment>]
Example:
LABEL JLT THERE ;Jumps to THERE if A> = 0 and EQ = 0.
Definition:
When the equal and arithmetic greater than status bits are reset, adds the signed

displacement in the instruction word to the Program Counter and replaces the
Program Counter contents with the sum.

Status bits tested:
Arithmetic greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> |EQIC |oVIOPIX [-----eccccuu-- | INT. MASK |

Jump ifs A>=0and EQ =0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL> |A> |EQIC |ovIOPIX |----==--cc"""- | INT. MASK |

Execution results:
If the arithmetic greater than bit and the equal bit are equal to O:
(PC) + Displacement => (PC)
If the arithmetic greater than bit is equal to 1 or the equal bit is equal to 1:
(PC) => (PC).

Application notes:
The JLT instruction transfers control when the equal and arithmetic greater than
status bits are reset.

ASSEMBLER
Page 102

JUMP_AND BRANCH INSTRUCTIONS

7.11 UNCONDITIONAL JUMP--JMP
Op-code: 1000 (Format II)
Syntax definition:
[<label>] b IMP b <exp> b [<comment>]
Example:
LEAVE JMP LANA ;Jumps to address LANA.
Definition:
Adds the signed displacement in the instruction word to the Program Counter and
replaces the Program Counter with the sum if the sum is within 100H bytes of

the current Program Counter.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>IA>[EQIC JovI|oPIX |-------------- | INT. MASK |

Execution results:
(PC) + Displacement => (PC)
The Program Counter is always incremented to the address of the next instruction
prior to execution of an instruction. The execution results of jump instructions
refer to the Program Counter contents after the contents have been incremented
to address the next instruction in sequence. The displacement (in words) is

shifted to the left one bit position to orient the word displacement to the word
address, and added to the Program Counter contents.

Application notes:
The JMP instruction transfers control to another section of the program.

The pseudo-instruction NOP is equivalent to

IMP $+2

and moves to the next instruction. It has no effect except to take up time and
memory.

ASSEMBLER
Page 103

JUMP_ AND BRANCH INSTRUCTIONS

7.12 JUMP IF NO CARRY--JNC
Op-code: 1700 (Format II)
Syntax definition:

[<label>] b INC b <exp> b [<comment>]

Example:

LABEL JNC NONE sJumps to NONE if C = 0.

Definition:
When the carry status bit is reset, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Carry.

0 1 2 3 &4 5 6 4 8 9 10 11 12 13 14 15
IL>1A>EQIC JovIoPIX |-------ccom--- | INT. MASK |

Jump if: C =20

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILYIASIERIC IOVIOPIX |seecsvonsannes | INT. MASK |

Execution results:
If the carry bit is equal to 0: (PC) + Displacement => (PC).
If the carry bit is equal to 1: (PC) => (PC).

Application notes:
The JINC instruction transfers control when the carry status bit is reset.

ASSEMBLER
Page 104

JUMP_AND BRANCH INSTRUCTIONS

7.13 JUMP IF NOT EQUAL--JNE
Op-code: 1600 (Format II)
Syntax definition:

[<label>] b INE b <exp> b [<comment>]

Example:

LABEL JNE LOC2 ;Jumps to LOC2 if EQ = 0.

Definition:
When the equal status bit is reset, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Equal.

g 1 2 3 4 5 & 7 8 9% 10 11 12 13 1§ 15
IL>TA>TEQIC JovIoPIX |---cccceeaaan-a | _INT. MASK |

Jump if: EQ =0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IAS EQIC |OVIOPIX |-ccccccccaaaaa | INT. MASK |

Execution results:

If the equal bit is equal to 0: (PC) + Displacement => (PC).
If the equal bit is equal to 1: (PC) => (PC).

Application notes:

The JNE instruction transfers control when the equal status bit is reset. For
instance, JNE is often useful when testing CRU bits.

ASSEMBLER
Page 105

JUMP AND BRANCH INSTRUCTIONS

7.14 JUMP IF NO OVERFLOW--JNO
Op-code: 1900 (Format II)
Syntax definition:

[<label>] b JNO b <exp> b [<comment>]

Example:

LABEL JNO NORML ;Jumps to NORML if OV = 0.

Definition:
When the overflow status bit is reset, adds the displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILXIA>EQ]C |OVIOPIX [-ccaaaaaacaco-. | _INT. MASK |

Jump if: OV =0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC |OVIOP|X |ececacaaaaaaao | INT. MASK |

Execution results:
If the overflow bit is equal to 0: (PC) + Displacement => (PC).
If the overflow bit is equal to 1: (PC) => (PC).

Application notes:
The INO instruction transfers control when the overflow status bit is reset. JNO
normally transfers control during arithmetic sequences where addition,
subtraction, incrementing, and decrementing may cause an overflow condition.
JNO may also be used following an SLA (Shift Left Arithmetic) operation. If,
during SLA execution, the sign of the Workspace Register being shifted changes,
the overflow status bit is set. This feature permits transfer, after a sign change,
to error correction routines or to another functional code sequence.

ASSEMBLER
Page 106

JUMP_AND BRANCH INSTRUCTIONS

7.15 JUMP IF ODD PARITY--JOP
Op-code: 1CO00 (Format II)
Syntax definition:
[<label>] b JOP b <exp> b [<comment>]
Example:
LABEL JOP THERE sJumps to THERE if OP = 1.
Definition:
When the odd parity status bit is set, adds the signed displacement in the
instruction word to the Program Counter and replaces the Program Counter with

the sum.

Status bits tested:
Odd parity.

o0 1 2 3 & °'5° -6 7 8 9 1011 12 13 14 15
IL>TA> IEQIC |OVIOPIX [-=-cceeaaanan-- | INT. MASK |

Jump if: OP =1

Status bits affected:
None.

0 1 2 3 4 5 6.1 8:9 10111213 14 15
IL>IA> |EQIC |ovIoPIX |-=-cceaeennnm- | INT. MASK |

Execution results:
If the odd parity bit is equal to 1: (PC) + Displacement => (PC).
If the odd parity bit is equal to 0: (PC) => (PC).

Application notes:
The JOP instruction transfers control when there is odd parity. Odd parity
indicates that there is an odd number of logic one bits in the byte tested. JOP
transfers control if the byte tested contains an odd number of logic one bits.
This instruction may be used in data transmissions where the parity of the
transmitted byte is used to ensure the validity of the received character at the
point of reception.

ASSEMBLER
Page 107

JUMP_AND BRANCH INSTRUCTIONS

7.16 JUMP ON CARRY--JOC
Op-code: 1800 (Format II)
Syntax definition:

[<label>] b JOC b <exp> b [<comment>]

Example:

LABEL JOoC PROCED ;1f C = 1, jumps to PROCED.

Definition:
When the carry status bit is set, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Carry.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>TASTEQIC lovioPIX [-----ecceeenan- | INT. MASK |

Jump if: C =1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>TA>EQIC TovIoPIX f-----c-uounn--- | INT. MASK |

Execution results:

If the carry bit is equal to 1: (PC) + Displacement => (PC).
If the carry bit is equal to 0: (PC) => (PC).

Application notes:
The JOC instruction transfers control when the carry status bit is set.

ASSEMBLER
Page 108

JUMP_AND BRANCH INSTRUCTIONS

7.17 RETURN WITH WORKSPACE POINTER--RTWP
Op-code: 0380 (Format VII)
Syntax definition:

[<label>] b RTWP b [<comment>]

Example:

LABEL RTWP ;Returns from subroutine called by BLWP.

Definition:
Replaces the contents of the Workspace Pointer Register with the contents of the
current Workspace Register 13. Replaces the contents of the Program Counter
with the contents of the current Workspace Register 14. Replaces the contents of
the Status Register with the contents of the current Workspace Register 15. The
effect of this instruction is to restore the execution environment that existed
prior to an interrupt, a BLWP instruction, or an XOP instruction.

Status bits affected:
Restores all status bits to the value contained in Workspace Register 15.

0 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15
IL>IA> |EQIC |OVIOPIX |-=emecmeme e | INT. MASK |

Execution results:
(Workspace Register 13) => (WP)
(Workspace Register 14) => (PC)
(Workspace Register 15) => (ST)

Application notes:
The RTWP instruction restores the execution environment after the completion of
an interrupt, a BLWP instruction, or an XOP instruction.

ASSEMBLER
Page 109

JUMP_ AND BRANCH INSTRUCTIONS

7.18 EXECUTE--X
Op-code: 0480 (Format VI)
Syntax definition:
[<label>] b X b <gas> b [<comment>]

Example:

LABEL X R2 ;Executes the contents of Workspace Register 2.

Definition:
Executes the source operand as an instruction. When the source operand is not a
single word instruction, the word or words following the execute instruction are
used with the source operand as a 2-word or 3-word instruction. The source
operand, when executed as an instruction, may affect the contents of the Status
Register. The Program Counter increments by either one, two, or three words
depending upon the source operand. If the executed instruction is a branch, the
branch is taken. If the executed instruction is a jump and if the conditions for a
jump (i.e. the status test indicates a jump) are satisfied, then the jump is taken
relative to the location of the X instruction.

Status bits affected:
None, but substituted instruction affects status bits normally.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IASIEQIC |OVIOPIX l-ccccecccaanaaa- | INT. MASK |

Execution results:
An instruction at gas is executed instead of the X instruction.

Application notes:
The X instruction executes the source operand as an instruction. This is
primarily useful when the instruction to be executed is dependent upon a previous
operation. Refer to Section 7.20 for additional application notes.

ASSEMBLER
Page 110

JUMP_AND BRANCH INSTRUCTIONS

7.19 EXTENDED OPERATION--XOP
Op-code: 2CO00 (Format IX)
Syntax definition:

[<label>] b XOP b <gas>,<xop> b [<comment>]
Example:

LABEL XOP @BUFF(R4),1 ;Performs XOP 1 on the word of the address
BUFF plus the displacement specified by
Workspace Register 4.

Definition:
This instruction is on all TI-99/4A Home Computers. However, some only
support XOP 2 while others support both XOP 1 and XOP 2. To find out if your
TI1-99/4A computer supports the XOP 1 instruction, read one word at address 44H.
If the word is OFFD8H, then XOP 1 is available. If it contains other data (most
likely OFFEBH), then XOP 1 is not available.

The op field specifies the extended operation transfer vector in memory. The
two memory words at that location contain the Workspace Pointer and Program
Counter contents for the software implemented XOP instruction subroutine.
Note that the two memory words at this location must contain the necessary
Workspace Pointer and Program Counter values prior to the XOP instruction
execution for software implemented instructions.

XOP 1 is at address 44H, with vectors OFFDBH and OFFF8H. XOP 2 is at address
48H with vectors 83A0H and 8300H. The first entry in the vector is the new
workspace address. The second entry is the new Program Counter address.

When the computer is turned on, XOP 1 is set up to be used with development
software used by Texas Instruments. However, if you have XOP 1 you may
modify the data for your own use.

ASSEMBLER
Page 111

JUMP AND BRANCH INSTRUCTIONS

The effective address of the source operand is placed in Workspace Register 11 of
the XOP workspace. The Workspace Pointer contents are placed in Workspace
Reagister 13 of the XOP workspace. The Program Counter contents are placed in
Workspace Register 14 of the XOP workspace. The Status contents are placed in
Workspace Register 15 of the XOP workspace. Control is transferred to the new
Program Counter address and the software implemented XOP is executed. (XOP
execution of software implemented XOP instruction is similar to an interrupt trap
execution.)

Status bits affected:
Extended operation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TA>EQIC |OVIOPIX [-ecemae e e | INT. MASK |

Execution results:

gas => (Workspace Register 11)

(0040H + (op)*4) => (WP)

(0042H + (op)*4) => (PC)

(WP) => (Workspace Register 13)
(PC) => (Workspace Register 14)
(ST) => (Workspace Register 15)
1 => X (XOP status bit)

ASSEMBLER
Page 112

JUMP _AND BRANCH INSTRUCTIONS

7.20 INSTRUCTION EXAMPLES

There are two types of subroutine linkage available with the Assembler. One type,
called a common workspace subroutine, uses the same set of Workspace Registers
that the calling routine uses. The BL instruction stores the contents of the Program
Counter in Workspace Register 11 and transfers control to the subroutine.

The other type is a context switch subroutine. The BLWP instruction stores the
contents of the Workspace Pointer Register, the Program Counter, and the Status
Register in Workspace Registers 13, 14, and 15. The instruction makes the
subroutine workspace active and transfers control to the subroutine.

7.20.1 Common Workspace Subroutine Example

The following is an example of memory contents prior to a BL call to a subroutine.
The contents of Workspace Register 11 are not important to the main routine. When
the BL instruction is executed, the CPU stores the contents of the Program Counter
in Workspace Register 11 of the main routine and transfers control to the instruction
located at the address indicated by the operand of the BL instruction. This type of
subroutine uses the main program workspace. The second example shows the memory
contents after the call to the subroutine with the BL instruction.

When the instruction at location 1130H is executed (BL @RAD), the present contents
of the Program Counter, which point to the next instruction, are saved in Workspace
Register 11. Workspace Register 11 would then contain an address of 1134H. The
Program Counter is then loaded with the address of label RAD, which is address
0C220H. This subroutine returns to the main program with a branch to the address
in Workspace Register 11 using the B *R11 instruction.

ASSEMBLER
Page 113

JUMP_AND BRANCH INSTRUCTIONS

WP

PC

ST

HARDWARE
REGISTERS

| EXECUTION
| STATUS

MEMORY
ADDRESS MEMORY VALUE

= = = = => O0A100H | MAIN WORKSPACE

0B020H

|
|

0B130H | BL @RAD
= = == => 0Bl34H |
I

0C220H

Common Workspace Subroutine Example

ASSEMBLER
Page 114

(WRO)

(WR11)

JUMP AND BRANCH INSTRUCTIONS

HARDWARE MEMORY

REGI STERS ADDRESS MEMORY VALUE
tmmm e - + temm e e s et e e m—— - +

WP | DA100H = = = = => O0AIO0OH | MAIN WORKSPACE | (WRO)
R + R i +
L +

| 0B134H | (WR11)
R +
e m e e e e +
0B020H | MAIN PROGRAM |
| |
0B130H | BL @RAD |
0B134H | IJNE FIX |
| |
L +
tommm e e + L +
tommmmmm—eeae + | |
| SUBROUTINE AREA |
g + | |
ST | EXEQUTION | | |
| STATUS | | B *R11 |
e + e e I I +

PC Contents after BL Instruction Execution

7.20.2 Context Switch Subroutine Example

This example shows the memory contents prior to the call to the subroutine. The
contents of the subroutine's Workspace Registers 13, 14, and 15 are not significant.
When the BLWP instruction is executed at location 0300H, there is a context switch
from the main program to the subroutine. The context switch then places the main
program Program Counter, Workspace Pointer, and Status Register contents in
Workspace Registers 13, 14, and 15 of the subroutine. This saves the environment of
the main program for use on return. The operand of the BLWP instruction specifies
that the address vector for the context switch is in Workspace Registers 5 and 6.

The address in Workspace Register 5 is placed in the Workspace Pointer Register, and
the address in Workspace Register 6 is placed in the Program Counter.

ASSEMBLER
Page 115

JUMP_AND BRANCH INSTRUCTIONS

HARDWARE MEMORY
REGISTERS ADDRESS MEMORY VALUE
Fmmmm - + e +
WP | OAlOOH l= = = = => 0ALO0H | | (WRO)
Fmm e - + R +
S +
| 0A220H | (WRS)
e PP +
| OA700H | (WR6)
L e +
R +
0A220H | | (WRO)S
R e +
e T P B
| | (WR13)S
| |
| | (WR14)S
| |
I | (WR15)S
R e e . +
R +
0A260H | MAIN PROGRAM I
| |
bmmmmcccem—n + OA300H | BLWP R5 I
PC | 0A302H =z = = = = DA302H | |
$ RS + | |
e e e e e e maa B
R +
OA700H | START I
| |
| SUBROUTINE AREA |
T R + | |
ST | EXECQUTION | | |
| STATUS | | RTWP |
R + R -

(WNr) = Workspace Register of Main Program
(WNr)S = Workspace Register of Subroutine

Context Switch Subroutine Example
After the instruction at location 0300H is executed, the Workspace Pointer points to

the subroutine workspace and the Program Counter points to the first instruction of
the subroutine. The contents of the Status Register are not reset prior to the

ASSEMBLER
Page 116

JUMP_AND BRANCH INSTRUCTIONS

execution of the first instruction of the subroutine, so the status indicated will
actually be the status of the main program execution. A subroutine may then
execute depending on the status of the main program.

HARDWARE MEMORY
REGISTERS ADDRESS MEMORY VALUE
R L R R +
0A100H | | (WRO)
I +
trerrcconeneees o +
| 0A220H | (WR5)
B I +
| 0A700H | (WR6)
B R +
e mm - —---- + fomemmm o m s - o - +
WP | 0A220H = = = = => 0A220H | I (WRO)S
Fonmm - ----- + R kT +
fowomcwnmnonsnneo e +
| 0A100H I (WR13)S
I |
| 0A302H I (WR14)S
i |
| STATUS I (WR15)S
e L I P +
trmm e e o= B +
0A260H | MAIN PROGRAM |
| |
0A300H | BLWP RS }
|
| |
L e R +
for oo w e eooeoo + B e +
PC | 0A700H |= = = = => O0A700H | START |
tromeronenea- + | |
| SUBROUTINE AREA |
focamanmeooa + i]
ST | EXECUTION| | |
| STATUS i | RTWP |
oo mm o - + tormmmemm mm o m- - +

(WNr) = Workspace Register of Main Program
(WNr)S = Workspace Register of Subroutine

After Execution of BLWP Instruction

ASSEMBLER
Page 117

JUMP_AND BRANCH INSTRUCTIONS

This example subroutine contains a RTWP return from the subroutine. Control is
transferred to the main program at the instruction following the BLWP to the
subroutine. The Status Register is restored from Workspace Register 15 and the
Workspace Pointer points to the workspace of the main program. :

HARDWARE MEMORY
REGISTERS ADDRESS MEMORY VALUE
toocnmnmneon + fomn e r e m .- —-—-——- +
WP | 0Al00H l= = = = => O0Al100H | | (WRO)
boonmccmmmon +<{= = Fomm o m - ... ----—-- +
|
| fomcmmc e ————— +
| | 0A220H I (WR5)
| L +
| | 0DA700H | (WRé6)
| R +
|
| R +
| 0A220H | | (WR0O)S
| - +
|
i fomr e a e m——.———- +
= - -~ = - - = = : OA]_OOH |l (WlB)S
T========0A302H II(WRla)S
| ===== = | STATUS I (WR15)S
| | fmrmmc e m e —————— +
| |
| | Fommmmm e me e +
% : 0A260H : MAIN PROGRAM :
Faececcccnnnn <= = | 0A300H | BLWP RS |
PC | 0A302H = = = =|=> 0A302H | |
L it + | | |
| Forrcm e, ———— +
|
] fomoc e +
: DA700H : START =
: : SUBROUT INE AREA }
Fromnensaena +
ST | EXEQUTION I<= = = = | |
| STATUS | | RTWP |
tronnon e + boom e ... --- +

(WNr) = Workspace Register of Main Program
(WNr)S = Workspace Register of Subroutine

After Return using the RTWP Instruction

ASSEMBLER
Page 118

JUMP AND BRANCH INSTRUCTIONS

7.20.3 Passing Data to Subroutines

When a subroutine is entered with a context switch (BLWP), data may be passed using
either the contents of Workspace Register 13 or 14 of the subroutine workspace.
Workspace Register 13 contains the memory address of the calling program's
workspace, which may contain data to be passed to the subroutine. Workspace
Register 14 contains the memory address of the next memory location following the
BLWP instruction. This location and following locations may also contain data to be
passed to the subroutine.

