


-
, 

----
./ 

----
./ '---' 

TI Logo 

by Harold Abelson 

McGraw-Hili Book Company 

New York St. Louis San Francisco Auckland 
Bogota Hamburg Johannesburg London Mad rid 
Mexico Montreal New Delhi Panama Paris 
Sao Paulo Singapore Sydney Tokyo Toronto 



II 

Copyright © 1984 by McGraw-Hill , Inc . All rights reserved. 
Printed in the United States of America. Except as permitted 
under the United States Copyright Act of 1976. no pan of this 
publication may be reproduced or distributed in any form or by 
any means. or stored in a data base or retrieval system. without 
the prior written permission of the publisher. 

234567890 SEMIS EM 89876543 

ISBN 0 - 07-038464-9 

Printed and bound by Semline. Inc. 

Text set in Times Roman by BYTE Publications. 
Edited by Bruce Roberts and Dan Watt. 
Design and Production Supervision by Ellen Klempner. 
Production Editing by Peggy McCauley. 
Production by Mike Lonsky. 
Typeset by Donna Sweeney. 

~ 

'-' 

'-" 

'-' 
'-' 

'./ 

'-' 

'--' 

'-" 

'-' 

'-' 

'--' 

'-' 

'-' 

V 

~ 

~ 

'-' 

'-' ~ 

'-./ 

'--' 

'-" 

V 

~ 

'-' 

~ 

~' 

'-' 

~ 

'-' 

'-' 

'-" 

'-' '-' 

'-" 

~ 

'-' 



- '" 
Table of Contents -

~ 

-
Inlroduclion vii 

I. A fi rse Look at Logo 

- 1. 1. The Computer Keyboard 
1.2. Preparing to Use Logo 2 
1.3. Using Logo Commands 2 

1.3 .1. Basic Turtle Commands 4 

- 1.3.2. Correct ing Typing Errors l 
1.3.3. Error Messages l 
1.3.4. Practice with Commands 6 

1.4. Introduction to Procedures 7 
~ 

1.4 .1. Simple Procedures 8 

- 1.4.2. Defining Procedures 9 
1.4.3. Errors in Procedures 12 

/ 
1.5. Other Graphics Commands 13 

\.5.1. Drawing in Color 13 
1.5.2. The Background 14 

1.6. Modes of Using the Screen Il 

1.6.1. Noturtlc Mode Il 

1.6.2. Turtle Mode Il - 1.6.3. Edil Mode Il 

- 2. Programming with Procedu res J7 

2. 1. Procedures with Inpuls 17 

2.1.1. Multiple Inputs 18 

2.1.2. Inputs as Private Names 19 

2. 1.3. An ARC Procedure 21 - 2.2. Repet ition and Recursion 22 
2.2. 1. Thinking About Recursion 23 

2.2.2. Cond itiona l Commands and STOP 24 

2.2.3. Thinking Harder About Recursion 26 - 2.2.4. Drawing Trees 28 

3. Projects in Tu rtle Geometry 31 

4. Animation 51 

- 4.1. Sprites I I 
4.1. 1. Exploring with Sprites I I - 4. 1.2. Practice with Sprites l3 
4.1.3. Talking to More Than One Sprite at a Time l4 - 4.2. Defining Shapes l7 

, 4.2. 1. Example: Birds Flyi ng l8 

4.2.2 . Two Notes on the Shape Editor 59 

- 4.3. Tiles 19 

4.3. 1. Positioning Tiles on the Screen 60 

4.3.2. Foreground and Background Colors 61 

4.3 .3. Characters as Tiles 62 



oJ 
I, 

oJ 

4.4. Project: A Simple Movie 63 
oJ 

5. Workspace, Filing, and Debugging .9 V 
5.1. Managing Workspace .9 J 

5.1.1. PO 69 
S .1.2. ERASE .9 

V 

5.2. Saving and Ret rieving Information .9 '-./ 
5.2.1. Using Cassette Tape 70 
5.2.2. Using Diskette 70 oJ 

5.2.3. Saving and Recalling Usi ng Other 72 
5.2.4. Other Uses or the File System 72 ~ 

5.2.5. Obtaining Hard Copy: the PRINTOUT Command 73 
5.3. Aids For Debugging 73 oJ 

5.3.1. Pausing Execution with the AID Key 73 
5.3.2. TRACEBACK 75 '--' 

5.3.3. The DEBUG Option 75 v 

6. Numbers. Words, a nd Lists 77 
~ 

6.1. Numbers and Arithmetic 77 

6.2. Outputs 78 '-./ 

6.2.1. Combining Operations 79 
6.2.2. Example: Remainders a nd Random Numbers 80 oJ 

6.3. Words 80 
6.4. Lists 83 

.~ 

6.5. Naming 85 
oJ 

6.5.1. Local and Global Names 87 
6.5.2. Free Variables 88 oJ 

6.6. Conditional Expressions and Predicates 89 '-' 
6.7. Details on Logo Syntax 92 V 

6.7.1. How Logo Separates Lines into Words 92 
6.7.2. Using Parentheses 92 oJ 

6.7.3. The Minus Sign 95 
'-./ 

7. More Logo Projects 97 
J 

7.1. Arithmetic Quiz Program 97 
7.2. Random-Sentence Generators 98 oJ 

7.3. Nim: A Game-Playing Program 101 
7.3.1. The Sub-Goal Plan 101 '--' 
7.3.2. A Simple Scorekeeper 103 
7.3.3. A Mechanical Player 105 ....., 
7.3.4. Frills and Modifications 107 
7.3.5. A Listing of the NIMPLAY Procedures 108 '-" 

7.4 . Growing Flowers 108 
'--' 7.4.1. Coordinates for Sprites and Tiles 109 

7.4.2. Defining the Shapes 110 
oJ 

7.4.3. The Grass 112 
7.4.4. Planting the Bulbs 112 J 
7.4.5. Sunrise 112 
7.4.6. Growing the Flowers 11 3 v 
7.4.7. Combining All the Pieces 11 5 
7.4.8. Elaborations 115 J 

v 
~ 

....., 

'--' 

'-' 



~ 

, 
~ 

8. Writing Interactive Programs 117 
~ 

8.1. Controlling Screen Output 117 

~ 
8.2. Keyboard Input 11 8 

8.2. 1. Example: Instant Response for Very Young Children 118 
~ 8.2.2. Keyboard Control of an Ongoing Process 119 

8.2.3. Instant Response with Sprites 120 
~ 8.3. Example: The Dynaturtle Program 120 

8.3.1. What is a Dynamic Thrtle? 121 
8.3.2. Activities with a Dynaturtle 122 
8.3.3. Changing the DynalUrtle's Behavior 122 

~ 8.3.4. Sines and Cosines 124 

9. Logo Music 127 

9.1. Playing Melodies 127 
9.1.1. A Simple Tune 128 

~ 9.1.2. Thneblocks 129 
9.1.3. Specifying Notes 131 

9.2. Multiple Voices 13J 
9.3. Musical Accompaniment to Logo Procedures 134 

~ 

10. Inputs, Outputs, and Rec:ursion 137 
~ 

10.1. REVERSE 138 
~ 

10.1.1. Reversing Words 139 
10.1.2. Reversing Lists 140 

~ 10.1.3. Designing Recursive Procedures 140 
10.2. Recursive Procedures that Manipulate Lists 141 

'" 
10.2.1. The PICK Procedure 141 
10.2.2. The MEMBER? Predicate 143 

~ 10.3. Radix Conversion 144 

11. Advanced Use of Lists 147 

11.1 Hierarchical Structures 147 
~ 

11.1. I . List Operations 148 
11 .1.2. Example: Association Lim 151 , 

11 .2. Programs As Data 153 
11 .2. 1. The RUN Command 153 
11 .2.2. The DEFINE Command 156 
11 .2.3. The TEXT Command 159 
11 .2.4. Adding New Programming Constructs 159 

11.3. More Projects Using Lim 161 
11.3.1. Example: The DOCTOR Program 161 
11.3.2. The ANIMAL Program 164 

12. Glossary of Logo Primilive Commands 173 

~ 
12.1. Graphics Commands 173 
12.2. Numeric Operations 178 

- 12.3. Word and List Operations 179 
12.4. Defining and Editing Procedures 181 

~ 12.5. Conditional Expressions 182 
12.6. Predicates Used with Conditional Expressions 183 - 12.7. Controlling Procedure Execution 184 

~ 12.S. Inpul and Output 184 
~ 

12.9. Naming 186 



. , 
12 . 10. Filing and Managi ng Wo rkspace 
12.11. Music Prim ilives 
12.12 . Debugging Aids 
12.1 3. Edit ing Commands 
12. 14. Other Special Keys 
12 . 1 S. Miscellaneous Commands 
12 . 16. Error Messages 

Referen«s 
Ca ring for the Module 
Warranty 
Keyboard Reference Guide 

Index 

180 
187 
188 
188 
188 
180 
180 

193 
19S 
196 
I .. 

199 

~ . 
~. 

~. 

'--' 
"-

"-

~ 

-
~ 

--
'-' 

-
'-

-
-
-

'-' '-

'-' 

-
'-' 

v 

'-' 

'-' 

~ 

~ 

'-' 

'-' 

'-' 

-
'-' 

~ 
~ 

-../ 

'-' 

'-' 



J 

J 

'--' 

" 
J 

, 

J 

J 

J 

.-

J 

-
" 
/ 

~ 
J 

-
/ 

J 

,,, 

Introduction 

Logo is the name for a philosophy of education and for a continually 
evolving family of computer languages that aid ils realization. Its learning 
environments articulate the principle that giving people personal control over 
powerful computat ional resources can enable them to establish intimate 
contact with profound ideas from science, from mathematics, and fro m the 
art of intellectual model building. Its computer languages are designed to 
transform computers into flexible IDols to aid in learning, in playing, and in 
exploring. 