When the calling program's workspace contains data for the subroutine, this data may
be obtained by using the indexed memory address mode indexed by Workspace
Register 13. The address used is equal to twice the number of the Workspace
Register that contains the desired data. The following instruction is an example.

MOV @10(R13),R10
The contents of Workspace Register 5 of the calling program's workspace (bytes 10

and 11 relative to the workspace address) are placed in Workspace Register 10 of the
subroutine workspace.

The examples on the next page show the passing of data to a subroutine by placing
the data following the BLWP instruction.

ASSEMBLER
Page 119

JUMP AND BRANCH INSTRUCTIONS

BLWP @SUB ;Subroutine call.

WORD V1 sData.

JWORD V2 ;Data.

WORD V3 sData.

JEQ ERROR sReturn from subroutine, test for

. error. (The subroutine sets the

. equal status bit to one for error.)
suB WORD SUBWS,SUBPRG sEntry point for SUB and SUB

Workspace.

SUBWS BLOCK 32

SUBPRG MOV *R14+,R1 sFetch V1 placed in Workspace
Register 1.

MOV *R14+,R2 sFetch V2 placed in Workspace
Register 2.

MOV *R14+,R3 sFetch V3 placed in Workspace

Register 3.

RTWP sReturn from subroutine.

The three MOV instructions retrieve the variables from the main program module and
place them in Workspace Registers 1, 2, and 3 of the subroutine.

When the BLWP instruction is executed, the main program module status is stored in
Workspace Register 15 of the subroutine. If the subroutine returns with a RTWP
instruction, this status is placed in the Status Register after the RTWP instruction is
executed. The subroutine may alter the Status Register contents prior to executing
the RTWP instruction. The calling program can then test the appropriate bit of the
status word (the equal bit in this example) with jump instructions.

A BL instruction can also be used to pass parameters to a subroutine. When using
this instruction, the originating Program Counter value is placed in Workspace
Register 11. Therefore, the subroutine must fetch the parameters relative to the
contents of Workspace Register 11 rather than the contents of Workspace Register 14
as in the BLWP example. The example on the next page demonstrates parameter
passing with a BL instruction.

ASSEMBLER
Page 120

JUMP AND BRANCH INSTRUCTIONS

BL @SUBR sBranch to subroutine.

WORD PARMI1,PARM2 ;Passed parameters stored in next
two memory words. .

JEQ ERROR ;Test for error. (Subroutine sets the

equal status bit to one for error.)

SUBR EQU $

MOV *R11+,R0 3sGet value of first parameter and
put in Workspace Register 0.
MOV *R11+,R1 sGet value of second parameter and

put in Workspace Register 1. (R11
is incremented past the locations of
the two data words and now
indicates the address of the next
instruction in the main program.)

B *R11
7.20.4 Extended Operations

Extended operation instructions permit a limited extension of the existing instruction
set to include additional instructions. In the computer, these additional instructions
are implemented by software routines. :

When the program module contains an XOP instruction that is software implemented,
the computer locates the XOP Workspace Pointer and Program Counter words in the
XOP reserved memory locations and loads the Workspace Pointer and Program
Counter. When the Workspace Pointer and Program Counter are loaded, the
computer transfers control to the XOP instruction set through a context switch.
When the context switch is complete, the XOP workspace contains the calling routine
return data in Workspace Registers 13, 14, and 15.

The XOP instruction passes one operand to the XOP (input to the XOP routine in
Workspace Register 11 of the XOP workspace). At the completion of the software
XOP, the XOP routine should return to the calling routine with an RTWP instruction
that restores the execution environment of the calling routine to that in existence at
the call to the XOP.

ASSEMBLER
Page 121

JUMP_AND BRANCH INSTRUCTIONS

7.20.5 Execute Example

The execute instruction may be used to execute an instruction that is not in sequence
without transferring control to the desired instruction. One useful application is to
execute one of a table of instructions, selecting the desired instruction by using an

index into the table. The computed value of the index determines which instruction
is executed.

A table of shift instructions illustrates the use of the X instruction. Place the
following instructions at location TBLE.

TBLE SLA R6,3 ;Shift Workspace Register 6.
SLA R7,3 ;Shift Workspace Register 7.
SLA R8,3 :Shift Workspace Register 8.

TABEND .EQU $

A character is placed in the most significant byte of Workspace Register 5 to select
the Workspace Register to be shifted to the left 3 bit positions. ASCII characters A,
B, and C specify shifting Workspace Registers 6, 7, and 8, respectively. Other
characters are ignored. The following code performs the selection of the shift
desired.

SRL R5,8 ;Move to lower byte.
Al R5,-"A" sSubtract table bias.
JLT NOSHIFT ;lllegal.

SLA R5,1 sMake it a word index.
ClI R5,TABEND-TBLE-2

JGT NOSHFT ;Illegal.

X @TBLE(RS)

NOSHFT .EQU $

@
»

When using the X instruction, if the substituted instruction contains a Ts field or a Td
field that results in a two word instruction, the computer accesses the word following
the X instruction as the second word, not the word following the substituted
instruction. When the substituted instruction is a jump instruction with a
displacement, the displacement must be computed from the X instruction, not from
the substituted instruction.

ASSEMBLER
Page 122

SECTION 8: COMPARE INSTRUCTIONS

A

The following compare instructions are described in this section.

Instruction Mnemonic Section
Compare words C 8.1
Compare Bytes cB 8.2
Compare Immediate Ci 8.3
Compare Ones Corresponding caocC 8.4
Compare Zeros Corresponding CcZC 8.5

Compare instructions have no effect other than the setting or resetting of appropriate
status bits in the Status Register. The compare instructions perform both arithmetic
and logical comparisons. An arithmetic comparison is of the two operands as two's
complement values, while a logical comparison is of the two operands as unsigned
magnitude values.

Each instruction’s description consists of the following information.

A heading, consisting of the instruction name and mnemonic name
The op-code

The syntax definition

An example of the instruction

The definition of the instruction

The status bits affected

The execution results

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

ASSEMBLER
Page 123

COMPARE INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

cent CouNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.
O) Indicates "the contents of."
=> Indicates "replaces.”

* # Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
. Page 124

COMPARE INSTRUCTIONS

8.1 COMPARE WORDS--C
Op-code: 8000 (Format I)
Syntax definition:

[Klabel>] b C b <gas>,<gad> b [<comment>]

Examples
LLABEL C R2,R3 sCompares the contents of Workspace Register 2
and Workspace Register 3.
Definitions

Compares the source operand (word) with the destination operand (word) and
sets/resets the status bits to indicate the results of the comparison. The
arithmetic and equal comparisons compare the operand as signed, twao's
complement values. The logical comparison compares the two operands as
unsigned, l6-bit magnitude values.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TASTEQIC JoVIOPIX T-cccacacaaca™ | INT. MASK |

Execution results:
(gas) compared to (gad)

ASSEMBLER
Page 125

COMPARE _INSTRUCTIONS

Application notes:
The C instruction compares the two operands as signed, two's complement values,

affecting the A> status bit, and as unsigned integers, affecting the L> status bit.
Some examples ares

Status Bits Set

Source Destination Logical> Arithmetic> Equal
OFFFFH 0000H 1 0 0
TFFFH 0600H 1 1 8]
8000H 0000H 1 0 0
8000H TFFFH 1 0 0
TFFFH TFFFH 0 0 1
TFFFH 8000H 0 1 0

An alternate way to compare a word or byte to zero is to move the word or byte
to itself. For example:

MOV RO,RO
JEQ ouT

jumps to OUT if RO is equal to zero.

ASSEMBLER
Page 126

COMPARE INSTRUCTIONS

8.2 COMPARE BYTES--CB
Op-code: 9000 (Format I)
Syntax definitions

[<label>] b CB b <gas>,<gad> b [<comment>]

Examples
LABEL CB R2,R3 sCompares the leftmost bytes of Workspace
Register 2 and Workspace Register 3.
Definition:

Compares the source operand (byte) with the destination operand (byte) and
sets/resets the status bits according to the result of the comparison. The CB
instruction uses the same comparison basis as does the C instruction. If the
source operand contains an odd number of logic one bits, the odd parity status bit

is set. The operands remain unchanged. [f either operand is addressed in the
Workspace Register mode, the byte addressed is the most significant byte.

Status bits affecteds
~ Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IASTEQIC TOVIOPIX Teeeeamaeooo oo | INT. MASK |

Execution results:
(gas) compared to (gad)

Application notes:

The CB instruction compares the two operands as signed, two's complement
values, affecting the A> status bit, and as unsigned integers, affecting the L>
status bit. Some examples are:

Status Bits Set

Source Destination Logical> Arithmetic> Equal Odd Parity

OFFH 0oH 1 0 0 0

FH 00H 1 1 0 1

80H FH 1 0 0 1

*H 7FH 0 0 1 1

7+ 80H 0 1 1] 1
ASSEMBLER

Page 127

COMPARE INSTRUCTIONS

8.3 COMPARE IMMEDIATE--CI
Op-code: 0280 (Format VILI)
. Syntax definition:

[Klabel>] b CI b <wa>,<iop> b [<comment>]

Example:
LABEL CI R3,7 sCompares the contents of Workspace Register 3
to 0007H.
Definition:

Compares the contents of the specified Workspace Register with the word in
memory immediately following the instruction and sets/resets the status bits
according to the comparison. The CI instruction makes the same type of
comparison as does the C instruction.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> IEQIC I1OVIOPIX Jeemccmcmcea e | INT. MASK |

Execution results:
(wa) compared to iop

Application notes:

The CI instruction compares the Workspace Register to an immediate operand.
For example, if the contents of Workspace Register 9 is 2183H, the instruction

CI R9,F330H

results in the arithmetic greater than status bit being set and the logical greater
than and equal status bits being reset.

ASSEMBLER
Page 128

COMPARE INSTRUCTIONS

8.4 COMPARE ONES CORRESPONDING--COC
Op-code: 2000 (Format III)
Syntax definition:

[<label>] b COC b <gas>,<wad> b [<comment>]

Example:

LABEL coc @MASK,R2 ;Compares the contents of Workspace Register 2
with the contents of MASK.

Definition:
When the bits in the destination operand Workspace Register that correspond to
the logic one bits in the source operand are equal to logic one, sets the equal
status bit. The source and destination operands are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TASTEQIC TOVIOPTX [-c--co-co----- [INT. MASK 1

Execution results:

The equal bit is set if all bits of <wad> that correspond to the bits of <gas> that
are equal to 1 are also equal to 1.

ASSEMBLER
Page 129

COMPARE INSTRUCTIONS

Application notes:
The COC instruction tests single or multiple bits within a word in a Workspace
Register. For example, if TESTBI contains the word 0C102H and Workspace
Register 8 contains the value OE306H, the instruction

COoC @TESTBI,R8

sets the equal status bit because for each 1 bit in the first operand there is a 1
bit in the corresponding bit position of the second operand as shown below.

0C1l02H
0E306H

1100 0001 0000 0010 and
1110 0011 0000 Ol110

]

If Workspace Register 8 contains O0E301H, the equal status bit is reset. Use this
instruction to determine if a Workspace Register has 1s in the bit positions
indicated by the 1ls in a mask.

ASSEMBLER
Page 130

COMPARE INSTRUCTIONS

8.5 COMPARE ZEROS CORRESPONDING--CZC
Op-code: 2400 (Format III)
Syntax definitions

[<label>] b CZC b <gas>,Kwad> b [<comment>]

Examples

LABEL CZC @MASK,R2 ;Campares the contents of Workspace Register 2
with the contents of MASK.

Definition:
When the bits in the destination operand Workspace Register that correspond to
the one bits in the source operand are all equal to logic zero, sets the equal
status bit. The source and destination operands are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC TOVIOPTX [---cmmccccnma- [INT. MASK |

Execution results:

The equal bit is set if all bits of <wad> that correspond to the bits of <gas> that
are equal to 1 are equal to 0.

ASSEMBLER
Page 131

COMPARE _INSTRUCTIONS

Application notes:
The CZC instruction tests single or multiple bits within a word in a Workspace
Register. For example, if the memory location labeled TESTBI contains the
value 0C102H, and Workspace Register 8 contains 2301H, the instruction

CZC @TESTBI,R8

resets the equal status bit because for each 1 bit in the first operand there is not
a corresponding zero bit in the corresponding bit position of the second operand
as shown below.

0C102zH
2301H

1100 0001 0000 0010 and
0010 0011 0000 0001

If Workspace Register 8 contains the value 2201H, then the equal status bit is
set. Use the CZC instruction to determine if a Workspace Register has zeros in
the positions indicated by ones in a mask.

ASSEMBLER
Page 132

SECTION 9: CONTROL AND CRU INSTRUCTIONS

The following control and CRU instructions are described in this section.

Instruction Mnemonic Section
LoaD CRU LDCR 9.1
Set CRU Bit to One SBO 9.2
Set CRU Bit to Zero SBZ 2.3
STore CRU STCR 9.4
Test Bit B 9.5

The following instructions are described in Section 9.6. All of them are properly
assembled and are recognized by the TMS9900 microprocessor, but they should not be
used on the Home Computer.

Instruction Mnemenic
ClocK OFf CKOF
ClocK ON CKON
IDLE IDLE
ReSET RSET
Load or REstart eXecution LREX

Examples are given in Section 9.7.

Control instructions affect the operation of the Arithmetic Unit (AU) and the
associated portions of the computer or microprocessor. CRU instructions affect the
modules connected to the Communications Register Unit.

For CRU bit instructions, the signed displacement is shifted one bit position to the
left and added to the contents of Workspace Register 12. In other words, it is a
displacement in bits from the contents of bits 3 through 14 of Workspace Register 12.

ASSEMBLER
Page 133

CONTROL AND CRU INSTRUCTIONS

Each instruction’s description consists of the following information:

A heading, consisting of the instruction name and mnemonic name
The op-code

The syntax definition

An example of the instruction

The definition of the instruction

The status bits affected

The execution results

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

ASSEMBLER
Page 134

CONTROL AND CRU INSTRUCTIONS

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.
() Indicates "the contents of."
=> Indicates "replaces."

* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
Page 135

CONTROL AND CRU INSTRUCTIONS

9.1 LOAD CRU--LDCR
Op-code: 3000 (Format IV)
Syntax definition:
[<label>] b LDCR b <gas>,<cnt> b [<comment>]
Example:
WRITE LDCR @BUFF,15 ;Sends 15 bits from BUFF to the CRU.

Definitions
Transfers the number of bits specified in the cnt field from the source operand to
the CRU. The transfer begins with the least significant bit of the source
operand. The CRU address is contained in bits 3 through 14 of Workspace
Register 12. When the cnt field contains zero, the number of bits transferred is
16. If the number of bits to be transferred is from one to eight, the source
operand address is a byte address. If the number of bits to be transferred is
from 9 to 16, the source operand address is a word address. If the source operand
address is odd, the address is truncated to an even address prior to data transfer.
When the number of bits transferred is a byte or less, the source operand is
compared to zero and the status bits are set/reset, according to the results of the

comparison. The odd parity status bit is set when the bits in a byte (or less) to
be transferred establish odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, and equal. When cnt is less than
nine, odd parity is also set or reset. The odd parity status bit is set according to
the full word or byte, not just the transferred bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IASTEQIC ToVIOPIX Tecacmcaca a2 [INT. MASK |

Execution results:
The number of bits specified by cnt are transferred from memory at address gas

to consecutive CRU lines beginning at the address in Workspace Register 12 (bits
3 through 14).

ASSEMBLER
Page 136

CONTROL AND CRU INSTRUCTIONS

9.2 SET CRU BIT TO ONE--580
Op-code: 1D00 (Format II)
Syntax definition:

[<label>] b SBO b <disp> b [<comment>]

Example:
LABEL SBO 7 ;Sets CRU bit 7, relative to the CRU base in
Workspace Register 12, to one.
Definition:

Sets the digital output bit to one on the CRU at the address derived from this
instruction. The derived address is the sum of the signed displacement and the
contents of Workspace Register 12, bits 3 through 14. The execution of this

instruction does not affect the Status Register or the contents of Workspace
Register 12.

Status bits affected:
None.,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC 1OVIOPIX J-cmeee e e | INT. MASK |

Execution results:

A CRU bit is set to one. The CRU bit equals the sum of the contents of
Workspace Register 12 (bits 3 through 14) and the displacement.

ASSEMBLER
Page 137

CONTROL _AND CRU INSTRUCTIONS

9.3 SET CRU BIT TO ZERO--SBZ
Op-code: 1E00 (Format 1I)
Syntax definition:

{<label>] b SBZ b <disp> b [<comment>]

Examples
LABEL SBZ 7 ;Sets CRU bit 7, relative to the CRU base in
Workspace Register 12, to zero.
Definitions

Sets the digital output bit to zero on the CRU at the address derived from this
instruction. The derived address is the sum of the signed displacement and the
contents of Workspace Register 12, bits 3 through 14. The execution of this
instruction does not affect the Status Register or the contents of Workspace
Register 12.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IAYEQIC JOVIOPIX J-crceccnanccn- | INT. MASK |

Execution results:

A CRU bit is set to zero. The CRU bit equals the sum of the contents of
Workspace Register 12 (bits 3 through 14) and the displacement.

ASSEMBLER
Page 138

CONTROL AND CRU INSTRUCTIONS

9.6 STORE CRU--STCR
Op-code: 3400 (Format 1V)
Syntax definition:

[<label>] b STCR b <gas>,<cnt> b [<comment>]

Example:
READ STCR @BUF,9 ;Reads 9 bits from the CRU and stores them at
location BUF.
Definitions

Transfers the number of bits specified in the ent field from the CRU to the
source operand. The transfer begins from the CRU address specified in bits 3
through 14 of Workspace Register 12 to the least significant bit of the source
operand and fills the source operand toward the most significant bit. When the
cnt field contains a zero, the number of bits to transfer is 16. If the number of
bits to transfer is from one to eight, the source operand address is a byte
address. Any bit in the memory byte not filled by the transfer is set to zero.
When the number of bits to transfer is from 9 to 16, the source operand address
is a word address. If the source operand address is odd, the address is truncated
to an even address prior to data transfer. If the transfer does not fill the entire
memory word, unfilled bits are set to zero. When the number of bits to transfer
is a byte or less, the bits transferred are compared to zero and the status bits
are set or reset to indicate the results of the comparison. Also, when the bits to
be transferred are a byte or less, the odd parity bit is set when the bits establish
odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, and equal. When cnt is less than
9, odd parity is also set or reset. Status is set according to the full word or
byte, not just the transferred bits.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>IA>EQIC [ovIoPIX f--vr-o-moc----- [_INT. MASK |

ASSEMBLER
Page 139

CONTROL AND CRU INSTRUCTIONS

Execution results:
The number of bits specified by cnt are transferred from consecutive CRU lines

beginning at the address in Workspace Register 12 (bits 3 through 14) to memory
at address gas.

Application notes:
The STCR instruction transfers a specified number of CRU bits from the CRU to
the memory location specified as the source operand. Note that the CRU base
address must be in Workspace Register 12 (bits 3 through 14) prior to the
execution of this instruction.

ASSEMBLER
Page 140

CONTROL AND CRU INSTRUCTIONS

9.5 TEST BIT--TB
Op-code: 1F00 (Format II)
Syntax definition:

[<label>] b TB b <disp> b [<comment>]

Example:

CHECK TB 7 sReads CRU bit 7 relative to the CRU base
address in Workspace Register 12, and sets the
equal status bit to the value read.

Definition:

Reads the digital input bit on the CRU at the address specified by the sum of the
signed displacement and the contents of Workspace Register 12, bits 3 through 14,
and set the equal status bit to the value read. The digital input bit and the
contents of Workspace Register 12 are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC |oVIOPIX |==-cceacaaaa-- | _INT. MASK |

Execution results:

Equal bit is set to the value of the CRU bit addressed by the sum of the contents
of Workspace Register 12 (bits 3 through 14) and the displacement.

Application notes:

The TB instruction transfers the level from the indicated CRU line to the equal
status bit without modification. If the CRU line tested is set to one, the equal
status bit is set to one; if the line is zero, it is set to zero. The JEQ instruction
can then be used to transfer control when the CRU line is one and not transfer
control when the line is zero. In addition, the JNE instruction transfers control
under the opposite conditions.

ASSEMBLER
Page 141

CONTROL AND CRU INSTRUCTIONS

9.6 OTHER INSTRUCTIONS

The following instructions are properly assembled and are recognized by the TMS9900
microprocessor, but they should not be used on the Home Computer. Their op-code
and syntax definition are given below.

Instruction Mnemonic Op-code Format Syntax definition

ClocK OFf CKOF 03C0 VII [<label>] b CKOF b [<comment>]
ClocK ON CKON 03A0 VII [<label>] b CKON b [<comment>]
IDLE IDLE 0340 ViI [<label>] b IDLE b [<comment>]

ReSET RSET 0360 Vil [<label>] b RSET b [<comment>]

Load or REstart LREX 03E0 VII [<label>] b LREX b [<comment>]

eXecution
ASSEMBLER

Page 142

CONTROL AND CRU INSTRUCTIONS

9.7 CRU INPUT/OUTPUT

The Communications Register Unit (CRU) performs single and multiple bit
programmed input/output. All input consists of reading CRU line logic levels into
memory and output consists of setting CRU output lines to bit values from a word or
byte of memory. The CRU provides a maximum of 4096 input and output lines that
may be individually selected by a 12-bit address. The 12-bit address is located in

bits 3 through 14 of Workspace Register 12 and is the base address for all CRU
communications.

9.7.1 CRU I/O Instructions

There are five instructions for communications with CRU lines.

SBO Set CRU Bit to One. This instruction sets a CRU output line to one.
SBZ Set CRU Bit to Zero. This instruction sets a CRU output line to zero.

8 Test CRU Bit. This instruction reads the digital input bit and sets the equal
status bit (bit 2) to the value of the digital input bit.

LDCR Load Communications Register. This instruction transfers the number of bits
(1-16) specified by the cnt field of the instruction to the CRU from the
source operand. When less than nine bits are specified, the source operand
address is a byte address. When nine or more bits are specified, the source
operand is a word address. The CRU address is the address of the first CRU
digital output affected. The CRU address is determined by the contents of
Workspace Register 12, bits 3 through 14.

STCR Store Communications Register. This instruction transfers the number of bits
specified by the cnt field of the instruction from the CRU to the source
operand. When less than nine bits are specified, the source operand address
is a byte address. When nine or more bits are specified, the source operand
address is a word address. The CRU address is determined by Workspace
Register 12, bits 3 through 14.

9.7.2 Accessing Specific Bits
There are many different ways to access the same CRU bit. For instance, if

Workspace Register 12 contains 0100H, making the base address in bits 3 through 14
equal to 80H, the following instruction sets CRU line 85H to one.

ASSEMBLER
Page 143

CONTROL AND CRU INSTRUCTIONS

SBO 5

If Workspace Register 12 contains 010AH, making the base address in bits 3 through
14 equal to 85H, the following instruction also sets CRU line 85H to one.

SBO 0

9.7.3 SBO Example

Assume that a control device turns on a motor when the computer sets a one on CRU
line 10FH and that Workspace Register 12 contains 0200H, making the base address in

bits 3 through 14 equal to 100H. The following instruction sets CRU line 10FH to
one.

SBO 15
9.7.4 SBZ Example

Assume that a control device shuts off a valve when the computer sets a zero on a
CRU line that is connected to CRU line 2 and that Workspace Register 12 contains
zero. The following instruction sets CRU line 2 to zero.

s8z 2
9.7.5 TB Example

Assume that Workspace Register 12 contains 0140H, making the base address in bits 3
through 14 equal to 0AOH. The following instructions test the input on CRU line
0A4H and execute the instructions beginning at location RUN when the CRU line is
set to one. When the CRU line is set to zero, the instructions beginning at location
WAIT are executed.

T8 4 ;Test CRU line 4.

JEQ RUN 3sIf on, go to RUN.
WAIT . ;1f off, continue.
RUN .

The TB instruction sets the equal bit of the Status Register to the level on line 4 of
the CRU device.

ASSEMBLER
Page 144

SECTION 10: LOAD AND MOVE INSTRUCTIONS

The following load and move instructions are described in this section.

Instruction Mnemonic Section
Load Immediate LI 10.1
Load Interrupt Mask Immediate LIMI 10.2
Load Workspace Pointer Immediate LWPI 10.3
MOVe words MOV 10.4
MOQOVe Bytes MOvVvB 10.5
STore STatus STST 10.6
STore Workspace Pointer STwWP 10.7
SwWaP Bytes SwpPB 10.8

An example is given in Section 10.9.

Load and move instructions permit you to establish the execution environment and the
execution results. These instructions manipulate data between memory locations and
between hardware registers and memory locations.

Each instruction's description consists of the following information.

A heading, consisting of the instruction name and mnemonic name
The op-code

The syntax definition

An example of the instruction

The definition of the instruction

The status bits affected

The execution results

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

ASSEMBLER
Page 145

LOAD AND MOVE INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

‘wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location '
cnt CouNT of bits for CRU transfer

scnt Shift CouNT ‘

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.
() Indicates "the contents of."
=> Indicates "replaces."

* % Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
Page 146

it

LOAD AND MOVE INSTRUCTIONS

10.1 LOAD IMMEDIATE--LI
Op-code: 0200 (Format VIII)
Syntax definition:

[<label>] b LI b <wa>,<iop> b [<comment>]

Example:

GETIT LI 3,17H sL.oads Workspace Register 3 with 0017H.

Definitions
Places the immediate operand (the word of memory immediately following the
instruction) in the Workspace Register (W field). The immediate operand is not
affected by the execution of this instruction. The immediate operand is
compared to 0 and the logical greater than, arithmetic greater than, and equal
status bits are set or reset according to the result of the comparison.

Status bits affected: _
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IASTEQTC TOVIOPTX T--------<----- i _INT. MASK |

Execution results:
(iop) => (wa)

Application notess

The LI instruction places an immediate operand in a specified Workspace
Register. This may be used to initialize a Workspace Register as a loop counter.
For example, the instruction

LI 7,5

initializes Workspace Register 7 with the value 5. In this example, the logical
greater than and arithmetic greater than status bits are set, while the equal
status bit is reset.

ASSEMBLER
Page 147

LOAD AND MOVE INSTRUCTIONS

10.2 LOAD INTERRUPT MASK IMMEDIATE--LIMI
Op-code: 0300 (Format VIII)
Syntax definition:

[<label>] b LIMI b <iop> b [<comment>]

Example:

LABEL LIMI 2 sMasks level Z and below.

Definition:
Places the least significant four bits (bits 12-15) of the contents of the immediate
operand (the next word after the instruction) in the interrupt mask of the Status

Register. The remaining bits of the Status Register (0 through 11) are not
affected.

Status bits affected:
Interrupt mask.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX Joweemcmmmaaaas | INT. MASK |

Execution results:
Places the four least significant bits of iop into the interrupt mask.

ASSEMBLER
Page 148

LOAD AND MOVE INSTRUCTIONS

Application notes:
The LIMI instruction initializes the interrupt mask so that a particular level of
interrupt is accepted. For example, the instruction
LIMI 2
sets the interrupt mask to level two and enables interrupts at levels 0, 1, and 2.
The instruction
LIMI 0
Disables all interrupts and is the normal state of the computer.
Mote: The p-System is not designed to allow interrupts, and assembly language

programs that enable interrupts probably cannot return to the calling program or to
the System.

ASSEMBLER
Page 149

LOAD AND MOVE INSTRUCTIONS

10.3 LOAD WORKSPACE POINTER IMMEDIATE--LWPI
Op-code: 02E0 (Format VIII)

Syntax definitions

[<label>] b LWPI b <iop> b [<comment>]

Example:

NEWWP LWPI 02F2H ;Sets NEWWP equal to 0Z2F2H.

Definition:
Replaces the contents of the Workspace Pointer with the immediate operand.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>ITA>[EQIC |OVIOPIX J-cceccmcaamauas | INT. MASK |

Execution results:
(iop) => (WP)

Application notes:
The LLWPI instruction initializes or changes the Workspace Pointer Register to
alter the Workspace environment of the program. You may use a BLWP or a
LWPI instruction to load your own Workspace Registers.

ASSEMBLER
Page 150

LOAD AND MOVE INSTRUCTIONS

10.4 MOVE WORD--MOV
Op-code: CO000 (Format 1)
Syntax definition:

[Klabel>] b MOV b <gas>,<gad> b [<comment>]

Example:

GET MOV @wbD,R2 sMoves a copy of WD into Workspace Register 2.

Definitions
Replaces the destination operand with a copy of the source operand. The

computer compares the resulting destination operand to zero and sets/resets the
status bits according to the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC JOVIOPIX Jecccmme e e | INT. MASK |

Execution results:
(gas) => (gad)

ASSEMBLER
Page 151

LOAD AND MOVE INSTRUCTIONS

Application notes:
The MOV instruction moves 16-bit words as follows:

Memory-to-memory (non-register)
Load register (memory-to-register)
Register-to-register
Register-to-memory

The MOV instruction may also be used to compare a memory location to zero.
For example,

MOV R7,R7
JNE TEST

moves Workspace Register 7 to itself and compares the contents of Workspace
Register 7 to zero. If the contents are not equal to zero, the equal status bit is
reset and control transfers to TEST.

As another example of the use of MOV, assume that Workspace Register 9
contains 3416H and location ONES contains OFFFFH. Then

MoV @ONES,R9
changes the contents of Workspace Register 9 to OFFFFH, while the contents of

location ONES is not changed. For this example, the logical greater than status
bit is set and the arithmetic greater than and equal status bits are reset.

ASSEMBLER
Page 152

LOAD AND MOVE INSTRUCTIONS

10.5 MOVE BYTE--MOVB
Op-code: D000 (Format I)

Syntax definition:

[<label>] b MOVB b (gas),(gad) b [<comment>]

Example:

NEXT MOVB R2,2A41H ;Stores the most significant byte of Workspace
Register 2 in address 2A41H.

Definition:
Replaces the destination operand (byte) with a copy of the source operand (byte).
If either operand is addressed in the Workspace Register mode, the byte
addressed is the most significant byte. The least significant byte is not affected.
The computer compares the destination operand to zero and sets/resets the status
bits to indicate the result of the comparison. The odd parity bit is set when the
bits in the destination operand establish odd parity.

Status bits affected:
- Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TASTEQIC TOVIOPTX [----c---c----- | _INT. MASK |

Execution results:
(gas) => (gad)

Application notes:
The MOVB instruction moves bytes in the same combinations as the MOV
instruction moves words. For example, if memory location 1C14H contains a
value of 2016H and TEMP is located at 1C15H, and if Workspace Register 3
contains 542BH, the instruction

MOVB @TEMP,R3
changes the contents of Workspace Register 3 to 162BH. The logical greater

than, arithmetic greater than, and odd parity status bits are set, while the equal
status bit is reset.

ASSEMBLER
Page 153

LOAD AND MOVE INSTRUCTIONS

10.6 STORE STATUS--STST
Op-code: 02CO0 (Format VIII)
Syntax definition:
[<label>] b STST b (wa) b [<comment>]
Example:
LABEL STST R7 ;Stores status in Workspace Register 7.

Definition:
Stores the Status Register contents in the specified Workspace Register.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TA>TEQIC JOVIOPIX [---ccccceaaao -1 INT. MASK |

EXecution results:
(5T) => (wa)

Application notes:

The STST instruction stores the Status Register in the specified Workspace
Register.

ASSEMBLER
Page 154

LOAD AND MOVE INSTRUCTIONS

10.7 STORE WORKSPACE POINTER--STWP
Op-code: 02A0 (Format VIII)
Syntax definition:

[<label>] b STWP b (wa) b [<comment>]

Example:
LABEL STWP Ré ;Stores the Workspace Pointer in Workspace
Register 6.
Definitions
Places a copy of the Workspace Pointer contents in the specified Workspace
Register.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> |EQIC 1OVIORPIX |ewocemcacaoanx | _INT. MASK |

Execution results:
(WP) => (wa)

Application notes:
The STWP instruction stores the contents of the Workspace Pointer in the
specified Workspace Register.

ASSEMBLER
Page 155

LOAD AND MOVE INSTRUCTIONS

10.8 SWAP BYTES--SWPB
Op-code: 06CO0 (Format VI)
Syntax definitions

[<label>] b SWPB b (gas) b [<comment>]

Example:
SWITCH SwPB R3 sSwitches the most significant and least
significant bytes in Workspace Register 3.
Definitions

Replaces the most significant byte (bits 0-7) of the source operand with a copy of
the least significant byte (bits 8-15) of the source operand and replaces the least
significant byte with a copy of the most significant byte.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILIASIEQIC JovioPIX f-----vcveveana- [INT. MASK |

Execution results:
Exchanges left and right bytes of word (gas).

Application notess
Use the SWPB instruction to interchange bytes of an operand prior to executing
various byte instructions. For example, if Workspace Register 0 contains 2144H
and memory location 2144H contains the value OF312H, the instruction

SwPB *R0O+

changes the contents of memory location 2144H to 12F3H and increments
Workspace Register 0 to 2146H. The Status Register is unchanged.

ASSEMBLER
Page 156

[

LOAD AND MOVE INSTRUCTIONS

10.9 INSTRUCTION EXAMPLE

The following program segment illustrates the use of many of the instructions
discussed in this section. The first six instructions are a portion of a program that
calls a subroutine labeled SUBR. The calling program performs some initialization
and then calls the subroutine to check the contents of a 20-byte buffer. If the
subroutine finds that the buffer contains byte values that are in numerically
sequential order, then it returns 00H to the calling program in Workspace Register 4.

If the bytes are not in numerically sequential order, the subroutine returns O1H in
Workspace Register 4. The program and subroutine are described in greater detail
after the program is listed.

L WPI 0AC20H sLoad Workspace Pointer.
BL @sUBR sCall subroutine.
WORD BUFFER sAddress of BUFFER.
MOV R4,R4 sSee if numbers are in sequence.
JNE NOSEQ sJump if subroutine found non-sequential
numbers.
SUBR S R4,R4 - ;Clear Workspace Register 4.
LI R10,20 ;Put loop count in Workspace Register 10.
MOV *R11+,R7 ;Put address of BUFFER in Workspace Register
7.
MQOvB *R7,Ré6 sPut first number in the left byte of Workspace
Register 6.
CHECK MOV *R7+,RT8 ;Put two bytes in Workspace Register 8.
sB R6,R8 ;Check for sequence.
JNE ouT sJump if out of sequence.
Al R6,100H sAdd one to sequence checker.
SWPB R8 sPut other byte in left half of register.
SB R6,R8 sCheck for sequence.
JNE QuUT sJump if out of sequence.
Al R6,100H ;Add one to sequence checker-
DECT R10 sDecrement loop counter.
JGT CHECK sJump to check next two bytes.
JMP RETURN sThrough checking, all in order.
ouT INC R4 ;Set Workspace Register 4 to a non-zero value.
RETURN B *R11 sReturn to calling program.

ASSEMBLER
Page 157

LOAD AND MOVE INSTRUCTIONS

The BL instruction transfers program control to the subroutine with the address
following the BL instruction placed in Workspace Register 11 to allow for return to
the program. The location following the BL instruction contains the address of the
20-byte buffer to be checked by the subroutine. The subroutine returns control to
the MOV instruction in the calling program, which then checks to see if the
subroutine found the bytes in numerically sequential order and jumps to location
NOSEQ (not shown) if they were not.

The subroutine clears Workspace Register 4 with the S instruction and puts a loop
counter value of 20 in Workspace Register 10 with the LI instruction.

Since Workspace Register 11 contains the address of the location following the BL
instruction in the calling program, the MOV *R11+,R7 instruction copies the address
of BUFFER into Workspace Register 7 and increments the address in Workspace
Register 11 to the location following the .WORD directive, setting the address to the
MOV instruction for the return when the subroutine is finished. The MOVB *R7,R6
instruction copies the first byte value into the left byte of Workspace Register 6.

At label CHECK, the MOV instruction begins a loop that copies a word (two bytes)
into Workspace Register 8 and auto-increments the address in Workspace Register 7
to the next word in the buffer. The left byte of Workspace Register 8 is subtracted
from its right byte. A non-zero result indicates an out of sequence number and the
JNE instruction transfers control to the instruction labeled OUT which places a 01H
in Workspace Register 4.

If the subtraction produces a zero result, the Al 6,100H instruction increments the
contents of Workspace Register 6 to the next byte to be checked. The following
SWPB instructon swaps the bytes in Workspace Register 8 so the following SB and
JNE instructions can check the sequence. If the sequence is correct, the next Al
instruction updates Workspace Register 6 to the address of the next byte.

The DECT instruction decrements the loop counter in Workspace Register 10 by two
since two bytes have been checked. If the result is non-zero, there are more bytes
to be checked and the JGT instruction causes a reiteration of the loop. If the result
is zero, all 20 bytes have been checked and the JMP instruction causes a jump to the
subroutine's exit at RETURN. There the B ¥R11 instruction causes a return to the
calling programs.

ASSEMBLER
Page 158

SECTION 11: LOGICAL INSTRUCTIONS

The following logical instructions are described in this section.