Logo's designers are guided by the vision of an educational tool with no 
threshold and no ceiling. We try 10 make it possible for young children to 
control the computer in self-directed ways, even at their very first exposure 
to Logo. At the same time, we believe that Logo should be a general-purpose 
programming system of considerable power and wealth of expression. In 
fact, we regard these two goals as complementary rather than conflicti ng, 
since it is the very lack of expressive power of primitive languages such as 
BASIC that makes it di ffic ult for beginners to write simple programs that do 
interesting things. More than 10 years of experience at MIT and elsewhere 
have demonstrated that people across the whole range of " mathematical 
aptitude" enjoy using Logo w create original and sophisticated programs. 
Logo has been success full y and productively used by preschool, elementary, 
junior high, high school, and college studems, and by their teachers. 

Some of the important features of Logo are: 

• Logo is a procedural language. Logo programs are created by combining 
commands into groups called procedures and by using these procedures as 
steps in other procedures, and so on to arbitrary levels of complexity. Each 
individual step of a procedure may be any primitive Logo comma nd or any 
user-defined procedure. Procedures can communicate among themselves 
via inputs and outputs. 

• Logo is an interactive programming language. Any Logo command, 
whether built into the language or defined as a procedure, can be executed 
by simply typing the command at the keyboard. Logo 's integrated ediwr 
makes it easy to define, execute, and modify procedures, because there is 
no necessity to deal with separate compilers, loaders, monitors, and so 
forth. 

• Logo's data objects (those things Ihat can be named by individual variables, 
passed directly as inputs to procedures, and returned as values) include not 
only numbers and character strings, but also compound structures called 
lists. Many com puter languages force the programmer to manipulate data 
structures in terms of sequences of operations on individual numbers and 
character strings. In contrast, Logo's lists are functional units that can be 
transformed in single operations, making Logo a convenient and powerful 
language for applications involving symbol manipulation. Moreover, the 
fact that Logo procedures can themselves be represented and manipulated 
as lists means Ihat users can allain considerable direct control over the way 



VIII 

commands are interpreted- for example, to provide special interfaces to 
Logo for (he physically handicapped or the very young. I 

Another important aspect o f Logo is its incorporation of a programming 
area called turlfe geometry. A turtle is a computer-cont rolled "cybernetic 
an imal" that lives on the display screen and responds to Logo commands 
that ma ke it move (FORWARD or BACK) and rotate (LEFT or RtGHn, As 
the turt le moves, it leaves a trace of its pat h and in this way can be used 10 
make drawi ngs on the display screen. For example, the following Logo 
procedure tells Logo how to make the turt le draw a square by repeat ing fo ur 
times the commands "go FORWARD 100 units, tu rn RIGHT 90 degrees" : 

TO SQUARE 
REPEAT 41FORWARD 100 RIGHT 901 
END 

Tu rt le graph ics is highly successful, both as an introduction 10 programm ing 
for people of all ages and also as a foundation for a compu ter-based 
mathematics curriculu m. In this book. we use turtle graphics to int roduce the 
basic ideas of Logo programming, alt hough we also cover Ol her aspect s of 
the language. 2 

TI t ogo 
Si nce its creation in 1968, Logo has been under com inual development . 3 

As Logo is a complex and sophisticated language, most Logo work during 
the 19705 was conducted using large research computer systems. It is only 
recentl y that computers capable of support ing Logo have become inexpensive 
cnough fo r widespread use in schools and homes. In 1979 the MIT Logo 
Group and Texas Instruments began a joim effort \0 develop an 
implementation of Logo fo r the TI home computer. ~ The resul ting T I Logo 
system, which runs on the Tl 99/ 4 and 99/ 4A computers is a powerfu l yet 
easy-Io-use program ming language, which incorporates a ll the aspects of 
Logo mentioned above. In add ition, TI Logo includes the following special 
fea tures: 

I~tion 11.2.1 IIh .. a n eumple of 'och an ,morTa«. Tho impl"",onlaflon ma l .. ose o r 1M ract Ihlt il ;5 

p<»libk to ",ilo l.ogo procedu,('>; lha' Ihen,ocl\'('. dofine procfllu' .... The book by Goldenbnl (10] de ... ribe. 

,,"'ork duri ng 1976 and 1977 using Logo ",ilh ph)".ically a MI emo,ionally handicapped ohildren. Mo,~ r .. ~nI 

r~~arch in lhO! ar~a i. diloC ... <ed in I h~ ar1ick b~ Wei, [17(. 

l in hi> bool ,IImds/o"" s [5(. Papert diJ.Cus<cs Ihe tunl. as oxemplary o f 1M kind of compulational "obj .. , to 

thonk ,,-i l h~ 'hrough .. hich t .. hnoiosy can lead to f""dalnOIl ,al educa,ional chanlC'. Mmt/worms also 

diICU.>f.1M loso phllosoplly of education and the roic of conlputer t .. hnololY i" Iron)for mini rduca liOfl. 

Th~ boo~ by ll belson a nd dlSessa (I] uses lortle lO'Onl,,,y as ' he ba!i~ ret • • ploring In mat he",oli,s and 

pf(loCnl> ., .. nded ".almenU of malhemalical lopiCl;ranl.nl!from elemen, ary ltome"y Ihrough Go .... r. 1 

Relali,uy. Althou&h lunk 1O'O<"~try oriBlna,rd a5. part of 1M 1.",0 langu"lIt'. i15 "1oC" not , ... "ieted 10 

l.ogo. OIMr lanluage! that h.,·o incorpOraled lurtle IraphiCl; are Sm.lllall (K.y [13 ] and Goldbng t9( 1 and 
UCS O I' ..... a l ( 11o" 1~[5 () . 

Jl.ogo "-as ini,ially d('>;'c1oped in 1968 a, part of a Nallonal St.:ient. Foundalion ~pnnsorrd r ..... arch prOj'" 

c"nducted a, Bolt. (k'rano~ &- N."","n. Inc .• in Cambridle . ~-las5..lChu'""ts (F. u"ng. n 01. I7H. TM 

majorit~ of Logo "'or l. Ii"". the" has 1I«n conduct<:<J al MIT I" 1M t\rlifi,ia l lntdligem:el.lIborarory and 

the Oi,'ision for S,udy and Research in I:d ucallon. bUI the .. hac also 1I«n significant continu,ng "or l. at 

BBN (Fcuf(eil. 01. 01. 1811, at 1M Uni--mi ,>, of Edinburgh ( ~1 0 .. -•• fl. Ill. [1211. and al a nu mber of other 

uni,-.rsi!it5 Ihrou8hout the ",orld. 

' The: 1"1 L"go proj«t impl,""'"t"""" proj<ct at MIT ,,-os ear ri<:<J "'" "MI.r tM'"P<'rvisi"" ofScYlOOUr p.""n 

Pnnc'l"'l ""ntribu,.,,,, t<> Ihi. elTort ..... Gary Drc""hcr. Edward Hardebttk, M ... ~ Gross. Ui¥h Klo ... John 8e,low. 

Ralp~ p~)tle. Maxine l1000::,,. Sid Noh •. Richard T"'~nt. John D·Angolo. III R,~."m i . and ""Y." Dodd 



~ 

~ 

~ 

J 

'--' 
~ 

~ 

~ 

-
J 

~ 

J 

~ 

J 

-- '--' 

-

~ 

-
~ 

-
~ 

/ 

./ 

~ 
~ 

~ 

• TI Logo makes it easy for even very you ng children to create spectacular 
animation effects through the use of sprites. Sprites, like turtles, arc 
"creatures" that live on the display screen . But unlike ordinary Logo 
turtles, sprites can cha nge their color and shape, and can move across the 
screen smoothly and continuously under program control. Even more than 
tunle graphics, sprites and animation provide an exciting area in which 
beginners can experiment wilh the power of computation. 

• T I Logo [] includes commands for generating music with up to three voices 
plus a "drum." When combined with the power of Logo procedures and 
lists, this makes it easy to write programs that play tunes and harmonics. 
Moreover, by synchronizing music and sprite graphics. even beginning 
programmers can creale animated movies with musical accompaniment. 

A guide 10 this book 
This book is an introduction to the Logo system and to programming in 

Logo.s You should think about learning Logo in three stages . The first stage. 
covered in Chapters I and 2, includes the basics of defining procedures and 
using turtle graphics to draw pictures on the display screen. Chapt er 3 
consists of suggestions for programming projects based on this material. 
Chapter 4 introduces sprites and animation, and shows how to write simple 
programs fo r making movies. Chapter 5 describes the mechanics of keeping 
track of procedures and savi ng them in files. The next stagc in learning Logo 
includes writing procedures that use data-numbers, words, and lists as 
introduced in Chapter 6-to carry out projects such as the ones prescnted in 
Chapters 7 and 8, and also for usir.g the Logo music system. which is 
described in Chapter 9. The last section of Chapter 6 al so discusses some fine 
points of Logo syntax, which are most ly ignored in the first five chapters. 
Chapters 10 and I I cover advanced topics in Logo programming. including 
using recursion to deal with words and lists and using lists to represent 
complex data structures. Chapter 12 is a reference that describes the primitive 
commands included in the TI Logo system. 

Acknowledgemenls 
The examples included in this book draw upon research conducted over the 

past 10 years by members of the Logo Group at the MIT Division for Study 
and Research in Education and the MIT Artificial Intelligence Laboratory. 
Section 7.3 reprints a 1970 A I Lab Memo by Seymour Papert and Cynthia 
Solomon. The projects in Chapter 3 come from material prepared by Dan 
Watt as part of a teaching experiment conducted in the Brookline, MA , 
elementary school system which is documented in [61. I would like to thank 
Greg Gargarian for help in assembling th is chapter. The Dynaturtle project in 
Chapter 8 is based on work by Andy diSessa and Dan Watt. The music 
system draws on numerous ideas and experimental systems developed by 
Jeanne Bamberger. I would also like to thank Dan Watt, Leigh Klotz, Nola 
Sheffer. and Richard Carter for comments on previous drafts of this book. 

STh.,c a,~ currently ''''0 f~luStS of Tl Logo. Th~ major diff.'.n~ btI .... !"(n ,hem is ,hal TI LOIIO II ;ndud., 

commands for goncraling music "hil. T! LOIlO I does nOl . This manual can be used w;,h eilh.r ~.r$;on . 



NOTICE 
P-Code Card 

If you are using Ihe Peripheral Expansion Box with the P-Code card insened. lurn 
Ihe P-Code OFF or remove Ihe card. ffyou do a SAVE, RECA LL, or PRINTOUT 
with the P-Code card turned on , the compuler goes Ihrough the console power-up 
code and inlo Ihe UCSD p-System! 

SPRITE Wrap-around 
Unlike the first version ofTI LOGO , where SPRJTE50wouid aUiomatical lydefault 
10 SPRITE 18 , LOGO II auends only to sprites addressed as 0 through 31. Sprites 
can be addressed only as SPRITE 0 through SPRITE 31 in LOGO II . Do not call a 

sprite beyond the number 31. 

·UCSD p-System is a trademark of the Regents of the University of California. 

v 



1.1. The Computer Keyboard 

A first Look at Logo / t 

CHAPTER 1 

A First Look at Logo 

This chapter introduces the basic mechanics of using Logo. It describes how 
to execute simple commands and how to define and edit procedures. The 
examples are given in terms of using turtle graphics to draw pictures on the 
screen. Even though we do not, at this point . introduce more than a few 
commands or attempt a fu ll explanation of the rules for writing programs, 
the material in this chapter and the next is sufficient to allow you to use Logo 
for a wide variety of interesting projects such as the ones described in 
Chapter 3. Try 10 work through this chapter at the computer keyboard, 
experimenting with the different features as they are introduced. 

If you have never used a computer before, you will need 10 become 
accustomed to a few idiosyncrasies of computer keyboards as compared with 
typewriter keyboards. Be careful not to type the numeral 0 in place of the 
letter 0, or the numeral 1 in place of the letter I. These may look alike to a 
person, but the keys generale different signals for the computer to interpret. 
T I Logo uses uppercase letlers only, so do not worry about using the SHIFT 

key for typing letters. There are, however, a few sym bols that are typed using 
the SHIFT key. For example, the asterisk symbol. appears as SHIFT·a, just as 
on an ordinary typewriter keyboard. To type ., hold down Ihe SHIFT key and 
press the a key (ralher than trying to press both SHIFT and 8 sim ultaneously). 

Computer keyboards generally include a few keys not ordinarily found on 
typewriters. The key marked ENTER is used in Logo to signal the computer to 
process a command line that has been typed. 

The FCTN (funclion) key on the 99/ 4A is used like an alternate shift key to 
obtain the symbols that are marked on the front of various keys. For 
instance, the open bracket character [ appears on the front of the A key, so to 
type a I on the 99/ 4A, hold down the fCTN key and press A. Throughout this 
book, we specify function characters by the prefix "FCTN," as in "FCTN-A." 

Other FCTN symbols that are used in Logo programming are closed bracket j, 
double quote", and the four arrow keys 0-, ..... , 1, J. 

Logo also makes use of special symbols called DEl, ERASE, CLEAR, BEGIN, 

PROC'D, AID, BACK. and QUIT. On the TI·99/4A, these are typed using FCTN , 

together with the keys on the top row of the keyboard. The special symbol 
names are marked on the plastic strip that is supplied with the TI·99/4A. 
Figure 1. 1 shows a diagram of the keyboard on the 99/ 4A with indicat ions of 
the special keys used with Logo. I 

On the TI·99/ 4, which has no FCTN key, Ihe additional FCTN symbols are 
typed in alternative ways, usi ng SHIFT. [Appendix A gives a complete list of 

Figure 1.1: The TI-99/4A keyboard with special the special symbols used by Logo and the key sequences required to type 
keys indicated. them on both the 9914 and the 99/ 4A.J 

lOne imponant point 10 keep in mind wh~n usilli l otto i. to nrW', press the (Mr key unl"" you are done 
using l otto. Prn$ing OUT rtsOl$ tM rompu'~r and ~rasn all programs and dal. rrom m~mOfy. On ,h~ 99/4A, 

be esp«ially eardul ,.h.n you 'ype ,he symbol + (SHlFT- _) '0 be sur. that you do nOl mistakenly type 
OUT(FCTIO- _ ) insttad. 



2 1fl LOGO 

1.2. Preparing to Use Logo 

,., 

Ibl 

Figure 1.2: A fl-99/4A s ysle m configured 10 run 
Logo. 

,., 

1.3. Using Logo Commands 

rCXR3 IrIS I RUME Nr s 
I1O!1E CorlPU If:I~ 

• 1 t:>(R~ I"S I RUl1 EHI5 

The TI Logo system operates on the TI·99/ 4 and T1·99/ 4A home 
computers. in addition to the computer and the Logo cartridge, the system 
requires a TI Memory Expansion Unit or a Peripheral Expansion Box with a 
32K memory expansion card. If you wish to save your work on a diskette. 
you must also atlach a TI Disk Memory System. Alternatively, you can save 
your work on cassette tape by attaching a cassette recorder. If your TI 
compUier system has an attached printer, you can use this to produce printed 
copies of your work . Figure 1.2 shows two 99/ 4A systems configured to run 
TI Logo. The first shows a Peripheral Expansion Box with a disk drive. The 
second shows a Memory Expansion Unit with a cassette recorder. 

Powering Up 
If you are using the Disk Memory System, be sure to follow these steps in 

powering up the system: 

I. First turn on the disk controller and disk drive(s). 

2. Next turn on the Peripheral Expansion Box or the Memory Expansion 
unit. 

3. Then turn on the computer console and any other devices. 

4. Thrn on the computer console and TV monitor las!. 

You must follow these steps in order, or the computer will not be able to 
access the disk system. In this case, you must turn the power off and power 
up the devices in the correct order. 

Slarling Logo 
With the system powered up and the Logo cartridge inserted imo the slot 

on the computer console, you will see the master title display on the 
computer screen.2 Press any key, and you will obtain a menu of available 
system choices. Press the number next to TI Logo or TI Logo II. Logo will 
start after a pause of about 5 seconds. 

Figure 1.3 is a photograph of the display screen as it appears when Logo is 
first started . The system prints a welcome message followed by a line 
beginning with a question mark. The question mark, called a prompt, 
indicates that Logo is waiting for you to give it a command. Just to the right 
of the prompt is a black flashing symbol called a cursor. The cursor indicates 
the position at which the characters you type will appear on the screen. 

To give Logo a command , type the command and press the ENTER key. For 
instance, to teil Logo to print the product of 37 and 67, you type the 
command line 

PRINT 37.67 

That is, you type the keys P, A, I, N, T, space, 3, 7, space,. , space, 6, 7, 
ENTER . The computer then prints 2479, followed by a new line with a 
question mark prompt, indicating readiness to accept a new command. Bear 
in mind that when you type a command line, it is not executed until you press 

2you can inS<1'1 tbe WIOearinds. either ber",. '" .fter pownin. up tbe system. 'Jbn. is I n automatic reset 

f."ure bui ll inlO lbe rom putcl so that lbe system will ret urn to the master till. displl Y whmcver. a rlrid, c 
i$insenM ;nlo the consolc. If you want to r.move the carlridge from 1M consol • • ;t il best to/irst ret urn 1M 
computer 10 lbe m ...... litle $Cr~n by prasillJ 0I,n. 



1'1 

"I 

II:)(ns lItS IRUrlCHTS 
tlOtI( COlIPUTER 

PPESS 
I rllR I I M S IC 
2 rllR 'I LOGO II 

,!Il'''"' I" " lO~Ot 

Figure 1.3: The display screen as it appears 
when Logo is first star1ed. 

Figure 1.4: Three command lines typed to 
Logo, and the system's responses. 

,. Firs' LOOk at LogO I 3 

the ENTER key. To tell Logo to print the message "Logo is a language," you 
type Ihe command line 

PAINT (lOGO IS A LANGUAGE( 

followed by ENTER. This example illustrates how square brackets are used in 
Logo to group words into lists.] You can use lists in this way to print 
messages on the screen, but there are many other uses for lisls in Logo. and 
we will study these in detail in Chapter 6. 