Instruction Mnemonic Section
AND Immediate ANDI 11.1
OR Immediate ORI1 11.2
EXclusive OR XOR 11.3
INVert INV 11.4
CLeaR CLR 11.5
SET to One SETO 11.6
Set Ones Corresponding SOC 11.7
Set Ones Corresponding, Byte S0oCB 11.8
Set Zeros Corresponding SZC 11.9
Set Zeros Corresponding, Byte SZCB 11.10

Logical instructions permit you to perform various logical operations on memory
locations and/or Workspace Registers.

Each instruction's description consists of the following information.

A heading, consisting of the instruction name and mnemonic name
The op-code

The syntax definition

An example of the instruction

The definition of the instruction

The status bits affected

The execution results

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

ASSEMBLER
Page 159

LOGICAL INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field. Use of the label field is
optional. When it is used, the label is assigned the address of the instruction. The
Assembler advances to the location of a word boundary (even address) before
assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.
() Indicates "the contents of.”
=> Indicates "replaces.”

* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
Page 160

LOGICAL INSTRUCTIONS

11.1 AND IMMEDIATE--ANDI
Op-code: 0240 (Format VIII)
Syntax definitions
[<label>] b ANDI b (wa),(iop) b [<comment>]
Example:

LABEL ANDI R3,0FFFOH ;Sets least significant 4 bits of Workspace
Register 3 to zeros.

Definitions ,
Performs a bit-by-bit AND operation on the 16 bits in the immediate operand and
the corresponding bits of the Workspace Register. The immediate operand is the
word in memory immediately following the instruction word. Place the result in
the Workspace Register. The computer compares the result to zero and
sets/resets the status bits according to the results of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> [EQIC JOVIOPIX fococcaaaaana s | INT. MASK |

Execution results:
(wa) AND iop => (wa)

-Application notes:
The ANDI instruction performs a logical AND with an immediate operand and a

Workspace Register. Each bit of the 16-bit word of both operands follows the
following table.

Immediate Workspace AND
Operand Bit Register Bit Result
0 0 0
0 1 0
1 0 0
1 1 1

ASSEMBLER

Page 161

LOGICAL INSTRUCTIONS

For example, if Workspace Register 0 contains 0DZABH, the instruction
ANDI R0,6D03H

results in Workspace Register 0 changing to 4003H. This AND operation on a
bit-by-bit basis is

0110 1101 0000 0011 (Immediate operand--6D03)
1101 0010 1010 1011 (Workspace Register 0--D2AB)

0100 0000 0000 0011 (Workspace Register O result--4003)

In this example, the logical greater than and arithmetic greater than status bits
are set, while the equal status bit is reset.

ASSEMBLER
Page 162

LOGICAL INSTRUCTIONS

11.2 OR IMMEDIATE--ORI
Op-code: 0260 (Format VIII)
Syntax definition:
[<label>] b ORI b (wa),(iop) b [<comment>]

Example:

LABEL ORI R3,0F000H ;Sets the most significant 4 bits of Workspace
Register 3 to ones.

Definitions
Performs a logical OR operation on the 16-bit immediate operand and the
corresponding bits of the Workspace Register. The immediate operand is the
memory word immediately following the ORI instruction. Place the result in the
Workspace Register. The computer compares the result to zero and sets/resets
the status bits to indicate the result of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ILIA>EQIC TOVIOPIX J-eoeooomooo-- | INT. MASK |

Execution results:
(wa) OR (iop) => (wa)

Application notes:
The ORI instruction performs a logical OR with the immediate operand and a

specified Workspace Register. Each bit of the 16-bit word of both operands
follows the following table.

- Immediate Workspace ORI

Operand Bit Register Bit Result

0 0 0

1 1] 1

0 1 1

1 1 1
ASSEMBLER

Page 163

LOGICAL INSTRUCTIONS

For example, if Workspace Register 5 contains 0D2ABH, the instruction
ORI R5,6D03H

results in Workspace Register 5 changing to OFFABH. This OR operation on a
bit-by-bit basis is

0110 1101 0000 0011 (Immediate operand--6D03H)
1101 0010 1010 1011 (Workspace Register 5--0D2ABH)

1111 1111 1010 1011 (Workspace Register 5 result--OFF ABH)

In this example, the logical greater than status bit is set, and the arithmetic
greater than and equal status bit are reset.

ASSEMBLER
Page 164

LOGICAL INSTRUCTIONS

11.3 EXCLUSIVE OR--XOR
Op-code: 2800 (Format III)
Syntax definition:

[<label>] b XOR b (gas),(wad) b [<comment>]

Example:

LABEL XOR @BWORD,R3 ;:Exclusive ORs the contents of WORD and
Workspace Register 3.

Definitions
Performs a bit-by-bit exclusive OR of the source and destination operands, and
replaces the destination operand with the result. The exclusive OR is
accomplished by setting the bits in the resultant destination operand to one when
the corresponding bits of the two operands are not equal. The bits in the
resultant destination operand are reset to zero when the corresponding bits of the
two operands are equal. The computer compares the resultant destination

operand to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IOIASEQIC JOVIOPIX |ececcccccwanas | INT. MASK |

Execution results:
(gas) XOR (wad) => (wad)

Application notes:

The XOR instruction performs an exclusive OR on two word operands. Each bit of
the 16-bit word of both operands follows the table on the next page.

ASSEMBLER
Page 165

LOGICAL INSTRUCTIONS

Immediate Workspace XOR
Operand Bit Register Bit Result
0 0 0
0 1 1
1 0 1
1 1 0

For example, if Workspace Register 2 contains 0D2AAH and location CHANGE
contains the value 6D03H, the instruction

XOR @CHANGE,R2

results in the contents of Workspace Register 2 changing to 0BFA9H. Location
CHANGE remains 6D03H. This is shown as follows.

0110 1101 0000 0011 (Source operand--6D03H)
1101 0010 1010 1010 (Destination operand--0D2AAH)

1011 1111 1010 1001 (Destination operand result--0BFA9H)

In this example, the logical greater than status bit is set, while the arithmetic
greater than and equal status bits are reset.

ASSEMBLER
Page 166

LOGICAL INSTRUCTIONS

11.4 INVERT--INV
Op-code: 0540 (Format VI)
Syntax definition:
[<label>] b INV b (gas) b [<comment>]

Example:

COMPL. INV @BUFF(R2) ;Replaces the value at the address found by
adding the value of Workspace Register 2 to the
contents of BUFF with the one's complement of
the data.

Definitions
Replaces the source operand with the one's complement of the source operand.
The one's complement is equivalent to changing each zero in the source operand
to one and each one in the source operand to zero. The computer compares the
result to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected:
l_ogical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC |OVIOPIX Joevccmccm - | INT. MASK |

Execution resultss
The one's complement of (gas) is placed in (gas).

ASSEMBLER
Page 167

LOGICAL INSTRUCTIONS

Application notes:
The INV instruction changes each zero in the source operand to one and each one
to zero. For example, if Workspace Register 11 contains 157AH, the instruction

INV R1l

changes the contents of Workspace Register 11 to OEAB5H. This INV operation
on a bit-by-bit basis is

0001 0101 0111 1010(Workspace Register 11--157AH)
1110 1010 1000 0101(Workspace Register 11 result--OEA85H)

The logical greater than status bit is set and the arithmetic greater than and
equal status bits are reset.

ASSEMBLER
Page 168

LOGICAL INSTRUCTIONS

11.5 CLEAR--CLR
Op-code: 04CO (Format VI)
Syntax definition:
[<label>] b CLR b (gas) b [<comment>]

Example:

PRELM CLR @BUFF(R2) ;Clears the value at the address found by adding
the value of Workspace Register 2 to the
contents of BUFF.

Definition:
Replaces the source operand with a full 16-bit word of zeros.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC |OVIOPIX |--vrcmmmmanane [INT. MASK |

Execution results:
0 => (gas)

Application notes:
The CLR instruction sets a full, 16-bit, memory-addressable word to zero. For
example, if Workspace Register 11 contains the value 200H1, the instruction

CLR *0BH ;0BH is equivalent to R11l.

results in the contents of memory locations 2000H and 2001H being set to 0.
Workspace Register 11 and the Status Register are unchanged. Word operations,

such as CLR, operate on the next lower address when an odd address is given as
the operand.

ASSEMBLER
Page 169

LOGICAL INSTRUCTIONS

11.6 SET TO ONE--SETO
Op-code: 0700 (Format VI)
Syntax definition:

[<label>] b SETO b (gas) b [<comment>]

Examples
LABEL SETO R3 ;Sets Workspace Register 3 to OFFFFH or
negative 1.
Definition:

Replaces the source operand with a full 16-bit word of ones.

Status bits affected:
None.

61 2 3 4 5 6 7 8 9 1011 12 13 14 15
1L TAS TEQIC TOVIOPTX Toccceaeaaoo | INT. MASK |

Execution results:
OFFFFH => <gas>

Application notes:
The SETO instruction initializes an addressable memory to a value of negative 1.
For example, the instruction

SETO R3

initializes Workspace Register 3 to a value of OFFFFH. The contents of the
Status Register are unchanged. This is a useful means of setting flag words.

ASSEMBLER
Page 170

LOGICAL INSTRUCTIONS

11.7 SET ONES CORRESPONDING--SOC
Op-code: E000 (Format I)
Syntax definitions

[<label>] b SOC b (gas),(gad) b [<comment>]

Example:
LABEL SOC R3,R2 sORs Workspace Register 3 into Workspace
Register 2.
Definition:

Sets to one the bits in the destination operand that correspond to the one bits in
the source operand. Leaves unchanged the bits in the destination operand that
are in the same bit positions as the zero bits in the source operand. This
operation is an OR of the two operands. The changed destination operand
replaces the original destination operand. The computer compares the result to
zero and sets/resets the status bits to indicate the result of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>TA>TEQIC 1OVIOPIX Jeocemmcnaananoe- | _INT. MASK |

Execution results:

The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 1.

ASSEMBLER
Page 171

LOGICAL INSTRUCTIONS

Application notess
The SOC instruction ORs the 16-bit contents of two operands. For example, if
Workspace Register 3 contains OFF00OH and location NEW contains 0AAAAH, the
instruction

SOC R3,@NEW

changes the contents of location NEW to OFFAAH, while the contents of
Workspace Register 3 are unchanged. This SOC operation on a bit-by-bit basis is

1111 1111 0000 0000 (Source operand--OFF00H)
1010 1010 1010 1010 (Destination operand--0AAAAH)

1111 1111 1010 1010 (Destination operand result--OFFAAH)

In this example, the logical greater than status bit is set and the arithmetic
greater than and equal status bits are reset.

ASSEMBLER
Page 172

LOGICAL INSTRUCTIONS

11.8 SET ONES CORRESPONDING, BYTE--SOCB
Op-code: F000 (Format 1)
Syntax definition:

[<1abel>] b SOCB b (gas),(gad) b [<comment>]
Example:

LABEL S0CB R3,@DET sORs Workspace Register 3 into the byte at
location DET.

Definition:
Sets to one the bits in the destination operand that correspond to the one bits in
the source operand byte. Leaves unchanged the bits in the destination operand
that are in the same bit positions as the zero bits in the source operand byte.
This operation is an OR of the two operand bytes. The changed destination
operand byte replaces the original destination operand byte. The computer
compares the resulting destination operand byte to zero and sets/resets the status
bits to indicate the results of the comparison. The odd parity status bit is set
when the bits in the resulting byte establish odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 &4 5 6 7 8 9 1011 12 13 14 15
IL>TASTEQIC |OVIOPIX [-vccoecccnnwn- I INT. MASK |

Execution results:

The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 1.

ASSEMBLER
Page 173

LOGICAL INSTRUCTIONS

Application notes:
The SOCB instruction ORs two byte operands. For example, if Workspace

Register 5 contains OF013H and Workspace Register 8 contains the value 0AA24H,
the instruction

50CB R3,R8
changes the contents of Workspace Register 8 to O0FA24H, while the contents of
Workspace Register 5 are unchanged. This SOCB operation on a bit-by-bit basis

is

1111 0000 0001 0011 (Source operand--OF013H)
1010 1010 0010 0100 (Destination operand--0AA24H)

1111 1010 0010 0100 (Destination operand result--OFA24H)

(Unchanged)

In this example, the logical greater than status bit is set, while the arithmetic
greater than, equal, and odd parity status bits are reset.

ASSEMBLER
Page 174

LOGICAL INSTRUCTIONS

11.9 SET ZEROS CORRESPONDING--SZC
Op-code: 4000 (Format I)
Syntax definition:

[<label>] b SZC b (gas),(gad) b [<comment>]
Example:

LABEL SZC @MASK,R2 ;Resets the bits of Workspace Register 2 as
indicated by MASK.

Definitions
Sets to zero the bits in the destination operand that correspond to the bit
positions equal to one in the source operand. This operation is effectively an
AND operation of the destination operand and the one's complement of the source
operand. The computer compares the resulting destination operand to zero and
sets/resets the status bits to indicate the results of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC |OVIOPIX [-eccmceaananam-- | INT. MASK |

Execution results:

The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 0.

ASSEMBLER
Page 175

LOGICAL INSTRUCTIONS

Application notes:
The SZC instruction turns off flag bits or ANDs the destination operand. For
example, if Workspace Register 5 contains 6D03H and Workspace Register 3
contains O0D2AAH, the instruction

SZC R5,R3

changes the contents of Workspace Register 3 to 92A8H, while the contents of
Workspace Register 5 remain unchanged. This SCZ operation on a bit-by-bit
basis is

0110 1101 0000 0011 (Source operand--6D03H)
1101 0010 1010 1010 (Destination operand--0D2AAH)

1001 0010 1010 1000 (Destination operand result--92A8H)

In this example, the logical greater than status bit is set, while the arithmetic
greater than and equal status bits are reset.

ASSEMBLER
Page 176

LOGICAL INSTRUCTIONS

11.10 SET ZEROS CORRESPONDING, BYTE--SZCB
Op-code: 5000 (Format I)
Syntax definition:

[<1abel>] b SZCB b (gas),(gad) b [<comment>]

Example:
LABEL SZCB @MASK,@aCHAR ;Resets the bits of CHAR as
indicated by MASK.
Definitions

Sets to zero the bits in the destination operand byte that correspond to the bit
positions equal to one in the source operand byte. This operation is effectively
an AND operation of the destination operand byte and the one's complement of
the source operand byte. The computer compares the resulting destination
operation to zero and sets/resets the status bits to indicate the results of the
comparison. The odd parity status bit is set when the bits in the resulting
destination operand byte establish odd parity. When the destination operand is
given as a Workspace Register, the most significant byte is the one affected.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC IOVIOPIX foceeccamamn-n- | INT. MASK |

Execution results:

The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 0.

ASSEMBLER
Page 177

LOGICAL INSTRUCTIONS

Application notes:
The SZCB instruction is used for the same applications as SZC except that bytes
are used instead of words. For example, if location BITS contains the value
0F018H and location TESTVA contains the value 0AA24H, the instruction

SZCB @BITS,@TESTVA

changes the contents of TESTVA to 0A24H, while BITS remains unchanged. This
is shown as

1111 0000 0001 1000 (Source operand--OF018H)
1010 1010 0010 0100 (Destination operand--0AA24H)

0000 1010 0010 0100 (Destination operand result--0A24H)

(Unchanged)

In this example, the logical greater than and arithmetic greater than status bits
are set, while the equal and odd parity status bits are reset.

ASSEMBLER
Page 178

SECTION 12: WORKSPACE REGISTER SHIFT INSTRUCTIONS

The following Workspace Register shift instructions are described in this section.

Instruction Mnemonic Section
Shift Right Arithmetic SRA 12.1
Shift Right Logical SRL 12.2
Shift Left Arithmetic SLA 12.3
Shift Right Circular SRC 12.4

An example is given in Section 12.5.

Workspace Register shift instructions permit you to shift the contents of a specified
Workspace Register from one to 16 bits. For each of these instructions, if the shift
count in the instruction is zero, the shift count is taken from Workspace Register 0,
bits 12 through 15. If the four bits of Workspace Register 0 are equal to zero, the
shift count is 16 bit positions. The value of the last bit shifted out of the Workspace
Register is placed in the carry bit of the Status Register. The result is compared to
zero, and the results of the comparison are shown in the logical greater than,
arithmetic greater than, and equal bits in the Status Register. If a shift count
greater than 15 is supplied, the Assembler fills in the four-bit field with the least
significant four bits of the shift count.

Each instruction's description consists of the following information.

A heading, consisting of the instruction name and mnemonic name
The op-code

The syntax definition

An example of the instruction

The definition of the instruction

The status bits affected

The execution results

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

ASSEMBLER
Page 179

WORKSPACE REGISTER SHIFT INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

ent CoulNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are userl.
) Indicates "the contents of."
=> Indicates "replaces.”

* % Indicates "the absoclute value of."

The generic names used in the syntax definitions are also used in the execution
results.

ASSEMBLER
Page 180

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.1 SHIFT RIGHT ARITHMETIC--SRA
Op-code: 0800 (Format V)
Syntax definition:

[<label>] b SRA b (wa),(scnt) b [<comment>]

Example:
LABEL SRA R2,3 ;Shifts Workspace Register 2 right 3 bit
locations.
Definitions

Shifts the contents of the specified Workspace Register to the right for the
specified number of bit positions. Fills vacated bit positions with the sign bit.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC |OVIOPIX |weomeenceeeaa | _INT. MASK |

Execution resultss
Shifts the bits of (wa) to the right, extending the sign bit to fill vacated bit
positions. When scnt is greater than 0, shifts the number of bit positions
specified by scnt. If scnt is equal to 0, shifts the number of bit positions

contained in the four least significant bits of Workspace Register 0. If scnt and

the four least significant bits of Workspace Register 0 both contain Os, shifts 16
positions.

ASSEMBLER
Page 181

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRA instruction shifts the given Workspace Register to the right the given
number of bit positions and fills vacated positions with the sign bit. If
Workspace Register 5 contains the value 8224H, and Workspace Register 0
contains the value OF326H, the instruction

SRA R5,0

changes the contents of Workspace Register 5 to OFE0O8H. This SRA operation on
a bit-by-bit basis is

1111 0011 0010 0110 (Workspace Register 0--0F326H. Four least
significant bits are 0110, so shift 6 positions)
1000 0010 0010 0100 (Workspace Register 5--8224H)

1111 1110 0000 1000 (Workspace Register 5 result--OFE08H)

The logical greater than and carry status bits are set, while the arithmetic
greater than and equal status bits are reset.

ASSEMBLER
Page 182

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.2 SHIFT RIGHT LOGICAL--SRL
Op-codes 0900 (Format V)
Syntax definition:

[<label>] b SRL b (wa),(sent) b [<comment>]

Example:
LABEL SRL R2,7 sShifts Workspace Register 2 right 7 bit
locations.
Definition:

Shifts the contents of the specified Workspace Register to the right the specified
number of bits. Fills the vacated bit positions with zeros.

Status bits affecteds
Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>EQIC JOVIOPIX |--ececcccaan o | INT. MASK |

Execution results:
Shifts the bits of (wa) to the right, filling the vacated bit positions with zeros.
If scnt is greater than 0, shifts the number of bit positions specified by scnt. If
scnt is equal to O, shifts the number of bit positions contained in the four least
significant bits of Workspace Register 0. If scnt and the four least significant
bits of Workspace Register 0 both contain Os, shifts 16 bit positions.