The spaces in these com mand lines are important, because they indicate to 
Logo how the line is to be broken into its component parts. 4 If you type the 
first command line omitting the space between the T and the 3 as follows: 

PRINT37 ... 67 

then Logo will think you are telling it to execute a command named 
PRINT37 and complain that it does not know how to do this, by responding 
with the error message: 

TELL ME HOW TO PRINT37 
?PAINT 37 • 67 
2479 
?PAINT (lOGO IS A LANGUAGE( 
LOGO IS A LANGUAGE 
?PRINT37 ... 67 
Tell ME HOW TO PRINT37 

Figure 1.4 shows a photograph of the screen as it appears after you have 
given the three command lines described above, along with the computer's 
responses to each line. The question mark shown at the beginning of eac~ 
command line is the prompt typed by Logo, and the rest of the line is the 
command typed by the user. In this book, when we want to emphasize the 
difference between the characters that you type and the characters that Logo 
types, we print the laller characters in italics. For example, the fi rst 
command interaction in Figure 1.4 would be printed as 

?PRINT 37 ... 67 
2479 

In later chaplers, we will see how 10 wrile Logo programs that manipulate 
numbers and text. But we begin our study of Logo by investigating how to 
use the computer to produce drawings on the display screen by issuing 
commands to a "creature" known as a turtle. To sel up the screen for 
drawing, type 

TELL TURTLE 

lTlK opm and t~ bratbll ar~ 1)'Pfd on 1M 99/ 4,. as I'C'I*R Ind I'C'I*T. resp«livdy. On tM '19/ 4. Tiley 

af~ 'yp«l as ~ and 3HFJoS. 

4tOlO has 5Om~ knowkdlC aboul "'MfC;' il rcasonable 10 divio;k lir>es inlO rompon .. " partS, evm ... hen Ihey 

arc not Kpat"alcd by IpaCH. FOI' ~~.mpk,;1 knows cnOU,ih 10 im .. pnl Ih.e "rinl of Schar ...... 37.67 as 

rom.inillJ Ihroe clem~nu ; lhe number 37, Ihc symbol 0, and 1M number 67. Ho ... ev .. ,;' is a JOOd h.bi,lo 

al .... )'ll uK JpateS 10 stplr'l~ Ih~ dem~nl l of rommand lines, even ... hm Ihis is not Slri<"lly nteHsary. TIle 
r1Jl .. ,ha, detCfm;nc c •• tlly whor. <paces arc necnsary arc diJCul!Cd in Section 6.7. 



4/TI LOGO 

Figure 1.5: the display screen 
Logo enters turtle mode.' 

1.3. 1. Basic Tu rlle Commands 

, 

7 
1'111 .... 1" .00 

• It .. .. ~ '''0 

Figure 1.5: Photograph of the display screen 
showing a simple sequence turtle 
commands. 

turtle starts 

RIGHT 90 

1 
FQRWAAOSO 

r 
FORWARD 75 
LEFT 45 

PENUP 
FORWARO 25 
PENDQWN 
FORWARD 25 
HIDETURTLE 

Figure 1.7: Drawing with the turtle. 

and press ENTER. The screen should now appear as shown in Figure 1.5, with 
the entire screen blank, except for a smailiriangie in the center and a 
question mark near the bottom. The question mark, as before, is the prompt 
indicating that Logo is ready to accept a command. When drawing, Logo 
reserves the six lines at the boltom of the screen for your typed commands 
and the computer's typed responses. The rest of the screen is for drawings. 
When Logo is used in this way to draw pictures on the screen, the system is 
said to be in IUrlfe mode. The original screen arrangement with no space 
reserved for graphics. as shown in Figures 1.3 and 1.4, is called noturtle 
mode. s Whenever Logo is in turtle mode, you can make it return to notunle 
mode by giving the command NOTUATLE. 

The turtle is the triangular pointer that appears at the center of the screen 
when Logo enters turtle mode. You make drawings by telling the turtle to 
move and to leave a trace of its trail. There are four basic commands for 
moving the turtle. The commands FORWARD and BACK make the tunle 
move along Ihe direction it is pointing. Each time you give a FORWARD or 
BACK command, you must also specify a number that indicates how far the 
turtle should move. The commands RIGHT and LEFT cause the turtle to 
rotate. RIGHT and LEFT each require you 10 specify the amount of rotation 
in degrees. Try typing the fo llowing sequence of Logo commands: 

RIGHT 45 
FORWARD 100 
LEFT 135 
FORWARD 150 

This should produce the wedge-shaped drawing shown in Figure 1.6. 
Remember to terminate each command line with ENTER and to include a 
space between the command word and the number. If you mistype a 
character, you can delete the character by pressing ERASE.6 See Section 1.].2 
for more details on correcting t)'ping errors. 

The number following the command is called an input. FORWARD, 
BACK. LEFT, and RIGHT each need one input. Logo commands mayor may 
not require inpul s, depending on the command. ClEARSCREEN is an 
example of a command that takes no input. Later on we will see examples of 
commands that require more than one input. 

If you want to move the turt le without drawing a line, give the PENUP 
command. Subsequent FORWARD and BACK commands will now make the 
turt le move without leaving a trail. To resume drawing, give the PENDOWN 
command. Neither PENUP nor PENDOWN takes an input. The 
HIDETURTLE command causes [he turt le pointer to disappear. although the 
turtle is st ill "there" and will draw lines if the pen is down. SHOWTURTLE 
makes Ihe pointer reappear. Figure 1.7 illustrates the use of these commands 
to draw a simple picture. 

If you want to start over and draw a new picture, you can use the 
CLEARSCREEN command. This erases the screen and restores the turtle to 
its initial location at the center of the screen, poinling st raight Up. 7 

~Jn nOlunle mode 1h~e are 24 Ii .... for Iypinl. A more eomple1e ."pianalion of the diffe.-em modes in which 

lhe Logo JYSlcm operates is Jivm in Scc1ion 1.6. 

~_ il 1)'pnJ U FCTN-3 on the 99/4A and as SHIFl'T on Ihe 99/4. 

7CLEARSCREEN can also ~ ultd in nOlurtle mode '0 clear lhe ""ttn."d rClurn the cur$OT to 1M upper 

lefl·hand ~orMr. 

v 

v 



1.3.2. Correcting Typi ng Errors 

--.. 
~ 

1.3.3. Error Messages 
~ 

" 

--
-
-
- '--

-

" 

" 

-
--
-
, 

-
'--' 

, 

j 

, 

A First l ook at Logo I 5 

As you type Logo commands, you will undoubtedly make a few typing 
errors. Common errors include omitting characters, typing extra or wrong 
characters, and transposing characters. To correci typing errors, use ERASE. 
Each lime you press ERASE, Ihe character immediately to the left of the 
cursor is erased. and Ihc cursor moves one space to the left. For example, if 
you typed 

FORWXYD 100 

when you meant to type 

FORWARD 100 

you can correct the error by pressing ERAse 7 limes to erase back to Ihe W 
a nd then ret yping the rest of the line . 

If Logo cannot execute the input line, it replies with an error message. 
Logo's error messages altempt to be helpful in describi ng what went wrong . 
For example, if you try to execute the command li ne 

PRINT 3 + 

Logo will reply 

TELL ME MORE 

because it expects to find somet hing more on the line after the + to be added 
to 3. Another common error message is the result of attempti ng to use a 
command that has not been defined. For instance, if you try to execute 

TURN 100 

Logo wi ll respond 

TELL ME HOW TO TURN 

unless you have first defined a procedure named TURN .8 The TELL ME HOW 
TO error message often occurs as a resul t of a typing error. For example, if 
you type an input ti ne like 

FORWARD100 

omini ng the space between the D and the 1, Logo responds 

TELL ME HOW TO FOAWARD100 

because Logo reads the entire line as a si ngle word, which it assumes is 
supposed 10 be the name of a procedure. 

When Logo responds to your command with an error message, you should 
try to determine the reason for the error. Sometimes it is a simple typi ng 
error. If so , you can retype the line. Alternatively, the reason for the error 
may be hidden deep in the design of one of you r programs. The activity of 
rooting out and repairing errors in programs is called debugging, a nd Logo 
provides debugging aids to make this lask easier. These are described in 
Section 5.3. 

8s..:lion 1.4 explain.! how 10 d.fi~ pr~ul(s . 



6/TI LOGO 

1.3.4. Practice With Co mmands If this is your first exposure 10 Logo, it would be a good idea 10 review the 
material covered so far by drawing some figu res using the tunle commands. 
Try [0 understand any error messages that occur. Following arc some things 
to nOt e in your exploring. 

Wrapllround 
The turt le screen is 240 "turtle steps" wide by 144 steps high. If you giY{' a 

command [hat moves the turtle outside this range, the turt le wraps around to 
appear at the opposi te edge of the screen. That is 10 say, driving the turtle off 
the top of the screen makes it reappear al the bottom of the screen and 
continue drawing. Drivi ng the turtle off the right edge of the screen makes i[ 
reappear at the left of [he screen, and so on. 

Out of Ink 
After you have drawn a large number of li nes on the screen, Logo may 

signal lhe error message 

OUTOF INK 

This indicates that the turtle's capacity for drawing has been used up, and it 
cannot draw any addit ional lines. At this point, you must clear the screen if 
you want to continue drawi ng." 