ASSEMBLER
Page 183

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRL instruction shifts the given Workspace Register to the right the given
number of bit positions and fills vacated positions with zeros. If Workspace
Register zero contains the value OFFEFH, the instruction

SRL RO,3

changes the contents of Workspace Register 0 to IFFDH. This SRL operation on
a bit-by-bit basis is

1111 1111 1110 1111 (Workspace Register 0--OFFEFH)

0001 1111 1111 1101 (Workspace Register 0 result--1FFDH)

The logical greater than, arithmetic greater than and carry status bits are set,
while the equal status bit is reset.

ASSEMBLER
Page 184

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.3 SHIFT LEFT ARITHMETIC--SLA
Op-code: O0AO00 (Format V)
Syntax definition:
[<label>] b SLA b (wa),(sent) b [<comment>]
Examples
LABEL SLA R2,1 ;Shifts Workspace Register 2 left 1 bit location.

Definition:
Shifts the contents of the specified Workspace Register to the left the specified
number of bit positions. Fills the vacated bit positions with zeros. Note that
the overflow status bit is set when the sign of the word changes during the shift

operation. The carry status bit contains the value shifted out of bit position
zerg.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L IAYEQIC TOVIOPIX |-mcemcmmc e e e e | INT. MASK |

Execution results::
Shifts the bits of (wa) to the left, filling the vacated bit positions with zeros.
When scnt is greater than 0, shifts the number of bit positions specified by scnt.
If scnt is equal to 0, shifts the number of bit positions contained in the four least
significant bits of Workspace Register 0. If scnt and the four least significant
bits of Workspace Register 0 both contain Os, shifts 16 bit positions.

ASSEMBLER
Page 185

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SLA instruction shifts the given Workspace Register to the left the given
number of bit positions and fills vacated positions with zeros. If Workspace
Register 10 contains the value 1357H, the instruction

SLA R10,5

changes the contents of Workspace Register 10 to 6AEOH. This SLA operation on
a bit-by-bit basis is

0001 0011 0101 0111 (Workspace Register 10--1357H)

0110 1010 1110 0000 (Workspace Register 10 result--6AEOH)

The logical greater than, arithmetic greater than, and overflow status bits are
set, while the equal and carry status bits are reset. Refer to Section 12.5 for
another example.

ASSEMBLER
Page 186

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.4 SHIFT RIGHT CIRCULAR--SRC
Op-code: 0B00 (Format V)
Syntax definition:

[<label>] b SRC b (wa),(sent) b [<comment>]

Examples
LABEL SRC R7,16-3 sShifts Workspace Register 7 circularly 13 bit
locations right.
Definition:

Shifts the specified Workspace Register to the right the specified number of bit
positions. Fills vacated bit positions with the bit shifted out of position 15. The
carry status bit contains the value shifted out of bit position zero.

Status bits affected:
Logical greater than, arithmetic greater than, equai, and carry.

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IL>IA>EQIC TOVIOPIX Jo-memmmccceeee I INT. MASK |

Execution results:
Shifts the bits of (wa) to the right, filling the vacated bit positions with the bits
shifted out at the right. If scnt is greater than 0, shifts the number of bit
positions specified by scnt. If scnt is equal to 0, shifts the number of bit
positions contained in the four least significant bits of Workspace Register 0. If

scnt and the four least significant bits of Workspace Register 0 both contain Os,
shifts 16 bit positions.

ASSEMBLER
Page 187

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRC instruction shifts the given Workspace Register to the right the given
number of bit positions and fills vacated positions with the bits shifted., If
Workspace Register 2 contains the value OFFEFH, the instruction

SRC R2,7

changes the co>ntents of Workspace Register 2 to ODFFFH. This SRC operation on
a bit-by-bit basis is

1111 1111 1110 1111 (Workspace Register 2--0FFEFH)

1101 1111 1111 1111 (Workspace Register 2 result--0DFFFH)

The logical greater than and carry status bits are set, while the arithmetic
greater than and equal status bits are reset.

There is no "shift left circular" instruction because the same effect can be
obtained with SRC. To shift left a number of bits, instead shift right by a
number equal to 16 minus the number. For example, to shift left 7 bits, shift
right by 16 minus 7 or 9 bits.

ASSEMBLER
Page 188

L

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.5 INSTRUCTION EXAMPLE

This shift instruction shifts the indicated Workspace Register a specified number of
bits to the left. For example, the instruction

SLA R5,1

shifts the contents of Workspace Register five one bit to the left. The carry status
bit contains the value shifted out of bit position zero. The jump instructions JOC
and JNC permit you to test the shifted bit. The overflow status bit is set when the
sign of the contents of the Workspace Register being shifted changes during the shift
operation. [f Workspace Register 5 contains

0100 1111 0CGO 1111
before the shift, the instruction changes Workspace Register 5 to
1001 1110 0001 1110

The carry status bit contains a zero and the overflow status bit is set because the
contents changed from positive to negative (bit zero changed from 0 to 1). If this
shift sign change is significant, you could insert a JNO instruction to test the
overflow condition. If there is no overflow, control transfers to the normal program
sequence. Otherwise, the next instruction is executed.

It is possible to construct double-length shifts with the SLA instruction to shift two
or more words in a Workspace. The code on the next page shifts two consecutive
Workspace Registers assuming thats

® The contents of Workspace Registers 1 and 2 are shifted one bit position.

@ Additional code could be included to execute the code once for each bit shift
required, when shifts of more than one bit position are required. The additional
code must include a means of testing that the desired number of shifts are
performed.

® Additional code tests for overflow from Workspace Register 1, to branch to an
error routine at location ERR when overflow occurs.

ASSEMBLER
Page 189

WORKSPACE REGISTER SHIFT INSTRUCTIONS

SLA R1,1 :Shift R1 one bit.

JocC ERR

SLA R2,1 sShift R2 one bit.

JNC EXIT sTransfer if no carry.

INC R1 sTransfer bit from R2 to R1.
EXIT NOP ;Continue with program.
ERR NOP

ASSEMBLER

Page 190

S

SECTION 13: ASSEMBLER DIRECTIVES
Assembler directives let you supply data to be included in the program and exercise
control over the assembly process. Assembler directives appear in the source code as

predefined identifiers preceded by a period.

The following conventions are used in the Assembler directive syntax definitions given
in the remainder of this section.

Special characters and items in capital letters must be entered as shown.
Items within angle brackets (<>) are defined by the user.
Items within square brackets ([]) are optional.
The word "or" indicates a choice between two items.
Items in lower-case letters are generic names for classes of items.
The following terms are names for classes of items as used in this section.

b = the occurrence of one or more blanks.

~integer = any legal integer constant as defined in Section 3.3.4.
label = any legal label as defined in Section 3.4.1.
expression = any legal expression as defined in Section 3.3.5.
value = any label, constant, or expression. The default value is 0.
valuelist = a list of zero or more values separated by commas.
identifier = a legal identifier as defined in Section 3.3.2.
idlist = a list of one or more identifiers separated by commas.
idsinteger list = a list of one or more identifier-integer pairs separated by a colon,

with each pair separated by a comma. The colon-integer part is
optional and has a default value of 1.

ASSEMBLER
Page 191

ASSEMBLER DIRECTIVES

comment = any legal comment as defined in Section 3.4.4.
character string = any legal character string as defined in Section 3.3.3.
file identifier = any legal name for a p-System text file.
The following example illustrates the use of these conventions.
[<1abel>] [b] .ASCII b <character string> [<comment>]

The example indicates that a label can be included in the label field (but is not
necessary) and that a character string must be included as an operand.

For your convenience, the directives discussed in this section are listed here in
alphabetical order along with their forms and the section where they are discussed.

Directive Form Section
LABSOLUTE [b] .ABSOLUTE [<comment>] 13.8
LALIGN [b] .ALIGN b <value> [<comment>] 13.3
ASCII [<label>] [b] .ASCII b <character string> [<comment>] 13.2
JASCIILIST [b] .ASCIILIST [<comment>] 13.4
JASECT [b] .ASECT [<comment>] 13.8
BLOCK [<1abel>] [b] .BLOCK b <length> [,<value>] [<comment>] 13.2
BYTE [<1abel>] [b] .BYTE b [valuelist] [<comment>] 13.2
.CONDLIST [b] .CONDLIST [<comment>] 13.4
LCONST [b] .CONST [b] <idlist> [<comment>] 13.5
DEF [b] .DEF [b] <idlist> [<comment>] 13.5
ELSE [b] .ELSE [<comment>] 13.6
END [<label>] [b] .END 13.1
LENDC [b] .ENDC [<comment>] 13.6
.ENDM [b] .ENDM [<comment>] 13.7
LEQU <label> [b] .EQU b <value> [<comment>] 13.2
FUNC [b] FUNC [b] <identifier> [,<integer>] [<comment>] 13.1
JF [b] .IF <expression> [= or <> <expression>] [<comment>] 13.6
JINCLUDE [b] .INCLUDE [b] <file identifier> [b <comment>] 13.8
INTERP valid when used in <expression> 13.5
LIST [b] .LIST 13.4
.MACRO [b] .MACRO [b] <identifier> [<comment>] 13.7
.MACROLIST [b] .MACROLIST 13.4
NARROWPAGE [b] .NARROWPAGE [<comment>] 13.4
JNOASCIILIST [b] .NOASCIILIST [<comment>] 13.4
ASSEMBLER

Page 192

ASSEMBLER DIRECTIVES

Directive Form Section
LNOCONDLIST [b] .NOCONDLIST [<comment>] 13.4
NOLIST [b] .NOLIST 13.4
NOMACROLIST [b] .NOMACROLIST 13.4
NOPATCHLIST [b] .NOPATCHLIST 13.4
NOSYMTABLE [b] .NOSYMTABLE [<comment>] 13.4
ORG [b] .ORG b <value> [<comment>] 13.3
PAGE bl .PAGE 13.4
JPAGEHEIGHT [b] .PAGEHEIGHT [b] <integer> [<comment>] 13.4
HLATCHLIST [b] .PATCHLIST 13.4
PRIVATE [b] .PRIVATE [b] <id:integer list> [<comment>] 13.5
PROC [b]l .PROC b <identifier> [,<integer>] [<comment>] 13.1
PSECT [b] .PSECT [<comment>] 15.8
LPUBLIC [b] .PUBLIC [b] <idlist> [<comment>] 13.5
LRADIX [b] .RADIX [b] <integer> [<comment>] 13.8
REF [b] .REF [b] <idlist> [<comment>] 13.5
LRELFUNC [b] .RELFUNC [b] <identifier> [,<integer>] [<comment>] 13.1
RELPROC {b] .RELPROC b <identifier> [,<integer>] [<comment>] 13.1
JTITLE [b] .TITLE b <character string> [<comment>] 13.4
WORD [<label>] [b] .WORD b <valuelist> [<comment>] 13.2
ASSEMBILER

Page 193

ASSEMBLER DIRECTIVES

13.1 PROCEDURE DELIMITING DIRECTIVES

Every source program, including those to be used as stand-alone code files, must
contain at least one set of procedure-delimiting directives as described below. The
most frequent use of the Assembler is in assembling small routines intended to be
linked with a host compilation unit. The directives .PROC and .FUNC identify and
delimit assembly language procedures. .RELPROC and .RELFUNC identify and
delimit dynamically relocatable procedures. Dynamically relocatable procedures can
reside in the code pool and are subject to more of the System's memory management

strategies. See the UCSD p-System Linker manual for a more detailed description of
the use of these directives.

LEND The "end" directive marks the end of an assembly source file.
Form: [<label>] [b] .END
JFUNC The "function" directive identifies the beginning of a statically

relocatable assembly language function which is expected (by the
host compilation unit) to return a function result on top of the
stack. Otherwise, it is equivalent to the .PROC directive.

Forms [b] FUNC [b] <identifier> [,<integer>] [<comment>]
<identifier> is the name associated with the assembly procedure.
<integer> indicates the number of words of parameters passed to
this routine. The default for <integer> is 0.

Example: [FUNC RANDOM

PROC The "procedure" directive identifies the beginning of a statically
relocatable assembly language procedure. The procedure is
terminated by the occurrence of another delimiting directive in the
source file.

Form: [b] .PROC b <identifier> [,<integer>] [<comment>]
<identifier> is the name associated with the assembly procedure.
<integer> indicates the number of words of parameters passed to
this routine. The default for <integer> is O.

Example: PROC DLDRIVE,2

ASSEMBLER
Page 194

LRELFUNC

Forma:

Example:

RELPROC

Forms

Example:

ASSEMBLER DIRECTIVES

The "relocatable function" directive identifies the beginning of a
dynamically relocatable assembly language function which is
expected (by the host compilation unit) to return a function result
on the stack. Otherwise, it is equivalent to the .RELPROC
directive.

[b] .RELFUNC [b] <identifier> [,<integer>] [<comment>]
{identifier> is the name associated with the assembly function.
<integer> indicates the number of words of parameters passed to
this routine. The default for <integer> is 0.

LRELFUNC DAE

The "relocatable procedure" directive identifies the beginning of a
dynamically relocatable assembly language procedure. Such
assembly procedures must be position-independent (see the Linker
manual). The procedure is terminated by the occurrence of another
delimiting directive in the source file. '
[b] .RELPROC b <identifier> [,<integer>] [<comment>]

<identifier> is the name associated with the assembly procedure.
<integer> indicates the number of words of parameters passed to
this routine. The default for <integer> is 0.

RELPROC PQOF,3

ASSEMBLER
Page 195

ASSEMBLER DIRECTIVES

13.2 DATA AND CONSTANT DEFINITION DIRECTIVES

These directives assign string and numerical values.

-ASCII

Form:

Example:

BLOCK

Form:

Example:

BYTE

Form:
Example:

LQU

Form:
Example:

~ The "ASCII" directive converts character strings to a series of

ASCII byte constants in memory. The bytes are allocated in the
order that they appear in the string. An identifier in the label
field is assigned the location of the first character allocated in
memory.

[<label>] [b] .ASCII b <character string> [<comment>]

<character string> is any string of printable ASCII characters
enclosed in double quotes.'

JASCIT "HELLQO"Y

The "block" directive allocates and initializes a block of
consecutive bytes in memory. A byte value must be an absolute
quantity. The default value is 8. An identifier in the label field
is assigned the location of the first byte allocated.

[<label>] [b] .BLOCK b <length> [,<value>] [<comment>]

<length> is the the number of bytes to be allocated with the initial
value <value>.

TEMP .BLOCK 4,6H

The output code is

06 06 06 06 (Four bytes with value 06 hexadecimal)

The "byte" directive allocates and initializes values in one or more
bytes of memory. The values must be absolute byte quantities.
The default value is 0. An identifier in the label field is assigned
the location of the first byte allocated in memory.

[<label>] [b] .BYTE b [valuelist] [<comment>]

TEMP .BYTE 4 ; The code is 04 hexadecimal

The "equals" directive equates a value to a label. Labels can be
equated to an expression containing relocatable labels, externally
referenced labels, and/or absoclute constants. The general rule is
that labels equated to values must be defined before use. The
exception to this rule is for labels equated to expressions
containing another label. | ocal labels cannot appear in the label
field of an equate statement.

<label> [b] .EQU b <value> [<comment>]

BASE .EQU Ré

ASSEMBLER
Page 196

WORD

Forms:
Example:

Example:

ASSEMBLER DIRECTIVES

The "word" directive allocates and initializes values in one or more
consecutive words of memory. The values can be relocatable
quantities. The default value is 0. An identifier in the label field
is assigned the location of the first word allocated.
[<label>] [b] .WORD b <valuelist> [<comment>]
TEMP .WORD 0,2,,4
The output code is

0000

0002

0000 ; This is a default value.

0004
L1 .WORD L2
The output code is a word containing the address of the label L2.

ASSEMBLER
Page 197

ASSEMBLER DIRECTIVES

13.3 LOCATION COUNTER MODIFICATION DIRECTIVES

These directives affect the value of the location counter (LC or ALC) and the
location in memory of the code being generated.

JALIGN The "align" directive outputs enough O bytes to set the location
counter to a value which is a multiple of the operand value.
Form: [b] .ALIGN b <value> [<comment>]

Examples .ALIGN 2
This aligns the LC on a word boundary.

LORG The "origin” directive initializes the location counter to <value> if
used at the beginning of an absolute assembly program. Used
anywhere else, .ORG generates 0 bytes until the value of the
location counter equals <value>.

Forms [b] .ORG b <value> [<comment>]
Example: .ORG 1000H

ASSEMBLER
Page 198

ASSEMBLER DIRECTIVES

13.4 LISTING CONTROL DIRECTIVES

These directives allow you to control the format of the assembled listing file
generated by the Assembler. No code is generated by these directives, and their
source lines do not appear on assembled listings. See Section 16 for a more detailed
description of an assembled listing.

LASCIILIST The "ASCII list" directive prints all bytes generated by the .ASCII
directive in the code field of the list file, creating multiple lines in
the list file if necessary. Assembly begins with an implicit
LASCIILIST directive.

Forms [b] .ASCIILIST [Kcomment>]
.CONDLIST The "conditional list" directive lists the source code contained in
the unassembled sections of conditional assembly directives.
Forms [b] .CONDLIST [<comment>]
LIST The "list" directive enables output to the list file if a listing is not

already being generated. .LIST and .NOLIST can be used to
examine certain sections of source and object code without
creating an assembled listing of the entire program. Assembly
begins with an implicit .LIST directive.

Form: (b} .LIST

-MACROLIST The "macro list" directive specifies that all following macro
definitions are to have their macro bodies printed when they are
invoked in the source program. Assembly begins with an implicit
NOMACROLIST directive. See Section 15 for a description of
macro language.

Form: [b] .MACROLIST

NARROWPAGE The "narrow page" directive limits the width of an assembled
listing to 80 columns. The symbol table is printed in a narrow
format, source lines are truncated to a maximum of 49 characters,
and title lines on the page headers are truncated to a maximum of
40 characters.

Form: [b] .NARROWPAGE [<comment>]

ASSEMBLER
Page 199

ASSEMBLER DIRECTIVES

NOASCIILIST

Forms

NOCONDLIST

Form:
NOLIST
Form:

NOMACROLIST

Form:

NOPATCHLIST

Form:
NOSYMTABLE
Forms

PAGE

Forms:

PAGEHEIGHT

Forms:
Example:

The "no ASCII list" directive limits the printing of data generated
by the .ASCII directive to the number of bytes that fit in the code
field of one line in the list file.
[b] .NOASCIILIST [<comment>]

The "no conditional list" directive suppresses the listing of source
code contained in the unassembled sections of conditional assembly
directives. Assembly begins with an implicit .NOCONDLIST
directive.

[b] .NOCONDLIST [<comment>]

The "no list" directive suppresses output to the list file if it is not
already off.
[b]l .NOLIST

The "no macro list" directive specifies that all following macro
definitions are not to have their macro bodies printed when they
are invoked in the source program. Only the macro identifier and
parameter list are included in the listing. Assembly begins with an
implicit .NOMACROLIST directive.

[b] .NOMACROLIST

The "no patch list" directive suppresses the listing of back patches
of forward references. See Section 16 for a description of back
patches.