Abbreviations 
Some of the commonly used Logo commands have abbreviations to help 

you save typing. Abbreviations for some of the commands we have seen so 
far are 

FORWARD FD 
BACK BK 
RIGHT RT 

LEFT LT 
PENUP PU 
PENDOWN PO 
HIDETUATLE HT 
SHOWTUATLE ST 
CLEAASCREEN CS 

Multiple Co mmands on II. Line 
There is no restriction that each line be onl y a si ngle Logo command. If 

you like, you can execute lines like 

FORWARD 10PENUPFOAWARD 10 

Logo will execute the separat e commands in order, from left to right. If some 
command on the line causes an error, Logo will execute the commands up 
until the point of the error before typing an error message. However, Si ngle 
lines that contain many separate commands can be confusing, and il is 
generally better to use only one com mand per line. 

9n.~ limi!«i draw,o, capacilY is. con~ue~ of !h~ way Ihal lunlf lints art irnnlemml«i U. iOlli" ,rDphi<:r. 

We w,lI discuss Ihis in $e<:1ioo 4.3 .3. 

'--' 

v 

v 



./ 

'-' 
./ 

~ 

~ 

, 
~ 

~ 

J 

J • ~ la£cvc~.'~o~~I~En' ,.' 

~ 
Figure 1.8: Using nested REPEATs to produce 

a complex drawing. 

~ 

./ 

./ 

~ '-' 
./ 

1.4. Inlroducli on to Procedures 

A. First look 81 Logo /1 

T he REPEAT Command 
One useful addition to your repertoire of Logo commands is REPEAT. 

REPEAT takes I WO inputs-a number and a list of commands-and repeals 
the commands in the list the designated number o f li mes. For example, 

REPEAT 4 [FORWARD 30 RIGHT 901 

makes the turtle draw a square. NOlice Ihal the list of commands is enclosed 
in sq uare brackcts. 1O This is a very si mple exam ple of how lists arc used in 
Logo 10 group things. Lists are introduced in Section 6.4. 

REPEATs can be nested. For a prcUy effect, try 

REPEAT 10 [REPEAT 4 [FORWARD 30 RIGHT 90[ RIGHT 361 

which produces the drawi ng shown in Figure 1.8. Playi ng with nested 
REPEATs can be fun, but in terms of program clarity and power, it is much 
better to combine comma nds by defi ning procedures, as we describe in 
Section 1.4. 

Long Command I..in('s 
Lines on the display screen can be at most 30 characters long. Figure 1.8 

illustrates how Logo treats com mand lines (hal arc longer than 30 characters. 
When you type the 31st character of a comma nd line, Logo will move the 
cursor to the next screen li ne, al which point you ca n conti nue typing. To 
execute a long line. you type ENTER as usual. Even wit h this multi ple line 
capability, no input line may be longer than 127 characters. Logo will refuse 
to insert more than this many characters in a com mand li ne. 

In th is book. long command lines a re no t shown as they appear on the 
screen. Instead ther are indented 10 make them easier to read. When )'0 11 
type in the program exa mples in the book, continue typing the indented 
portions as part of one long line, as shown in "' igure 1.8. 

Slopping Execution Wit h the BACK Ke)' 
When Logo is executing a command. pressing the BACK key (FCTN.9) causes 

it to stop whatever it is doing and wait for a new command. Logo types 

STOPPED 

followed by the quest ion mark prompt. For example, if you should start 
Logo executi ng some long process like 

REPEAT 10000 (PRI NT 1J 

and then thin k betler of it, you can halt it by pressi ng BACK. Be sllre 10 lise 

BACK rather than QUIT to haft a Logo program. I I 

You can regard Logo commands like FORWAR D, PRINT. and so on, as 
words that the computer understands when the Logo system is started. These 
"built-i n" words are called primifives. One of the most impon ant things 
about the Logo language is thaI it makes it easy for you to teach the 
computer flew words. Once you defi ne a Ilew word, it becomes part of the 

1O(Ic $ur~ 10 use square brackrl< [I. nO! paronlhcses O. rOt" lim. You I)'~ [I by proning fClH·A a~d Fe ... ·T. 

11Prmlni CIlITrtse"lS 1M rompuler and d~rO)"s all\lorro dala. 



8/TI lOGO 

1.4. 1. Simple I)rocedures 

(.( 

TO BOX 
fORWAR040 
RIGHT 90 
FORWARD 20 
RIGHT 90 

TO BOXES 

'0' 
PENUP 
FORWARD 5 
LEFT 90 

Ib( 

TO PINWHEE:L 
REPEAT 4 [BOXI 
END 

FORWARD 40 
RIGHT 90 
FORWARD 20 
END 

FDRWARO 15 
RIGHT 90 
PENOOWN 

"" END 

Figure 1.9: Shapes drawn by the BOX. 
BOXES. and PINWHEEL procedures. 

compUlcr's working vocabulary and can be used just as if it were a primitive. 
You teach Logo new words by defini ng them in terms of words that are 
already known . These defi nit ions are called procedures, and this section 
describes the si mple mechanics of how to define and edit procedures. As in 
the previous section, Ihe examples are drawn from turtle graphics programs. 

The following seq uence of commands makes the tunle draw a rectangular 
box as shown in Figure 1.9: 

FORWARD 40 
RIGHT 90 
FORWARD 20 
RIGHT 90 
FORWARD 40 
RIGHT 90 
FORWARD 20 

You can teach the computer to execute this sequence of commands whenever 
you give the command BOX by defining BOX as a procedure: 

TO BOX 
FORWARD 40 
RIGHT 90 
FORWARD 20 
RIGHT 90 
FORWARD 40 
RIGHT 90 
FORWARD 20 
END 

Before Iyping Ihis definition to Logo, you will need to know about the 
Logo procedure edilOr which is described below in Section 1.4.2. Notice first 
Ihat the fo rmat of the procedure defi nition is 

• A title line, which consists of the word TO followed by the name you 
choose for the procedure. 

• A body, which is the sequence of command lines that make up the 
definition. 

• The word END 10 indicate that this is the end of the definition. 

Once BOX is defined, it can now be used in further definitions, such as 

TO BOXES 
BOX 
PENUP 
FORWARDS 
LEFT 90 
FORWARD 15 
RIGHT 90 
PENDOWN 
BOX 
END 

v 



, 

, 

-----
-

'--' 

1.4.2. Defining Procedures 

Figure 1.10: The display screen as it appears 
when you enter edit mode by 

typing TO BOX. 

A FI.st LOOk al LogO I 9 

TO PINWHEEL 
REPEAT 4 ISOX] 
END 

which produce the drawings shown in Figure 1.9. When a procedure is used 
as pan of the definition of a new procedure, it is referred 10 as a 
subprocedure of the new proced ure. 

Remember that once a procedure is defined, you can consider it to be just 
another word that the comput er " knows ." You tell Logo (0 execute any of 
these procedures in the same way that you tell it \0 execute a primitive 
command-by typing the name of the com mand fo llowed by ENTER. 

Procedure definitions like the o nes in the previous section a TC typed into 
the Logo system using a procedure ediior. The following paragraphs describe 
how to define procedures such as the BOX procedure shown above. When 
Logo gives its question mark prompt , you type 

TO BOX 

and press ENTER. The screen should now be clear, except for a procedure tit le 
line TO BOX, followed by an END. The screen background also changes 
color to a light green to ind icate that you are now using the procedure editor. 
or, are in so-called edit modc. This configuration is shown in Figure 1.10. 

The Procedure Edi tor 
In edit mode, you type in the procedure defi nition line by line. The major 

difference between typing at the procedure editor and typing regular Logo 
commands is that pressing ENTER merely moves the cursor 10 the begi nning 
of the next line. rather than telling Logo to execute the current line as a 
command. Logo is now SlOring your command lines as part o f the procedu re, 
ralher than executing them. 

After you have typed in the proced ure definitio n, you press BACK. The 
definition will be processed and Logo will be ready to accept a new 
command . 

Ed iting Co mmands 
When you type your defi nitions into the procedure ed itor, you can type 

characters and use ERASE to correct typing errors as usual. There are also a 
large number of more powerful editing commands to aid you in typing and 
changing procedure defi nitions. 

ERASE 

DEL 

FCTN-3 Pressing the ERASE key, just as at Logo command 
level, deletes the character to the left of the cursor 
and moves the curso r one space to the left. In 
addition. if the cursor is at the beginning of the line, 
pressing ERASE combines that line with the previous 
line. 

FCTN-1 Pressi ng the DEL key deletes the character at the 
current cursor position , thai is, the character over 
which the cursor is flashing. In addition, if the 
cursor is at the right end of the line, pressing DEL 
combines that line with the next line. 



10lTI LOGO 

TO PINWHEEL 
FORWARD 50 
REPEAT 81RIGHT 45 BOXI 
BACK 90 
ENO 

TO FAN 
REPEAT 8 1RIGHT 45 BOXI 
ENO 

Figure 1 . 11: Shapes drawn by Ihe modified 
PINWHEEL and FAN procedures. 

Arrow keys 

BEGIN 

[

'CTNOE 
FCTN-S 

FCTN-D 

FCTN-F 

FCTN-S 

Pressing any of the arrow keys (up, down . right . or 
left) moves the cursor one space in the di rection of 
the arrow without rubbing out any character. 

Pressing the BEGIN key moves the cursor to the 
beginning of the line. 

PROC'D FCTN-S Pressi ng the PROC'D key moves the cursor to the 
right end of the line. 

CLEAR FCTN-4 Pressing the CLEAR deletes all characters on the line 
from the cursor right wards. 

For example, to change the line 

FORWXYD 100 

to 

FORWARD 100 

start with the cursor just to the right of the number 100, Then you can 
position the cursor under the X by pressing left arrow 7 times, then delete the 
X and the Y by pressing DEL twice, and then type the characters AR. Another 
way to make the same change is to position the cursor under the 0 by 
pressing the left arrow key 5 times, then delete the X and the Y by pressi ng 
ERASE twice, and then type A R. 

I f you use an editing key in a context where it doesn't make sense (for 
instance, trying to move to a nonexistent line), Logo will flash the screen 
briefly, 

Changing Procedu re Definitions 
Suppose you want to change the definition of a procedure. For example, 

you may want to change the definition of PINWHEEL on page 9 from 

TO PINWHEEL 
REPEAT 4 [BOXI 
END 

to 

TO PINWHEEl 
FORWARD 50 
REPEAT 8 [RIGHT 4S BOX) 
BACK 90 
END 

so that it now makes the drawing shown in Figure 1, 11 . To accomplish this, 
you give the command 

EDIT PINWHEEL 

Logo now places you in edit mode with the original text of the PI NWHEEL 
procedure shown on the screen, Now edi t the defini tion, inserting and 
deleti ng text using any of the edi ting commands described above. When you 
have finished editing, press BACK. The definition is now changed and Logo is 
ready fo r a new command. 

v 

v 

'-' 
'-../ 

v 

v 

v 

'-' 

'-' 

~ 

'-' 

'-' 

'-' 

v 

'-' 

'-' 

v 

'-../ v 

'-' 

J 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

v 

'-' 

'-' 

'-' 

V 

'-.J 

'-' 

~ 

v 



~ 

~ 

~ 

~ 

~ 

'--' 
~ 

~ 

A FI .. I Look.1 LogO/II 

When you change a procedure definition, the computer then uses the new, 
not the old . definition anytime the procedure is executed. 

Changing the procedure's name (by editing the title line) is equ ivalent to 
defining a new procedure with the new title. For example, if you edit the 
PINWHEEL definit ion to read 

TO FAN 
REPEAT alRIGHT 45 BOXI 
END 

(which draws the shape shown in Figure 1.1 1), logo will remember both FAN 
and PINWHEEL 

Printing Procedures and Tilles 
In order to see the definition of a procedure, you can use the PO (PO 

stands for "print out") command followed by the name o f the procedure. 
Here is an example: 

PO PINWHEEL 
TOPJNWHEEL 
FORWARD SO 
REPEAT "{RIGHT 45 BOX] 
BACK 90 
END 

Another useful Logo command is PP (PP stands for "print procedures"), 
which lists the title lines of all procedures that are currently defined; for 
example: 

PP 
TDPINWHEEL 
TDFAN 
TDBDXES 
TDBDX 

If the printout is too long to fit on a single screen, Logo will pause when it 
fill s the screen and type the message 

PRESS ENTER TD CONTINUE 

Pressing ENTER will show the next screcnful. See Section 5. 1.1 for more 
details on printing procedures. 

Defining More T han One Procedure at a Time 
If you like. you can use the editor to defi ne more than one procedure 

definition at a time. You si mply type in the defi nitions in sequence. Be sure 
to end each separate procedure definition with END. 

As with multiple commands on a line, defining more than one procedure at 
once can cause confusion, because if some procedure definition is badly 
formed and causes a definition error (see Sect ion 1.4.3 below), the procedure 
definitions that follow it will not be processed. It is generally beuer to enter 
and exit edit mode fo r each procedure separately. 

More T han One Scrttnrul 
Sometimes. either because you have a very long procedure definition, or, 

more commonly, because you are defining many procedures al once, you 



121 T I LOGO 

1.4.3. Errors in Procedures 

may want to edit more lines of text than can fit on the screen at once. Logo 
allows you to do (his. If the cursor is at the bottom of the screen and you 
press RETURN, the lines of text wi ll scroll upwards to produce a new blank 
line. In general, the screen can be thought of as a window onto a much 
longer page of text that scrolls as you move the cursor from line 10 line so 
that the part you are editing is always within the window. 

Long Lines in Procedures 
As is the case with command lines, lines in Logo procedures can be more 

than one screen-line (30 characters) long, up to 127 cha racters. When you 
type the 31st character of a long line usi ng the proced ure editor, the cu rsor 
moves to the left of the next screen line while you conti nue typing. 

If Logo encounters an error while executing a procedure, it prints an error 

message as described in Section 1. ].3 together with four pieces of 
information: 

• A description of the error. 

• The level number at which the error occurred. 

• The number of the line that contained the error. 

• The name of the procedure in which the error occurred. 

The meaning of "level number" follows. A procedure that is called directly 
by a typed command line is said to be running at level I; a procedure called 
by a level I procedure is said to be at level 2, and so on. The greater the level, 
the longer the "chain of procedure calls" from the typed-in command to the 
procedure in wh ich the error occurred. 

For example, suppose you define the procedure 

TO BLOCK 
ELL 
RIGHT 90 
ELL 
END 

and the definition of the subprocedure ELL contains a typing error (in the 
third line of the procedure): 

TO ELL 
FORWARD 50 
RIGHT 90 
FORWAXD 25 
END 

Then if you give the command BLOCK, Logo will run until it tTies to execute 
the th ird line in ELL for the first time at which point it will type 

TELL ME HOW TO FOAWAXD 

AT LEVEL 2 LINE 3 OF ELL 

At this point you should edit ELL and correct the mistyped line. 

v 

v 



, 

-
'-' 

~ 

, 

-
-
, 

-
, 

~ 

, 
1.5. Other Graphics Commands , 

, 
, 

'--' 

, 

-
, 
, 

-
, 

, 

~ 

1.5. 1. Drawin g in Color 
, 

, 

-
, 

, 

/ '-' 

-
, 

, 

A First Look at Logo I 13 

Errors in Proced ure Defi nitions 
When Logo processes a procedure definition, it does nOt look for errors in 

the lines that make up the body of (he defi nition. For example, if you make a 
typi ng error, as in the second line below: 

TO PINWHEEL 
REPEAT 8 !RIGXT 45 BOX! 
END 

the fact that RIGHT has been mistyped as RIGXT wi ll ca use an error when 
Logo attempts [0 execure PINWHEEL, not when you defi ne the procedure,ll 
On the OI hcr hand, there a re cerlain th ings that can cause errors when you 
press the BACK key and the definition is processed. For exa mple, you may 
mistakenly use the ed iting operations to remove the word TO fro m the title 
li nc whi le you are editing o r cause the defi nit ion to be badly formed in some 
ot her way. Logo wi ll complain, for example, if you try 10 define a proced ure 
with the same na me as some Logo primitive. Fo r instance, if you anempt 10 
define a proced ure named FORWARD, Logo will respond 10 your pressing 
the BACK key wi th the error message 

TO DOESN'T LIKE FORWARD AS INPUT 

In add ition to the tunic commands FORWARD, BACK, LEFT, and RIGHT. 
Logo allows you to move the tu rt le by specifying X,Y Cartesian coordinates. 
The SXY comma nd takes two numeric inputs and moves the tll rt le to the 
corresponding X,Y screen location. There arc also commands XCOR and 
YCDR which output the turt le's position.!3 T he SETHEADING com mand 
rotates the tu rt le so that it faces in a specified di rection , and the HEADING 
command outputs the tllrt le's headi ng. Giving the command HOME moves 
the turtle back to its initial position at the center of the screen and fac ing 
straight up . 

Besides drawing with PEN UP a nd PENDOWN, you can also make the 
tu rt le erase any lines that it passes over. You do this by using the command 
PEN ERASE (abbreviated PEl. For instance, if you want to crase some lines 
in a drawing, you can type PENEAASE a nd then d rive the turt le over those 
lines. There is also a com mand PEN REVERSE (abbreviated PR). which is 
lik e a combination of PENDOWN and PENERASE. When the pen is 
reversed, the tu rtle wi ll "reverse" any poi nts that it passes over. Any dot Ihal 
is off will be turned on, and any dOl that is on wi ll be turned off. 

Section 12. 1 gives a complete list of the graphics comm ands that a re built 
into Logo. 

The SETCOLOR comma nd (abbreviated SC) changes the color in which 
the turtle draws. SETCOLOR ta kes as input a number, which specifies the 
designated color. There are 16 colors available in T I Logo: 

l20n~ very good rcason for 'his is ,ha';! is al"'~ys polSibk ,h~, )'ou (lid mean 10 type AIGXT. and you ,,';11 be 

defin'n, a pro<;cdurt namNi RIGXT before u~in, PINWHEEL. One facility ,hat a com pUler lan,uage can 

pro"id~ ,0 encourage sound programming pr"",icn is 10 make it possible to ,,·ri .. definilions in lrrms of 
pro<;cdurcs thaI ha", nOi yCI bttn ddincd . 

tJs« S«1ion 6.2 on how to Ust OUtpUIS. 



14 / TI LOGO 

1.5,2. T he Background 

CLEAR 0 RUST 8 
BLACK ORANGE 9 
GREEN 2 VELLOW 10 
LI ME 3 LEMON 11 
BLUE • OLIVE 12 
SKY 5 PURPLE 13 
RED 6 GRAY ,. 
CVAN 7 WH ITE 15 

For instance, to make the turtle draw in white, you can give the command 

SETCOLOR 15 

Alternatively, you can specify the nome of the color rather than the number. 
You do thi s by using the name as input, preceded by a colon (:) as in l4 

SETCOLOR WHITE 

The COLOR command outputS (as a number) the curren! color in which the 
turt le is drawing . 