[b] .NOPATCHLIST

The "no symbol table" directive suppresses the printing of the

symbol table after each assembly routine in an assembled listing.
[b] .NOSYMTABLE [<comment>]

The "page" directive continues the assembled listing on the next
page by sending an ASCII form-feed character to the assembled
listing.

[b] .PAGE

The "page height" directive controls the number of lines printed in
an assembled listing between page breaks. Assembly begins with
an implicit .PAGEHEIGHT 59 directive.

[b] .PAGEHEIGHT [b] <integer> [<comment>]

JLPAGEHEIGHT 53

ASSEMBLER
Page 200

LPATCHLIST

Forms

LJJITLE

Form:
Example:

ASSEMBLER DIRECTIVES

The "patch list" directive lists occurrences of all back patches of
forward-referenced labels in the list file. Assembly begins with an
implicit .PATCHLIST directive. See Section 16 for a description
of back patches.

[b] .PATCHLIST

The "title" directive changes the title printed on the top of each
page of the assembled listing. The title can be up to 80
characters long. The Assembler changes the title to
"SYMBOLTABLE DUMPY when printing a symbol table. The title
reverts to its former value after the symbol table is printed. The
default value for the title is " '

[b] .TITLE b <character string> [<comment>]

LTITLE "INTERPRETER"

ASSEMBLER
Page 201

ASSEMBLER DIRECTIVES

13.5 PROGRAM LINKAGE DIRECTIVES

Linking directives allow communication between separately assembled and/or compiled
programs. See the Linker manual for a description of program linking.

LCONST

Form:

Example:

DEF

Forms:
Example:

JINTERP

Forms:
Example:

LPRIVATE

Form:

Example:

The "constant" directive gives the assembly procedure access to
globally declared constants in the host compilation unit.

[b] .CONST [b] <idlist> [<comment>]

Each element of <idlist> is the name of a global constant declared
in the host.

CONST LENGTH

The "define" directive makes one or more labels to be defined in
the current routine available to other assembly language routines
for reference.

[b] .DEF [b] <idlist> [<comment>]

LDEF STOP,RUN

The "interpreter” directive allows an assembly language procedure
to access code or data in the System interpreter. .INTERP is a

predefined symbol for a processor-dependent location in the

resident interpreter code. Offsets from this base location can be
used to access any code in the interpreter. Correct usage of this
feature requires a knowledge of the interpreter's jump vector for
this location. The use of the .INTERP directive is generally
restricted to systems applications.
This directive is valid when used in an expression.
EXECERR LEQU 12 ; Hypothetical routine offset.
BOMBINT LEQU JINTERP+EXECERR

B @BOMBINT

The "private" directive allows an assembly language routine to
store variables that are accessible only to the assembly language
routine. The directives are stored in the global data segment of the
host compilation unit.

[b]l .PRIVATE [b] <id:integer list> [<comment>]

Each elment of <id:integer list> is treated as a label defined in the
source code. <integer> determines the number of words of space
allocated for <id>.

PRIVATE PRINT,BARRAY:9

ASSEMBLER
Page 202

.PUBLIC

Forms

Example:
REF

Form:
Example:

ASSEMBLER DIRECTIVES

The "public" directive allows variables declared in the global data "
segment of the host compilation unit to be referred to by an
assembly language routine.

[b] .PUBLIC [b] <idlist> [<comment>]

Each element of <idlist> is the name of a global variable declared
in the UCSD p-System host.

PUBLIC [,J,LENGTH

The "reference" directive provides access to one or more labels
defined in other assembly language routines.

[b] .REF [b] <idlist> [<comment>]

REF BRITT

ASSEMBLER
Page 203

ASSEMBLER DIRECTIVES

13.6 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow the assembly of code based on previous results

or conditions.

ELSE

Forms

ENDC

Form:

Formg
Example:

See Section 14 for a description of conditional assembly features.

The "else" directive marks the start of an alternative section of
source statements.
[b] .ELSE [<comment>]

The "end conditional” directive marks the end of a conditional
section of source statements.
[b] .ENDC [Kcomment>]

The "if" directive marks the start of a conditional section of
source statements.

[b] .IF <expression> [= or <> <expression>] [<comment>]

JF TI994A

ASSEMBLER
Page 204

ASSEMBLER DIRECTIVES

13.7 MACRO DEFINITION DIRECTIVES

Macro definition allows you to create sections of code that can be conveniently

referred to later in the program. See Section 15 for a description of macro
language.

LENDM The "end macro" directive marks the end of a macro definition.
Forms [b] .ENDM [Kcomment>]

-MACRO The "macro” directive indicates the start of a macro definition.
Form: [bl .MACRO [b] <identifier> [<comment>]

<identifier> is used to invoke the macro being defined.
Example: .MACRO ADDWORDS

ASSEMBLER
Page 205

ASSEMBLER DIRECTIVES

13.8 MISCELLANEOUS DIRECTIVES

These directives allow including other files in the code to be assembled, permit
absolute as well as relative sections, and allow changing the default radix (base).

.ABSOLUTE

Form:
JASECT
Forms:

JINCLUDE

Form:

Example:

PSECT

Forms:

The "absolute" directive causes the assembly routine following the
directive to be assembled without relocation information. L_abels
become absolute addresses and label arithmetic is allowed in
expressions. Usage is valid only before the occurrence of the first
procedure delimiting directive. .ABSOLUTE must not be used
when creating a Pascal external procedure. See the Linker manual
for a description of absoclute code files.

[b]l .ABSOLUTE [<comment>]

The "absolute section" directive specifies the start of an absolute
section. See Section 3.5.3 for a description of .ASECT.
[b] .ASECT [<comment>]

The "include" directive causes the Assembler to assemble the file
named as an argument of the directive. When the end of this file
is reached, assembly resumes with the source code that follows the
directive in the original file. This feature is useful for including a
file of macro definitions or for splitting up a source program which
is too large to be edited as a single text file. .INCLUDE cannot
be used in an included source file (nested) and cannot be used in a
macro definition.

[b] .INCLUDE [b] <file identifier> [b <comment>]

The comment field of the .INCLUDE directive must be separated
from the file identifier by at least one blank character.

INCLUDE MYDISK:MACROS

The "program section" directive specifies the start of a program
section and terminates an absolute section. See Section 3.5.3 for
a description of .PSECT.

[b] .PSECT [<comment>]

ASSEMBLER
Page 206

ASSEMBLER DIRECTIVES

JSRADIX The "radix" directive sets the current default radix to the value of

the operand. Allowable operands are 2 (binary), 8 (octal), 10
(decimal), and 16 (hexadecimal). See Section 3.3.4 for a
description of radices. The initial defaults for the computer are
decimal for the default constant radix and hexadecimal for the
default list radix.

Form: [b] .RADIX [b] <integer> [<comment>]

Example: .RADIX 16 ; Hexadecimal default radix

ASSEMBLER
Page 207

SECTION 1l4: CONDITIONAL ASSEMBLY

Conditional assembly directives selectively exclude or include sections of source code
at assembly time. Conditional sections are initiated with the .IF directive and
terminated with the .ENDC directive and can contain the .ELSE directive. Control
over the inclusion of conditional sections is determined by conditional expressions.
Conditional sections can contain other conditional sections.

When the Assembler encounters an .IF directive, it evaluates the associated
expression to determine the condition value. If the condition is true, the source code
before the .ENDC or .ELSE directive is assembled and any code between .ELSE and
.ENDC is discarded. If the condition value is false, the source statements following
the directive are discarded until a matching .ENDC or .ELSE is reached. Then any
code between a matching .ELSE and .ENDC is assembled.

The syntax for a conditional section, using the conventions described in Section 13, is
as follows.

. IF <conditional expression>
<{source statements>

{ .ELSE

<source statements>]

-ENDC

ASSEMBLER
Page 208

CONDITIONAL ASSEMBLY

14.1 CONDITIONAL EXPRESSIONS

A conditional expression can be a single expression or a comparison of two character
strings or expressions. The single expression is false if it evaluates to zero and true
otherwise. The comparison of two character strings or expressions is for equality or
inequality (indicated by the symbols "=" and "<>", respectively).

The following example illustrates the use of conditional expressions. The indentations
are for clarity. They are not necessary in the actual file.

.IF LABEL1-LABEL2 ; Arithmetic expression. True if
LABELL1-LABELZ is nonzero and false if it
is zero.

o s o s This and following code, up to
.ELSE, is assembled if the outer
condition is true and any other
conditions are met.

LIF %l = “STUFF™® s Comparison expression. True if the
text of the first macro parameter is
equal to STUFF.

oo e : This code is assembled if both
the outer condition and inner
condition are true.

<ENDC ; Terminate inner section.

oo 3 This code is assembled if the outer
condition is true.

.ELSE ; End section assembled if the outer
section is true. Begin section
assembled if the outer condition is
false.

oo 3 This code is assembled if the first
condition is false.

+ENDC s Terminate outer section.

ASSEMBLER
Page 209

SECTION 15: MACRO LANGUAGE

The Assembler supports the use of a macro language in source programs. A macro
language allows you to associate a set of source statements with an identifying
symbol. When the Assembler encounters this symbol (known as a macro identifier) in
the source code, it substitutes the corresponding set of source statements (known as
the macro body) for the macro identifier and assembles the macro body as if it had
been included directly in the source program. A carefully designed set of macro
definitions can be used to simplify the development of assembly language routines.

You can enhance the macro language by including a mechanism for passing
parameters (known as macro parameters) to the macro body while it is being

expanded. In this way, a single macro definition can be used for an entire class of
subtasks.

Here is a simple example.

Macro definition...

Macro identifier is STRING.

Macro body.

%l and %2 are parameter declarations.
.BYTE %2 ; Second parameter is length byte.
LASCIT %1 First parameter is argument.

-MACRO STRING

we ez we e

“e we 8

»ENDM End macro definition.

STRING "WRITE",S ; First macro-call parameters
are WRITE and 5.

STRING "TYPE SPACE",10 ;3 Second macro-call parameters

are TYPE SPACE and 10.

This is what gets assembled.

-BYTE 5 ;3 Data string declarations.
JASCIT "WRITE"

.BYTE 10
<ASCIT "TYPE SPACE"

ASSEMBLER
Page 210

MACRO LANGUAGE

15.1 MACRO DEFINITIONS AND CALLS

Macro definitions can occur anywhere in a source program, delimited by the
directives .MACRO and .ENDM. Macro definitions must appear before their macro
calls are assembled. The macro identifier must be unique to the source program
except when you are redefining a predefined machine instruction name as a macro

identifier. A macro definition cannot include another macro definition. However, it
can include macro calls.

Macro calls can occur anywhere in a source program where code can be generated.
A macro call congists of a macro identifier followed by a list of parameters. The

parameters are delimited by commas and terminated by a carriage return or
semicolon.

When the Assembler encounters a call to a macro, it checks to see if the macro has
been defined. If it has not, an error message is generated. If it has been defined,
the body of the macro is copied into the source program. As part of the copy
process, parameters and references are resolved.

After the copy is completed, the assembly process continues, starting with the copied
macro body. When another macro call is encountered, whether or not it is within the
previous macro (a nested macro call), the copy process is repeated.

The following demonstrates the use of macros. Macro ONE is defined, followed by
the definition of macro TWOQO, followed by the main code.

-MACRO ONE
MoV R1,R1
TWO

MOV R3,R3
«ENDM

LMACRO TWO
MoV R2,R2
- ENDM

.PROC MACTEST, 1

MOV RO,RO
ONE

MOV R4 ,R4
.END

ASSEMBLER
Page 211

MACRO LANGUAGE

The following is the code assembled with the portions of the macros identified by #
followed by the number of the macro from which they were copied.

.PROC MACTEST,1

MOV RO,R0O
ONE

#1 MOV R1,R1

#1 WO

#2 MOV R2,R2

#1 MOV R3,R3
MOV R4,R4
-END

ASSEMBLER
Page 212

MACRO LANGUAGE

15.2 PARAMETER PASSING

Macro parameters are referred to in a macro body by the symbol "%n", where "n" is
a single nonzero decimal digit. Upon scanning this symbol, the Assembler replaces it
with the text of the nth macro parameter. Macro parameters are not expanded
within the quotes of an ASCII data string.

There are several possibilities when the Assembler is substituting the parameters
passed to a macro into the parameter list defined by the macro. The simplest case is
when the number of parameters passed in the macro call is the same as the number

of parameters expected by the macro. Then a simple substitution is made. For
example, if a macro is defined as '

.MACRO ONE
MoV %2, %1
- ENDM

and is called with
ONE R2,R1
then the macro assembles to

ONE R2,R1
i# MOV R1,R2

If the macro call passes fewer parameters than the macro expects, then the unpassed
macro is left blank. For example, if the macro ONE defined above is called with

ONE R2
then the macro assembles to

ONE R2

and an error occurs.

If more macro parameters are passed than are necessary, the extra parameters are
ignored. For example, if the macro ONE defined above is called with

ASSEMBLER
Page 213

MACRO LANGUAGE

ONE R2,R1,R3
then the macro assembles to

ONE R2,R1
MOV R1,R2

A parameter passed by a macro call may be used in a nested macro call. For
example, suppose macros ONE and TWO are defined as follows.

MACRO ONE
MOV RO,R1
T™WO %1 ,%2
.ENDM

.MACRO TWO

5 %2 ,%1
.ENDM

If macro one is then called with
ONE R4 ,R5

then the following is the result of the assembly process.

ONE R4,R5
f#1 MoV RO,R1
#1 T™O R4,R5
#2 S R5,R4

ASSEMBLER
Page 214

MACRO LANGUAGE

15.3 SCOPE OF LABELS IN MACROS

Local label names declared in a macro body are local to that macro. Thus, a section
of code that contains a local label $1 and a macro call whose body also has the local
label $1 assembles without errors. (Compare this with what happens when two
occurrences of $1 fall between two regular labels.) This feature allows local labels
to be used freely in macros without fear of conflicting with the rest of the program.

Declaring a regular label in a macro body is incorrect if the macro is called more
than once since the label would be substituted twice into the source program and
flagged by the Assembler as a previously defined label. Location-counter-relative
addressing can be used but is prone to errors in nontrivial applications. Instead, use
labels that are local to the macro body. The maximum of 21 local labels active at
any instant still applies.

15.3.1 Local i_abels as Macro Parameters

The passing of local labels as parameters has a special property. Unlike other macro
parameters, local labels are not passed as uninterpreted text. The scope of a local
label passed in a macro call does not change as it is passed through increasing levels
of macro nesting, regardless of naming conflicts along the way. One use of this
property is passing an address to a macro which simulates a conditional branch
instruction.

The following is an example of passing local labels as macro parameters.

.MACRO EIN
JEQ $1
IMP %1
$1
.ENDM
ASSEMBLER

Page 215

MACRO LANGUAGE

In a program, the code

TWIE
MoV ICHI ,NI
EIN $1
B *R11
$1
CLR SAN
assembles as
TWIE
MOV 1CHI ,NI ;3 Looks confusing, but if the
listing were off, the result
is what the programmer meant
to occur.
JEQ $1 ; This refers to the macro
local label.
IvP $1 ;s This refers to the outside
$1.
$1 ; Macro local label.
B *R11
$1 ; Outside $1.
CLR SAN
ASSEMBLER

Page 216

SECTION 1l6: ASSEMBLER OUTPUT

The Assembler can generate two types of output files. A code file is always
produced, but you control whether an assembled listing of the source file is produced.
A description of the code file format is beyond the scope of this manual.

An assembled listing displays each line of the source program, the machine code
generated by that line, and the current value of the location counter. You can
optionally have it display the expanded form of all macro calls in the source program.
Any errors that occur during the assembly process have messages printed in the
listing file, usually immediately following the line of source code that caused the
error. A symbol table is printed at the end of the listing to serve as a directory for
locating all labels declared in the source program.

ASSEMBLER
Page 217

ASSEMBLER OUTPUT

16.1 SOURCE LISTING

A paginated, assembled listing is produced when you respond to the Assembler's listing
prompt with a list file name. The default listing is 132 characters wide and 55 lines
per page. Each line of a source program is included in the assembled listing, except
for source lines that contain list directives. Source statements that contain the
equate directive .EQU have the resulting value of the associated expression listed to
the left of the source line.

Macro calls are always listed, including the list of macro parameters and the
comment field, if any. The macro is expanded by listing the body, with all formal
parameters replaced by their passed values, if the macro list option ((MACROLIST)
was enabled when the macro was defined. Macro expansion text is marked in the
assembled listing by the character "#" to the left of the source listing. Comment
fields in the definition of the macro body are not listed in macro expansions.

Source lines with conditional assembly directives are listed. However, source
statements in an unassembled part of a conditional section are not listed.

ASSEMBLER
Page 218

ASSEMBLER OUTPUT

16.2 ERROR MESSAGES

Error messages in assembled listings have the same format as the error messages sent
to the screen (see Section 2) except that the prompt is not included.

ASSEMBLER
Page 219

ASSEMBLER QUTPUT

16.3 CODE LISTING

The code field lies to the left of the source program listing. It contains the value of
the location counter, along with either the code generated by the matching source
statement or the value of an expression occurring in a statement that includes the
equate directive, .EQU. All values are printed in hexadecimal notation. Separately
produced bytes and words of code on the same line are separated by spaces. '

16.3.1 Forward References

When the Assembler produces a byte or word quantity that is the result of evaluating
an expression that includes an undefined label, it lists an * for each digit of the
quantity printed. For example, an unresolved hexadecimal byte is listed as *¥, while
an unresolved octal word appears as ***¥%¥%, [f the ,PATCHLIST directive is used,
the Assembler lists patch messages every time it encounters a label declaration that
enables it to resolve all occurrences of a forward reference to that label. The
messages (one for every backpatch performed) appear before the source statement
that contains the label in guestion, and are of the form

<location in code file patched>* <{patch value>

With this feature, the listing describes the contents of each byte or word of code. If
neatness of the assembled listing is more desirable, the .NOPATCHLIST directive
suppresses the patch messages.

16.3.2 External References

When the Assembler produces a word quantity that is the result of evaluating an
expression that contains an externally referenced label, the value of that label (which
cannot be determined until link time) is taken as zero. Therefore, the value reflects
only the result of any assembly-time constants that were present in the expression.

16.3.3 Multiple Code Lines

Sometimes it is possible for a source statement to generate more code than fits in
the code field. In most cases, the code is listed on successive lines of the code field
with corresponding blank source listing fields. However, in the case of the .ORG,
+ALIGN, and .BLOCK directives, the code field is limited to as many bytes as fit in
the code field of one line because most uses of these directives generate large
numbers of byte values that are not useful.

ASSEMBLER
Page 220

ASSEMBLER OUTPUT

16.4 SYMBOL TABLE

The symbol table is an alphabetically sorted table of entries for all symbols declared
in the source program. Each entry consists of the symbol identifier, the symbol type,
and the value assigned to that symbol. The symbol identifiers are defined in a
dictionary printed at the top of the symbol table. Symbols equated to constants have
their constant values in the third field, while program labels are matched with their
location counter offsets. All other symbols have dashes in their value field, as they
possess no values relevant to the listing.