You can also change the background color of the screen 10 be any of the 
above colors. There a re two ways to do this. One is to use the command 
COLORBACKGROUND (abbreviat ed CB) . For instance, 10 change the 
background color to yellow, you can type either 

COLORBACKGROUND10 

0' 

COLORBACKGROUND :YELLOW 

TELL and Graphical Objects 
You can also change the background color by typing 

TELL BACKGROUND 

followed by a SETCOLOR command. such as 

SETCOLOR :YELLOW 

The general idea here is that TELL is a command that "directs the comput er's 
attention " to various kinds of graphical obj ects . So far we have seen two 
graphical objects, the TURTLE and the BACKGROUND. When the 
computer is " talking to" an object (via TELL). all the graphics commands 
refer to that object. If you type 

TELL BACKGROUND 

14The u~ of !he colon kere;$ nOi s~;r",all)· rel.led 10 colOr! or 10 dr ... -;ng. Ralh .... ;1 rtfltcl$lhe gentral 

"-af in .. -hich IhingS in Logo can be nanled. When Logo is sialled. the symbol WH ITE il pred.fined to be a 
name for ,he number 15 (and (he OIh .... roIor namO$ lik.w;~). For inltan~. if )'OU lYIle 

PRINT:WH1TE 

Logo ,,·;11 print 15. The colon syn, a., :WH ITE dirtcl s LOIO 10 find Ihe ,·aluo l1.\SOCialed with WHITE. W. "ill 

I« OIh..- uscs of : in dealing with inp<lIIIO procedum in &c1ion 2.1 and wilh Iho MAKE command in 

s.-ouon 6.~. 

'-./ 

~ 

'-' 

v 

'J 

'-./ 
'-' 

'-' 

~ 

'-' 



, 

, 

'-' , 

~ 

, 

~ 

, 

-
, 

, 

, 
1.6. Modes of Using the Screen , 

, 

1.6. 1. Noturlle Mode -
, 

1.6.2. Turllc Mode 

, 
'-../ 

, 

, 1.6.3. Edit Mode 

, 

, 

, 

, 

, 

-
, 

--
-' 

, 

'---' -
-

A FlfS! Look al Logo I 15 

and then give the COLOR command, the num ber ret urned will be the color 
of the background. You must also be sure that the command is one that 
makes sense for the object you a re TELLing. For instance, if you type 

TELL BACKGROUND 
FORWARD 50 

Logo will respond with the error message 

BACKGROUND CAN'T FORWARD 

In this case, you probably meant for the turtle to go forwa rd, so you should 
redirect the computer's attent ion 10 Ihc tunic by typi ng 

TELL TURTLE 

As graphical objects go, the backgrou nd is a rat her limited one, since all 
it can do is change color. We'll meet mOTe versatile graphical objects in 
Chapter 4. 

This chapter has presented thc basics of executi ng Logo commands and 
defin ing sim ple procedures. As a summary, we note that Logo uses the 
display screen in three different ways, or modes. 

Logo starts in nOlUrt le mode . You type in command lines. termi nated wit h 
ENTER. Logo executes the line and prints a response, if appropriate. 

Typi ng TELL TURTLE causes Logo to enter turtle mode as shown in 
Figure 1.5, with the screen cleared and the turt le at the center. In turt le 
mode. you usc the turtle for d rawi ng on the screen. The NOTURTLE 
command exits turt le mode and enters nOl urtle mode . 

Executing the com ma nds TO or EDIT places Logo in ed it mode, which 
allows you to use the procedu re editor as described in Section [.4. 2. Pressing 
the BACK key exits edit mode and processes the definitions. 



~ 

'J 

U 

V 
'-J 

'J 

U 



-
-
- '---' --
-
-
-
-' 2.1. Procedures wilh Inpuls 

-
-' 

-
-
-
-
- '-' 

-
-
-' 

-
-' 

-
-
J 

J 

--
-' 

J 

'-' -
--
-' 

Programming with p rocedures 117 

CHAPTER 2 

Programming with Procedures 

In the Introduction we stressed that the abi lit y to defi ne procedures is onc of 
the powerful features of the l ogo language. In this chapter we explain more 
about how procedures can be used and, in particular, how they can be used 
to build up complex programs in si mple sleps. With the material covered in 
this chapler, you should have enough informat ion about Logo to undertake 
many projects in [UTi le geomelry. Be sure 10 type TELL TURTLE before 
trying a ny of the activit ies in this chapter, 

The procedures discussed in Section 1.4 do exactly the same thing each 
lime they are executed . Each tur tle procedure draws the same drawing each 
time. Contrast this with a com mand like FORWARD. 

FORWARD 50 

does not draw exactly the same thing as 

FORWARD 25 

The fact that the FORWARD command takes an input is what enables you to 
use th is one command to draw lines of all different lengths. 

In Logo, you can define procedures that take inputs. Consider, for 
example, the followi ng procedure, which draws a square 50 units in a side : 

TO SQUARE 
REPEAT 4 (FORWARD 50 RIGHT 901 
END 

Whenever you give the command SQUARE, the tunle draws a square with 
side 50. You can change the definition of SQUAR E so that it can be used to 
draw squares of all different sizes: 

TO SQUARE :SIDE 
REPEAT 4 (FORWARD $ IDE RIGHT 901 
END 

The new SQUARE procedure takes an input that specifies the side of the 
square to be drawn. The proced ure is executed just like any Logo command 
that takes an input. That is, to draw a square of side 50, you type 

SQUARE 50 

To draw a square of side 25, you type 

SQUARE 25 

and so on.1 

IA rornmon beginners' miSlake is 10 IYpe SQUARE :50. tnsed on 1M (re3sonable) misundomandinJ Ihallhe 
COlOR mean, somOlhinlllike "h .. e i. your inpul:' Inslead. as " .• shall Stt bolo,,", 'he colon as used in :SIDE 

meanS ",he value assccialro with ,he name SIDE," 



l8 / TI l OGO 

Figure 2.1 : Shape drawn by the 
DlAG procedure . 

2. 1.1. Multiple Inputs 

,., 

The definition of SQUARE illustrates the general rule for defining 
proced ures that lake inputs. You choose a name for the input and include it 
in the procedure title line, preteded by a colon.2 Now you use the input name 
(with the colon) wherever you would normally use the value of the input in 
the procedure body. 

To define a proced ure with inputs, you use the procedure editor just as in 
defining any procedure. To enter the editor, type TO followed by as much of 
the title line as you li ke, followed by ENTER. For example, if you type TO 
SQUARE :SIDE (ENTER) , you will enter the editor, and the ti tle line of the 
procedure will be TO SQUARE :SIDE. If you type TO SQUARE (ENTER), 

you will enter the editor with the title line TO SQUARE. and the :SIDE part 
of the tit le line can be added using the normal editing operations.3 

Here's another example. You can modify the original (side 50) SQUARE 
procedure to draw a diagonal of the square and return the turtle to its 
starting point. The procedure uses the fact that the length of the diagonal is 
the square root of 2 (about 1.4, or 7/5) times the length of the side. 

TODIAG 
REPEAT 4 (FORWARD 50 RIGHT 90( 
RIGHT 45 
FORWARD 70 
BACK 70 
LEFT 45 
END 

Figure 2.1 shows the shape drawn by this procedure. To draw the shape in all 
different sizes , you can use 

TO DIAG :SIZE 
REPEAT 4 (FORWARD :SIZE RIGHT 901 
RIGHT 45 
FORWARD (:SIZE • 7) 15 
BACK CSIZE • 7) 15 
LEFT 45 
END 

Logo procedures may be defined to accept more than one input. You 
simply choose a name for each input and include it in the title line, preceded 
by a colon. For example. the fo llowing two-input procedure can be used to 
draw rectangles of varying sizes and shapes: 

TO RECTANGLE :HEIGHT :LENGTH 
FORWARD :HEIGHT 
RIGHT 90 
FORWARD :LENGTH 
RIGHT 90 
FORWARD :HEIGHT 
RIGHT 90 
FORWARD :LENGTH 
RIGHT 90 
END 

2logo tradition is 1o pronounc.. the colon as ··dOls." That is :SIOE is pronouncc-d Mdots SIDE." 

lin the first rel._ of TI Lo,O. ~ou should t~ only TO and the proctdurc title and add the inpuu with th. 
editing operations. In TI Lo,O II. you tan USt nlh.tr method IS described above. 



/ 

/ 

/ 

/ 

/ 

~ 

/ 

/ 

/ 

'--
/ 

/ 

, 

/ 

tbl 

Figure 2.2: Two rectangles drawn by the 

RECTANGLE procedure. 

2. 1.2. Inputs as Private Names 

RE CTANGLE 

HEIGHT 10 

LENGTH 50 

Flgur.2.3: Private library set up by 
e)(8Culing RECTANGLE 10 50 

Flgur.2.4: Figure drawn by executing 
FLAG SO. 

Programming wlln Procedurll l 19 

As shown in Figure 2.2, executing the command 

RECTANGLE 50 10 

draws a long, skinny rectangle. whereas 

RECTANGLE 50 50 

draws a square. 

Defining a Logo procedure involves grouping together a series o f 
commands under a name chosen by the programmer. Using inputs a lso 
involves naming, but in a different sense. Although a new procedure is 
incorporated as part of Logo's working vocabulary, the name of an input is 
private to the procedure thai uses the input. 