ASSEMBLER
Page 221

ASSEMBLER OQUTPUT

16.5 EXAMPLE

The following program calls an assembly language program named REVERSE.

PROGRAM TRYREVERSE
VAR A:STRING;
PROCEDURE REVERSE (VAR S:STRING) ; EXTERNAL ;
BEGIN
A:='THIS IS A STRING';
REVERSE(A) ;
WRITELN(A);
END.

The program REVERSE is listed below.

.PROC REVERSE,1l

sREVERSE A STRING. CALLED AS REVERSE(S)

MOV *R10+,R1 ;;GET THE POINTER TO THE STRING
MovB *R1l+,R2 sLENGTH OF STRING

SRL R2,8 sMAKE IT A FULL WORD

MOV R1,R3 ;A SECOND COPY OF THE POINTER

A R2,R3

DEC R3 sPOINT TO LAST BYTE OF STRING

SRL R2,1 sNUMBER OF PAIRS OF CHARACTERS
$1 MOVB *R1,R&4 :LEFT BYTE TO TEMP

MOVB *R3,*R1+ ;RIGHT BYTE TO LEFT BYTE

MOVB R4, *R3 sTEMP TO RIGHT BYTE

DEC R3 sGET READY FOR NEXT

DEC R2 sDONE?

INE $1 sNO, GO BACK

B *R11 sRETURN TO CALLER

.END

ASSEMBLER

Page 222

ASSEMBLER CUTPUT

When assembled, REVERSE results in the following assembled listing.

Page - 0 File:SYSTEM.WRK.TEXT 9900 Assembler 11.0 [e.3]
0000 .PROC REVERSE, 1

0000| sREVERSE A STRING. CALLED AS REVERSE(S)

0000 CO7A MOV *R10+,R1 sGET THE POINTER TO THE STRI
0002| DO0Bl MOVB *R1+,R2 ;s LENGTH OF STRING

0004| 0982 SRL R2,8 sMAKE IT A FULL WORD

00061 cocCl MOV R1,R3 ;A SECOND COPY OF THE POINTE
0008| AOC2 A R2,R3

000A| 0603 DEC R3 sPOINT TO LAST BYTE OF STRIN
oooci 0912 SRL R2,1 sNUMBER OF PAIRS OF CHARACTE
000E|l D111 $1 MOVB *R1,R4 :LEFT BYTE TO TeEmP

0010| DC53 MOVB ¥R3,*¥R1l+ sRIGHT BYTE TO LEFT BYTE
00121 D4ca MOvB R4 ,*R3 s TEMP TO RIGHT BYTE

0014] 0603 DEC R3 sGET READY FOR NEXT

00161 0602 DEC R2 s DONE?

00181 16FA INE $1 sNO, GO BACK

001A] 045B B *R11 ‘ sRETURN TO CALLER

golc| .END

Page - 1 REVERSE Files:SYSTEM.WRK. TEXT Symbol Table

AB - Absolute LB - Label UD - Undefined MC - Macro
RF Ref DF - Def PR - Proc FC - Func
PB - Public PV - Private CS - Consts

REVERSE PR ----|

Page - 2 REVERSE File:SYSTEM.WRK.TEXT Symbol Table
Assembly complete: 17 lines

0 errors flagged on this assembly

ASSEMBLER
Page 223

SECTION 17: APPENDICES

The following are the appendices contained in this section.

Appendix Section
Memory Organization 171
CRU and Interrupt Structure 17.2
Character Set 17.3
Assembler Directive Table 17.4
Hexadecimal Instruction Table 17.5
Alphabetical Instruction Table 17.6
Program Development with Multi-Drive Systems 17.7
ASSEMBLER

Page 224

APPENDICES

17.1 MEMORY ORGANIZATION

To understand memory organization, you must understand some basic terms and how
they apply to the T1 Home Computer.

The Central Processing Unit (CPU) of the computer contains all the circuitry for
arithmetic functions, comparisons, hardware registers, and all other functions that
actually process computer instructions. The CPU processes all commands and
instructions fed into the computer and accesses all memory spaces. The CPU in the
Home Computer is the TMS9900 Microprocessor.

One way to divide memory is into RAM (Random Access Memory) and ROM (Read
Only Memory). RAM is a memory which can be written to, or read from, by any
program. It stores programs and data. ROM is a memory which can only be read
but not altered by any program. It is used to store information used by the
computer itself, such as the built-in TI BASIC language and the makeup of the
alphanumeric characters.

So that you can refer to any specific byte in the computer's memory, each byte is
assigned a number. These sequential numbers, called the addresses of the bytes, are
unique within each of the computer's memory spaces. They are usually referred to in
hexadecimal notation.

The 9900 microprocessor has an address space of 64K bytes. On the Home
Computer, some of this address space contains RAM and some contains ROM. In
addition, some addresses are used for access to special devices, such as sound and
speech, and to other areas of memory, such as VDP RAM and GROMSs.

17.1.1 Directly Addressable Memory

When all possible devices are connected, 64K (65,536 or 10000H) bytes of memory are
directly addressable.

Addresses 0000H through 1FFFH are built into the console. They contain 8K bytes of
ROM that contain the TI BASIC language and other information necessary to the
functioning of the computer.

Addresses 2000H through 3FFFH are the 8K bytes of RAM that make up the low
memory of the Memory Expansion unit. They can only be used when the Memory
Expansion unit is connected. The p-System uses this portion of RAM for its tables.

ASSEMBLER
Page 225

APPENDICES

Addresses 4000H through 5FFFH are built into various peripherals. - They contain up
to 8K bytes of ROM for the Device Service Routine used to run peripheral devices
such as disk drives and printers. Pascal also uses 12K bytes of ROM in this space.
These ROMs are selected by CRU operations (see Section 9), so several ROMs can be
at the same address.

Addresses 6000H through 7FFFH are available on the command module port. Some
command modules have ROM in this space.

Addresses 8000H through 9FFFH are built into the console. They contain all of the
memory-mapped device locations.

Addresses 0A000H through OFFFFH are the 24K bytes of RAM that make up the high
memory of the Memory Expansion unit. They can only be used when the Memory
Expansion unit is connected. The majority of this area is available for your use
under the p-System.

The following memory map summarizes the above information.

CPU Memory Use
General Case

0000H T R +

I (Console ROM) |

| Two 4K ROM chips |
2000H e m e e e e e mmmmm e ———— +

4000H T +

| Peripheral RCMs (mapped) ‘ |

| for Device Service Routine |
6000H e e e e e e e = +

| Application ROMs in Conmand Module |
8000H g R +

| 3 Memory-mapped devices for |

| VDP, CROM, Sound, and Speech |
0A000H OV U U S R +

OFFFFH 4ec=-ccmecccemcccmmcmcmccece;—e—ece—eocmeean +

ASSEMBLER
Page 226

APPENDICES

17.1.1.1 Expansion RAM

The Memory Expansion unit is a 32K-byte peripheral on an eight-bit bus. It has two
blocks of memory, an 8K block from 2000H through 3FFFH and a 24K block from
addresses OAO00OH through OFFFFH. Addresses OFFD8H through OFFFFH are used for
XOP 1 on the TI-99/4A.

17.1.1.2 ROM

All the ROMs (Read Only Memory) are directly accessible by an assembly language
program. Two 4K-byte console ROMs are located at addresses 0000H through 1FFFH.

They contain the console operating system, the GPL interpreter, and part of the TI
BASIC interpreter.

The memory block at addresses 4000H through SFFFH is assigned to the peripheral
ROMs and the p-Code ROMS which can be accessed by setting the bit assigned for
the CRU (Communication Register Unit) to enable the particular ROM. These ROMs
contain DSRs (Device Service Routines), and the p-Code interpreter. They are
located in a peripheral. See Section 9 for more information.

Application ROMs are contained in command modules. They occupy address 6000H
through 7FFFH.

17.1.1.3 GROM

A GROM (Graphics Read Only Memory) is another type of ROM. It is designed to
contain GPL (Graphic Programming Language) programs which are executed by the
GPL interpreter in the console. GPL is commonly used in applications software and
can only be executed through a GROM. A GROM can also contain p-Code programs
that are executed by the p-System.

A GROM is a memory-mapped device, just as VDP RAM is. A GROM's memory is
addressed by writing its address to a specific CPU address and reading data from
another specified CPU address.

GROM addresses are from 0000H through OF7FFH. Each GROM has 6K bytes of
memory that start from an even-numbered first-digit address. For example, GROM 0
is at addresses 0000H through 17FFH and GROM 1 is at addresses 2000H through
37FFH. The computer can access up to eight GROMs at a time.

ASSEMBLER
Page 227

APPENDICES

GROMs 0, 1, and 2 are in the console and contain the monitor program, part of the
console operating system, and most of the TI BASIC interpreter. The GROMs are
used when the p-Code System is not in use on the Home Computer. Five additional
GROMS can be located in a Command Module. The number of GROMs used in a
Command Module depends on the size of the applications program.

17.1.2 Memory-Mapped Devices

The memory-mapped devices are VDP (Video Display Processor) RAM, the Speech
Synthesizer, the sound processor, GROMs, and so forth. VDP RAM is discussed in
this section.

The VDP RAM, located in the console, is used chiefly for common video functions,
such as screen images, character pattern tables, color tables, etc.

When T1 BASIC is in use, VDP RAM also contains the TI BASIC program, the
program symbol table, the value stack, and the string space. When the p-Code
System is in use, VDP RAM is also used to hold some of the p-Code programs.
Another part of VDP RAM functions as a PAB (Peripheral Access Block) to pass
information from a file to the appropriate DSR (Device Service Routine). Assembly
language programs cannot be executed from VDP RAM.

VDP RAM is a memory-mapped area of 16K (16,384 or 4000H) bytes numbered 0000H
through 3FFFH. VDP RAM addresses are automatically incremented, so only one
address in CPU RAM is required to read or write a specific block of data. There are
assigned addresses for each I/O function in the RAM. For example, the VDP RAM
read data Register is located at CPU RAM address 8800H, the VDP read status
Register is found at CPU RAM address 8802H, the VDP write data Register is at

CPU RAM address 8CO0H, the VDP write address Register is at CPU RAM address
8CcozH.

The diagram on the next page shows the memory of VDP RAM when it is being used
by the p-System.

ASSEMBLER
Page 228

APPENDICES

VDP RAM Memory Use

p-System
0000+ R T T T +
| Pattern Sprite |
I Generator Pattern |
| Table Generator |
| Table |
| (coincident) |
0B00H 4-- o mcecc e e ccceemccemeeeec—am—m——————— +
| Screen Image Table |
0BCOH R e L L +
| Pattern Color Table |
OBEOH = 4 - oo oo mcccccccmccmmeccaomca e ————— +
| Circular Keyboard Buffer |
0cooH R e T o E T TR +
| Sprite Name Table |
OCBOH ~ 4ec oo e e e cc e cme—————————————— +
| Sprite Movement Table |
CD80H frocemerrnre e B e T +
| Keyboard Layout Area]
ODF 8H o o e e e e 0 B B e e e @ +
| Interpreter's Memory |
| |
| |
TOPMEM 4 cmm e e s c e e cccm e e mcm e m o +
| Dynamic DSR Allocations]
R I I R +
ASSEMBLER

Page 229

APPENDICES

17.2 CRU AND INTERRUPT STRUCTURE
The following describes CRU use and interrupt handling.
17.2.1 CRU Allccation

The Communication Register Unit (CRU) is used for system access to peripherals.
There are 4K CRU bits, numbered 0000H through OFFFH. The CRU address loaded
into Workspace Register 12 is twice the bit number. Thus, loading Workspace
Register 12 with 1000H sets the base equal to CRU bit 800H. (See Section 9 for more
information.) Of the available 4K of CRU bits, the first 1K, at addresses 0000H
through 07FEH, are used internally by the console. This includes the TMS9901 1/0
chip, which addresses the keyboard, joysticks, cassette, etc.

The second 1K, at addresses 0800H through OFFEH, are reserved for future use.
The last 2K, at addresses 1000H through 1FFEH, are reserved for the peripherals that

are attached to the console port. A block of 128 CRU bits is assigned to each
peripheral as shown below. AO through Al5 are the CPU address bus lines.

Device

CRU Addresses A3 A4 A5 A6 A7 Use (Peripheral) Number
0000H - OFFEH 0 x x x X Internal use
1000H - 10FEH 1 0 0 0 0O Reserved 0
1100H - 11FEH 1 0 0 0 1 Disk controller 1
1200H - 12FEH 1 0 0 1 0O Reserved 2
1300H - 13FEH 1 0 0 1 1 RS232, ports 1 and 2 3
1400H - 14FEH 1 0 1 o0 0O Reserved 4
1500H - 15FEH 1 0 1 0 1 RS232, ports 3 and 4 5
1600H - 16FEH 1 0 1 1 ©0 Reserved 6
1700H - 17FEH 1 0 1 1 1 Reserved 7
1800H - 18FEH 1 1 0 0 0O Thermal Printer 8
1900H - 19FEH 1 1 0 0 1 Future expansion 9
1A00H - 1AFEH 1 1 0 1 0O Future expansion 10
1B0OH - 1BFEH 1 1 0 1 1 Future expansion 11
1CO0H - 1CFEH 1 1 1 06 0 Future expansion 12
1D0CH - 1DFEH 1 1 1 0 1 Future expansion 13
1E00H -~ 1EFEH 11 1 1 0 Future expansion 14
1FO0H - IFFEH 1 1 1 1 1 P-Code peripheral 15

ASSEMBLER

Page 230

APPENDICES

CRU address 0 at A8 through Al4 is the memory enable bit in each device address
space. Setting the bit to 1 turns the device ROM/RAM on, and resetting it to 0
turns it off. This enables the address space from 4000H through 5FFFH reserved for
the peripheral ROM.

17.2.2 Interrupt Handling

The highest priority interrupts are the reset and load vectors with a priority of O.
The reset interrupt is used when the computer is turned on. Interrupt priority 1
connects through the TMS9901 Programmable Systems Interface for interrupt

expansion. The following shows the interrupts available.

9900 Interrupts

Interrupt Vector Memory Device

Level Address CPU Pin Assignment

Highest 0000H RESET Reset

0 OFFECH LOAD l_oad

1 0004H INT1 External Device (TMS9900)

Note that the lower priority CPU interrupts are not used. The following additional
interrupts are implemented on the TMS$9901.

9901 Interrupt Mapping

Address CRU Bit 9901 Pin Function

00coH 0 Control Control.

0002H 1 INT1 17 External.

0004H 2 INT2 18 VDP vertical
synchronization.

0006H 3 INT3 9 Clock interrupt, keyboard
enter line, and joystick fire
button.

0008H 4 INT4 8 Keyboard 1 line and
joystick left.

000AH 5 INTS5 7 Keyboard p line and

: joystick right.

000CH 6 INT6 6 Keyboard O line and
joystick down.

000EH 7 INT7 (P15) 34 Keyboard shift line and

joystick up.

ASSEMBLER
Page 231

APPENDICES

Address CRU Bit 9901 Pin Function
0o10H 8 INT8 (P14) 33 Keyboard space line.
0012H 9 INT9 (P13) 32 Keyboard q line.
0014H 10 INT10 (P12) 31 Keyboard 1 line.
0016H 11 INT11 (P11) 30 Not used.
0018H 12 INT12 (P10) 29 Reserved,
001AH -~ O01EH 13 - 15 INT13 - INT15 28, 27, 23 Not used.
0020H 16 PO 38 Reserved.
0022H 17 Pl 37 Reserved.
0024H 18 P2 26 Bit 2 of keyboard select.
0026H 19 P3 22 Bit 1 of keyboard select.
0028H 20 P4 21 Bit O of keyboard select.
002AH 21 P5 20 Not used.
002CH 22 Pé6 19 Cassette control 1.
002EH 23 P7 (INT15) 23 Cassette control 2.
0030H 24 P8 (INT14) 27 Audio gate.
0032H 25 P10 (INT12) 28 Magnetic tape output.
0036H 27 P11 (INT11) 30 Magnetic tape input.
0038H - O03EH 28 - 31 Pi2 - P15 31 - 34 Not used.

ASSEMBLER

Page 232

APPENDICES

17.3 CHARACTER SET

The p-system recognizes the ASCII characters listed in the following table. The
table includes the ASCII code for each character represented as both a hexadecimal

and decimal value. The p-System also recognizes the six special characters shown in
the second table.

Primary Character Set

Hexadecimal Decimal
Value Value Character
20 32 Space
21 33 i
22 34 "
23 35 #
24 36 $
25 37 %
26 38 &
27 39 !
28 40 (
29 41)
2A 42 *
28 43 +
2C a4 R
2D 45 -
2E 46 .
2F 47 /
30 48 0
31 49 1
32 50 2
33 51 3
34 52 4
35 53 5
36 54 6
37 55 7
38 56 8
39 57 9
3A 58 :
3B 59 H
3C 60 <
3D 61 =
ASSEMBLER

Page 233

APPENDICES

Hexadecimal Decimal
Value Value Character
3E 62 >
3F 63 ?
40 64 @
41 65 A
42 66 B
43 67 C
44 68 D
45 69 E
46 70 F
47 71 G
48 72 H
49 73 I
4A 74 J
48 75 K
ac 76 L
4D 77 M
4 78 N
4F 79 O
50 80 P
51 81 Q
52 82 R
53 83 S
54 B4 T
55 85 U
56 86 \
57 87 w
58 88 X
59 89 Y
S5A 90 VA
61 97 a
62 98 b
63 99 c
64 100 d
65 101 e
66 102 f
67 103 g
68 104 h
69 105 i
6A 106 j
ASSEMBLER

Page 234

APPENDICES

Hexadecimal Decimal
Value Value Character
6B 107 k
6C 108 |
6D 109 m
6E 110 n
6F : 111 o
70 112 P
71 113 q
72 114 r
73 115 s
74 116 t
75 117 u
76 118 v
77 119 W
78 120 X
79 121 y
1A 122 z
78 123 {
D 125 }
7E 126 ~
Special Characters
Hexadecimal Decimal
Value Value Character
58 91)
5C 92 \
5D 93]
5E 94 -
SF 95 _
60 96 Grave accent
ASSEMBLER

Page 235

APPENDICES

17.4 ASSEMBLER DIRECTIVE TABLE
Assembler directives let you supply data to be included in the program and exercise
control over the assembly process. The following conventions are used in the
Assembler directive syntax definitions.

Special characteré and items in capital letters must be entered as shown.

Items within angle brackets (<>) are defined by the user.

Items within square brackets ([]) are optional.

The word "or" indicates a choice between two items.

Items in lower-case letters are generic names for classes of items.
The following terms are names for classes of items as used in this section.

b = the occurrence of one or more blanks.

integer = any legal integer constant as defined in Section 3.3.4.

label = any legal label as defined in Section 3.4.1.

expression = any legal expression as defined in Section 3.3.5.

value = any label, constant, or expression. The default value is 0. .

valuelist = a list of zero or more values separated by commas.

identifier = a legal identifier as defined in Section 3.3.2.

idﬁst = a list of one or more identifiers separated by commas.

idsinteger list = a list of one or more identifier-integer pairs separated by a colon,

with each pair separated by a comma. The colon-integer part is
optional and has a default value of 1.
comment = any legal comment as defined in Section 3.4.4.
character string = any legal chafacter string as defined in Section 3.3.3.

ASSEMBLER
Page 236

i

s

APPENDICES

file identifier = any legal name for a p-System text file.

Directive Form_ Section
.ABSOLUTE [b] .ABSOLUTE [<comment>] 13.8
ALIGN [b] .ALIGN b <value> [<comment>] 13.3
LASCII [<iabel>] [b] .ASCII b <character string> [<comment>] 13.2
JASCIILIST [b] .ASCIILIST [<comment>] 13.4
JASECT (b] .ASECT [<comment>] -13.8
.BLOCK [<iabel>] [b] .BLOCK b <length> [,<value>] [<comment>] 13.2
BYTE [<label>] [b] .BYTE b [valuelist] [<comment>] 13.2
LCONDLIST {b] .CONDLIST [<comment>] 13.4
JLCONST [b] .CONST [b] <idlist> [<comment>] 13.5
DEF [b] .DEF [b] <idlist> [<comment>] 13.5
-ELSE [b] .ELSE [<comment>] 13.6
LEND [Klabel>] [b] .END 13.1
LENDC ib] .ENDC [Kcomment>] 13.6
LENDM [b] .ENDM [<comment>] 13.7
LE£QU <label> [b] .EQU b <value> [<comment>] 13.2
FUNC [b] FUNC [b] <identifier> [,<integer>] [<comment>] 13.1
JF [b] .IF <expression> [= or <> <expression>] [<comment>] 13.6
INCLUDE [b] .INCLUDE [b] <file identifier> [b <comment>] 13.8
JINTERP valid when used in <expression> 13.5
LIST {b] .LIST 13.4
.MACRO [b] .MACRO [b] <identifier> [<comment>] 13.7
.MACROLIST {b] .MACROLIST 13.4
.NARROWPAGE [b] .NARROWPAGE [<comment>] 13.4
LNOASCIILIST [b] .NOASCIILIST [<comment>] 13.4
.NOCONDLIST {b] .NOCONDLIST [<comment>] 13.4
NOLIST (bl .NOLIST 13.4
.NOMACROLIST [b] .NOMACROLIST 13.4
NOPATCHLIST [b] .NOPATCHLIST 13.4
NOSYMTABLE [b] .NOSYMTABLE |<comment>] 13.4
.ORG [b] .ORG b <value> [<comment>] 13.3
PAGE [(b] .PAGE 13.4
PAGEHEIGHT [b] .PAGEHEIGHT [b] <integer> [<comment>] 13.4
PATCHLIST [b] .PATCHLIST 13.4
PRIVATE [b] .PRIVATE [b] <id:integer list> [<comment>] 13.5
PROC [bl .PROC b <identifier> [,<integer>] [<comment>] 13.1
PSECT [b] .PSECT [<comment>] 13.8
.PUBLIC [b] .PUBLIC [b] <idlist> [<comment>] 13.5

ASSEMBLER
Page 237

APPENDICES

Directive Form Section
RADIX [b] .RADIX [b] <integer> [<comment>] 13.8
REF (bl .REF [b] <idlist> [<comment>] 13.5
RELFUNC [b] .RELFUNC [b] <identifier> [,<integer>] [<comment>] 13.1
RELPROC {b] .RELPROC b <identifier> [,<integer>] [<comment>] 13.1
JTITLE [b] .TITLE b <character string> [<comment>]) 13.4
WORD [<label>] [b] .WORD b <valuelist> [<comment>] 13.2

ASSEMBLER
Page 238

17.5 HEXADECIMAL INSTRUCTION TABLE

APPENDICES

The following table lists the TMS9900 assembly language instructions, their format,

and the section in which they are described.

hexadecimal operation code.
code, see Section 17.6.

Hexadecimal Mnemonic
Operation Operation
Code Code
0200 LI
0220 Al
0240 ANDI
0260 ORI
0280 CI
02A0 STWP
02Co STST
02E0 LWPI
0300 LIMI
0340 IDLE
0360 RSET
0380 RTwWP
03A0 CKON
03Co CKOF
03EO0 LREX
0400 BLWP
0440 B

0480 X
04CO CLR
0500 NEG
0540 INV
0580 INC
05C0 INCT
0600 DEC
0640 DECT
0680 BL
06CO SwPB

Name

Load Immediate

Add Immediate

AND Immediate

OR Immediate

Compare Immediate

STore Workspace Pointer

STore STatus

Load Workspace Pointer
Immediate

Load Interrupt Mask
Immediate

IDLE

ReSET

ReTurn with Workspace
Pointer

ClocK ON

ClocK OFf

Load or REstart eXecution

Branch And Load Workspace
Pointer

Branch

EXecute

ClL.eaR operand

NEGate

INVert

INCrement

INCrement by Two

DECrement

DECrement by Two

Branch and Link

SWaP Bytes

ASSEMBLER
Page 239

They are in order according to their
For an alphabetical listing by their mnemomic operation
See Section 5 for an explanation of the format.

Format Section
VIII 10.1
VIII 6.4
VIII 11.1
VIII 11.2
VIII 8.3
VIII 10.7
VIII 10.6
VIII 10.3
VIII 10.2
VIl 9.6
VII 9.6
VII 7.17
VII 9.6
VII 9.6
VII 9.6
VI 7.3
VI 7.1
Vi 7.18
Vi 11.5
VI 6.11
\'Al 11.4
VI 6.8
VI 6.9
VI 6.5
VI 6.6
VI 7.2
VI 10.8

APPENDICES

Hexadecimal
Operation
Code
0700
0740
0800
0900
0AQ0
0800
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
1A00
1B00O
1Co0
1D00
1E00
1F00
2000
2400
2800
2C00
3000
3400
3800
3C00
4000
5000

6000
7000
8000
9000
A000

Mnemonic
Operation
Code
SETO
ABS
SRA
SRL
SLA
SRC
JMP
JLT
JLE
JEQ
JHE
JGT
JNE
JNC
JocC
JNO
JL

JH
JOP
SBO
SBZ
B
CcoC
CZC
XOR
XOP
LDCR
STCR
MPY
D1V
SZC
5ZCB

SB

CB

Name

SET to One

ABSolute value

Shift Right Arithmetic
Shift Right Logical
Shift Left Arithmetic
Shift Right Circular
Unconditional JuMP
Jump Less Than
Jump if Low Or Equal
Jump EQual

Jump High Or Equal
Jump Greater Than
Jump Not Equal
Jump Neo Carry

Jump On Carry

Jump No Overflow
Jump if logical Low
Jump if logical High
Jump Odd Parity

Set CRU Bit to One
Set CRU Bit to Zero
Test Bit

Compare Ones Corresponding
Compare Zeros Corresponding

EXclusive OR
EXtended OPeration
LoaD CRU

STore CRU
MultiPlY

DIVide

Set Zeros Corresponding
Set Zeros Corresponding,

Byte
Subtract words
Subtract Bytes
Compare words
Compare Bytes
Add words

ASSEMBLER
Page 240

Format

Section

VI
VI
\'
v
A
Vv
I
I1
II
I1
II
IT
I1
II
I1
II
I1
II
I1
II

L T B B)

11.6
6.3
12.1
12.2
12.3
12.4
7.11
7.10
7.9
7.4
7.6
7.5
7.13
7.12
7.16
7.14
7.8
7.7
7.15
9.2
9.3
9.5
8.4
8.5
11.3
7.19
9.1
9.4
6.10
6.7
11.9
11.10

6.12
6.13
8.1
8.2
6.1

Hexadecimal
Operation
Code

8000

Coo0

D000

£000

F000

Mnemonic
Operation
Code

AB

MQV
MOVB
SOC
S0OCB

Name

Add Bytes

MOVe words

MQOVe Bytes

Set Ones Corresponding

Set Ones Corresponding,
Byte

ASSEMBLER
Page 241

Format

APPENDICES

Section

[T T S o B]

6.2

10.4
10.5
11.7
11.8

APPENDICES

17.6 ALPHABETICAL INSTRUCTION TABLE

The following table lists the TMS9900 assembly language instructions, their format,
and the section in which they are described. They are in alphabetical order by their
mnemonic operation code. For a listing in order according to their hexadecimal
operation code, see Section 17.5. See Section 5 for an explanation of the format.

Hexadecimal Mnemonie

Operation Operation
Code Code Name Format Section
A000 A Add words I 6.1
B000 AB Add Bytes I 6.2
0740 ABS ABSgclute value VI 6.3
0220 Al Add Immediate VIII 6.4
0240 ANDI AND Immediate VIII 11.1
0440 B Branch VI 7.1
0680 BL Branch and Link Vi 7.2
0400 BLWP Branch And Load Workspace VI 7.3
Pointer
8000 C Compare words I 8.1
90600 CB Compare Bytes I 8.2
0280 Cl Compare Immediate VIII 8.3
03C0 CKOF ClocK OFf VII 9.6
03A0 CKON ClocK ON VII 9.6
04C0 CLR ClLeaR operand Vi 11.5
2000 coc Compare Ones Corresponding 111 8.4
2400 czcC Compare Zeros Corresponding 11l 8.5
0600 DEC DECrement VI 6.5
0640 DECT DECrement by Two VI 6.6
3C00 DIV DlVide IX 6.7
0340 IDLE IDLE VII 9.6
0580 INC INCrement VI 6.8
05Co INCT INCrement by Two VI 6.9
0540 INV INVert Vi 11.4
1300 JEQ Jump EQual I1 7.4
1500 JGT Jump Greater Than I1 7.5
1B00 JH Jump if logical High II 7.7
1400 JHE Jump High Or Equal 11 7.6
1A00 JL Jump if logical L.ow II 7.8
1200 JLE Jump if Low Or Equal I1 7.9
1100 JLT Jump Less Than II 7.10
ASSEMBLER

Page 242

APPENDICES

Hexadecimal Mnemonic

Operation Operation
Code Code Name Format Section
1000 JMP Unconditional JuMP I 7.11
1700 JNC Jump No Carry II 7.12
1600 JNE Jump Not Equal I1 7.13
1900 JNO Jump No Overflow II 7.14
1800 JOoC Jump On Carry 11 7.16
1C00 JOP Jump Odd Parity 1§ 7.15
3000 LDCR LoaD CRU v 9.1
0200 LI Load Immediate VIII 10.1
0300 LIMI Load Interrupt Mask VIII 10.2
Immediate
03E0 LREX Load or REstart eXecution VIl 9.6
02£0 LWPI l.oad Workspace Pointer VI 10.3
Immediate
C000 MQV MOVe words I 10.4
D000 MQOvB MOVe Bytes 1 - 106.5
3800 MPY MultiPlyY IX 6.10
0500 NEG NEGate VI 6.11
0260 ORI OR Immediate VIII 11.2
0360 RSET ReSET VIl 9.6
. 0380 RTWP _ReTurn with Woarkspace VIl 7.17
Pointer
6000 S Subtract words I 6.12
7000 sB Subtract Bytes I 6.13
1D00 SBO Set CRU Bit to One 11 9.2
1£00 SBZ Set CRU Bit to Zero II 9.3
0700 SETO SET to One VI 11.6
0A00 SLA Shift Left Arithmetic \' 12.3
£000 S0C Set Ones Corresponding I 11.7
F0o00 sQCB Set Ones Corresponding, 1 11.8
Byte
0800 SRA Shift Right Arithmetic \' 12.1
0B00 SRC Shift Right Circular \' 12.4
0900 SRL Shift Right Logical \' 12.2
3400 STCR STore CRU v 9.4
02Co STST STore STatus VIII 10.6
02A0 STWP STore Workspace Pointer VIII 10.7
06CO SwPB SWaP Bytes Vi 10.8
4000 SZC Set Zeros Corresponding I 11.9
ASSEMBLER

Page 243

APPENDICES

Hexadecimal
Operation
Code

5000

1F00
0480
2C00
2800

Mnemonic
Operation
Code
SZCB

B

X
XoP
XOR

Name

Set Zeros Corresponding,
Byte

Test Bit

EXecute

EXtended OPeration

EXclusive OR

ASSEMBLER
Page 244

Format Section
I 11.10
11 9.5

VI 7.18

IX 7.19

111 11.3

APPENDICES

17.7 PROGRAM DEVELOPMENT WITH MULTI-DRIVE SYSTEMS

Section 1 describes the use of the Assembler with a single-drive system. With a
single drive, the Assembler diskette must be on-line during the entire process, which
limits the size of the programs which you may assemble. The following describe
using the System with two or three drives.

17.7.1 Two-Drive System

Two disk drives allow you much more flexibility than a single-drive system. To
efficiently use two drives, first place a diskette containing the Pascal Compiler and
Editor in #5 and a diskette with the Filer in #4. Create the Pascal program that is
to call the assembly language program on a diskette in #4. Then place the
Assembler, Linker, and Editor programs on one diskette, place that diskette in #5,
and create the assembly language program on the diskette in #4. Then use the
Linker program to link the Pascal and assembly language programs as described in

Section 1. This allows you to develop quite large programs, with the software needed
always on line.

Once the development is complete, the source and object code files can be copied to
an applications diskette and deleted from the diskette which contains the Filer,

17.7.2 Three-Drive System

Three drives provide the most convenient and flexible development system. The
Assembler, Linker, and Editor should be placed on one diskette and placed in #5.
The Filer diskette should be placed in #4. The source and object code of the
program you are developing can then be put on the diskette in #9.

ASSEMBLER
Page 245

SECTION 18: IN CASE OF DIFFICULTY

1. Be sure that the diskette you are using is the correct one. Use the L(dir (list
directory) command in the Filer to check for the correct diskette or program.

2. Ensure that your Memory Expansion unit, P-Code peripheral, and Disk System are
properly connected and turned on. Be certain that you have turned on all peripheral
devices and have inserted the appropriate diskette before you turn on the computer.

3. If your program does not appear to be working correctly, end the session and
remove the diskette from the disk drive. Reinsert the diskette, and follow the
"Set-Up Instructions” carefully. If the program still does not appear to be working
properly, remove the diskette from the disk drive, turn the computer and all

peripherals off, wait 10 seconds, and turn them on again in the order described above.
Then load the program again.

4. If you are having difficulty in operating your computer or are receiving error
messages, refer to the "Maintenance and Service Information" and “Error Messages"

appendices in your User's Reference Guide or UCSD p-System P-Code manual for
additional help.

5. If you continue to have difficulty with your Texas Instruments computer or the

UCSD p-System Pascal Compiler package, please contact the dealer from whom you
purchased the unit or program for service directions.

ASSEMBLER
Page 246

THREE-MONTH LIMITED WARRANTY
HOME COMPUTER SOFTWARE MEDIA

Texas Instruments Incorporated extends this consumer warranty only to the original
consumer purchaser.

WARRANTY COVERAGE

This warranty covers the case components of the software package. The components
include all cassette tapes, diskettes, plastics, containers, and all other hardware
contained in this software package ("the Hardware"). This limited warranty does not
extend to the programs contained in the software media and in the accompanying
book materials ("the Programs").

The Hardware is warranted against malfunction due to defective materials or
construction. THIS WARRANTY IS VOID IF THE HARDWARE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN
MATERIAL OR WORKMANSHIP.

WARRANTY DURATION

The Hardware is warranted for a period of three months from the date of original
purchase by the consumer.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,

EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USER.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you in
those states.

ASSEMBLER
Page 247

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also have other rights that
vary from state to state.

PERFORMANCE BY TI UNDER WARRANTY

During the three-month warranty period, defective Hardware will be replaced when it
is returned postage prepaid to a Texas Instruments Service Facility listed below. The
replacement Hardware will be warranted for a period of three months from the date
of replacement. TI strongly recommends that you insure the Hardware for value
prior to mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U. S. Residents: Canadian Residents only:

Texas Instruments Service Facility Geophysical Services Incorporated

P. O. Box 2500 41 Shelley Road

Lubbock, Texas 79408 Richmond Hill, Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following Texas Instruments
offices for additional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service

6700 Southwest 105th 831 South Douglas Street
Kristin Square, Suite 110 El Segundo, California 90245
Beaverton, Oregon 97005 (213) 973-1803

(503) 643-6758

ASSEMBLER
Page 248

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or using the
software media.

TI does not warrant the Programs will be free from error or will meet the specific
requirements of the consumer. The consumer assumes complete responsibility for any
decisions made or actions taken based on information obtained using the Programs.
Any statements made concerning the utility of the Programs are not to be construed
as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE
SOLELY ON AN "AS IS"™ BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT
EXCEED THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER,
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY

KIND WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE
PROGRAMS.

Some states do not allow the exclusion or limitation of implied warranties or

consequential damages, so the above limitations or exclusions may not apply to you in
those states.

ASSEMBLER
Page 249

9900.0pcodes

A

Absolute expressions
Absolute sections
Addressing modes
Assembler directives
Assembler output
Assembly, conditional

B
Binary constants

C

Character constants
Character set
Character strings
Code listing
Comment field
Conditional assembly
Conditional expressions
Console:

Constants

CRU addressing
CRU structure

D

Decimal constants
Difficulty, in case of
Directives, assembler

INDEX

19

34

42

43

191, 236
217

208

32

34
31, 233
32
220
40
208
209
21
32
48
230

32
246
191, 236

ASSEMBLER

Page 250

E
Errors
Example
Example, absolute
expressions
Example, arithmetic
Example, context
switching
Example, CRU use
Example;, execute
Example, expressions
Example, extended
operations
Example, labels
Example, load and move
instructions
Example, passing data
to subroutines
Example, SBO
Example, SBZ
Example, shift
instructions
Example, subroutines
Example, TB
Expansion RAM
Expressions
Expressions, conditional
External references

F

Fields

Format, source file

Format, source
statement

Formats, instruction

Forward references

G
Global declarations
GROM

23, 219
222

42
85

115
143
122
37

121

157

119
144
144

189
113
144
227
34

209
220

38
41

38
52
220

41
227

H
Hexadecimal constants

I

Input/output files
Instruction formats
Instruction table
Interrupt handling

K
Keys, special

L

Label field
Labels in macros
Linker.info
Listing prompt
Listing.text

™M

Macro language
Memory organization
Multiple code lines

o

Object code format
Octal constants
Op-code field
Op-codes

Operand field
Operators
Organization, memory
Output modes
Output, assembler

P

Parameter passing
Printer:

20

52

239, 242
231

17

38
215
23
21
21

210

225
220

30
33
39
19
40
36
225
22
217

213
21

Program counter register 24

Program development

245

ASSEMBLER
Page 251

R

References

Registers

Relocatable expressions

Remout:
ROM

S

Source code format
Source file format
Source listing

INDEX

220
24

21
227

31
41
218

Source statement format 38

Special keys
Status bits
Status register
Symbol table
System.wrk.code

\'
Video Display Processor
(VDP) memory

W
Workspace pointer
register

17
26
24
221
20

228

24

TExAsS INSTRUMENTS

INCORPORATED

Texas Instruments invented the integrated circuit,
the microprocessor, and the microcomputer.
Being first is our fradition.