Since input names are private. different procedures may use the same 
names for inputs wit hout these names interfering with each ot her. One way to 
think about this is to imagi ne that each time a procedure is executed, it sets 
up a " private library" that associates with its input names the actual input 
values with which the procedure was called. When the procedure executes a 
line that contains an input name (signaled by:) it looks up the value in the 
library and substitutes the values for the name. For example, the previous 
RECTANGLE procedure, called with 

RECTANGLE 10 50 

would set up a private library as shown in Figu re 2.3 . 
The input values are associated with the input names in the order in which 

they appear in the title line. In this case, the first input, 10, is associated with 
the fi rst input name, HEIGHT, and the second input, 50, is associated with 

the second name, LENGTH . 
We've already seen in Chapter I that the individual steps in a procedure 

can themselves be procedures. Si nce each procedure maintains its own private 
library of input values, there is no conflict between the input names used by 
the different procedures. For example, here is RECTANG LE used as part of a 
procedure for drawing a fl ag, as shown in Figure 2.4: 

TO FLAG :HEIGHT 
FORWARD :HEIGHT 
RECTANGLE (oH EIGHT 12) ,HEIGHT 

BACK ,HEIGHT 
END 

The FLAG procedure draws a "pole" of a specified HEIGHT, then draws on 
top of the pole a rectangle of dimensions HEIGHT/2 by HEIGHT, then moves 
the turtle back to the base of the pole. Note the use of parentheses around 
(: HEIGHT I 2). These are not actually necessary for Logo 10 understand what 
is meanl , but they make the program easier to read.4 

4section 6.7.2 discuSSH (he rules (or usina paren(hnes in Loao. 



20ITI LOGO 

.,.. fl o«,..IU ! .,.,., ! H ! ." ".T II 
:~~w~::,_.~~: ___ -. LIm . .. 

, .lC"~." , .",.,"" I '''".T' '- _ _____ _ ___ J 

0." ." ... 

Figure 2.5: Private libraries sel up by 
executing FLAG SO. 

Let's examine in detail what happens when you execute the command 

FLAG 50 

This creates a private library for FLAG in which HEIGHT is associated with 
50 and begins executing the definition of FLAG , starting with the first line 

FORWARD :HEIGHT 

Looking in the private library, Logo finds that 50 is the value associated with 
HEIGHT, so it makes the turtle go FORWARD 50. Next it must execute the 
line 

RECTANGLE (:HEIGHT 12) :HEIGHT 

To do this, Logo first determ ines the values of the two inputs that must be 
given to RECTANGLE. The first input is half the value of HEIGHT, or 25 , 
and the second input is HEIGHT itself, or 50. Now RECTANGLE is called 
with inputs 25 and 50. This sets up a private library for RECTANGLE in 
which the names of RECTANGLE's inputs, HEIGHT and LENGTH , are 
associated with 25 and 50, respectively. The ent ire picture is as shown in 
Figure 2.5. Even though the name HEIGHT is associated with 50 in FLAG 's 
library and wilh 25 in RECTANGLE's library, there is no con flict between the 
two. Each procedure looks up its own values in its own library. 

The importance of private input names is that you can use a procedure 
without concern for the details of precisely how it is coded, but rather just 
concentrating on what if does. When you write the FLAG procedure, you can 
regard RECTANGLE as a "black box" that draws a rectangle, without 
worrying about what names it uses for its inputs. Indeed, as far as FLAG is 
concerned, RECTANGLE might have been a primitive included in the Logo 
system. 

The technique of regarding a procedure (even a complex procedure) as a 
black box whose details you needn't worry about al the mo ment is a crucial 
idea in programming or, indeed, in any kind of design enterprise. Each lime 
you define a new procedure, you can use it as a buildi ng block in more 
complex procedures, and in this way you can build up very complex 
processes in what Papert [l5J refers to as "mind-size bites." 

As a simple illustration, once you have defined FLAG you can use it to 
easily make a procedure that draws a flag and moves the turtle over a b i t: ~ 

TO FLAG.AND.MOVE :SIZE :SPACING 
PENDOWN 
FLAG :SIZE 
PENUP 
RIGHT90 
FORWARD :SPACING 
LEFT 90 
END 

SThc period used in ~ namc likc FLAG.AND.MOVe is intrrprCIW as an ordinary charaClrt. Loso doe$ nOl 

allow spaces ~o be part of prC«durt names, SO Ihe poriod is a useful way 10 ma ke long names morc Ttadablc . 



" 

," 

" 

FFFF 
Figure 2.6: Picture drawn by AOW 20 30 4. 

2.1.3. An ARC Procedure 

CIRCLE 1 

o o 
CIRCLE 2 CIRCLE 8 

Figure 2.7: Circles drewn by the CIRCLE 
procedure. 

Programming with Procedure s I 21 

You can use this to draw a row of flags as in Figure 2.6: 

TO ROW :SIZE :SPACtNG :HOW.MANY 

REPEAT :HOWMANY IFLAG,AND,MOVE :SIZE :SPACINGI 
END 

As another example of usi ng procedures wi th inputs, we'll consider the 
problem of writing a procedure to draw circular arcs. This is not only a good 
exam ple of using proced ures. but is also a use ful building block to have in 
making drawings. 

The ARC proced ure is based on making the tu rt le go FORWARD a small 
fi xed d istance, turning a small fixed angle, a nd repeati ng this over and 
over-this draws a good approximation to a circula r arc.6 When the turt le 
has turned through 360 degrees, a complete circle will have been drawn. This 
leads to the fo llowing CIRCLE procedu re:7 

TO ClRCLE1 
REPEAT 360 [FORWARD 1 RIGHT 1] 

END 

This draws a circle, but it is very slow, especially if you use it without hiding 
the tun le. The problem is that there are so many FORWARD 1, LEFT 1 
moves. And these are mostly unnecessary, because, wit hin the accuracy of the 
display screen, a regular polygon wit h more than 20 sides is indistinguishable 
fro m a circle. For example, you can replace the CIRCLEl procedure above 
by the following proced ure, which draws a regular 36-sided polygon: 

TO CIRCLE2 
REPEAT 36 [FORWARD 10 RIGHT 10] 
END 

(Notice that you mult iply the FORWARD step by \0 in order to keep the 
circle the same size as before. ) The CIRCLE2 procedure runs about 10 times 
as fast as CIRCLE1 and look s almost the same on the display screen. 

You can make this procedure more useful by giving it an input that varies 
the size of the circle: 

TO CIRCLE :S IZE 
REPEAT 361FORWARD :SIZE RIGHT 101 
END 

Note that the turtle sti ll turns 10 degrees at each step, so varyi ng the size of 
the FORWARD step varies the size of the circle . Figure 2. 7 shows some 
circles drawn by the CIRCLE procedure. 

6n.ls;s a fu ndam~nt al idea in turtl. g""m.tr~. basW on Ih. fact that a circl. is a curve of con,tant cu,,'alUte , 
Thi, obsrrva'ion is ,ho k.~ to many turl1.-basood approach .. 10 math.matics a, doscribod in th. book by 

Abol.on and di~ .... ll1. 

7The digit 1 incl uded as pan of th. name CIRCLEI ;. int . rpr.ted as an ordinary charact.r, It is standard 
practiCC' 10 name minor "a,ianll of p'ocedures by appending a number 10 th. nam •. 



221TI LOGO 

( ( 
AACRIGHT 50 60 ARCLEFT 50 90 

( 
ARCAIGHT30 180 ARCLEFT 10020 

Figure 2.8: Circular arcs drawn by the 
ARCRIGHT procedure. 

2.2. Repetition and Recursion 

TO PETAL :SIZE 
ARCRIGHT 'SIZE 60 
RIGHT 120 
ARCRIGHT :StZE 60 
RIGHT 120 

'"0 

TO FLOWER :SIZE 
REPEAT 6 [PETAL ,SIZE RIGHT 50) 
END 

TO RAY:SIZE 
ARCLEFT :SIZE 90 
ARCRIGHT :SIZE 90 
AACLEFT :SIZE 90 
ARCRIGHT :SIZE 90 
END 

TOSUN :SIZE 

FLOWEn 100 

REPEAT 9 [RAY ~ SIZE RIGHT 1601 
END 

SUN SO 

Figure 2.9: Simple procedures that use arcs. 

An arc procedure can be implemented in the same way. except the tunle 
should turn through as many degrees as there are degrees in the arc. The 
fo llowing procedure draws ci rcular arcs turning toward the right: 

TO ARCRIGHT :SIZE :DEGREES 
REPEAT :DEGREES/l 0 [FORWARD :SIZE RIGHT 10) 
END 

Not e that we divide the DEGREES input by [0 to obtain the number of 
10-degree steps the tur tle should perform to construct an arc of that many 
degrees .S An ARCLEFT proced ure can be designed in exactly the same way. 
Figure 2.8 shows some arcs generated by this procedure. 

Once you have defined ARCRIGHT and ARCLEFT, you ca n use them to 
develop all sort s of interesting shapes. Figure 2.9 shows two examples. 

We've already seen the use of the LOgO REPEAT command (page 7) to 

repeat a series of steps a fixed number of times. Another way to make 
someth ing repeat is to define a procedure that includes a call to itself as the 
fina l line. For example. 

TO SQUARE :SIZE 
FORWARD :SIZE 
RIGHT 90 
SQUARE :SIZE 
END 

makes the turtlc move in a square pattern over and over again until you stop 
it by pressi ng BACK. You can think of the way thi s proced ure works as a kind 
of joke-the steps of a procedure can include calls to any proced ure, so why 
not call the proced ure itself? [n this case, the definition of SQUARE is "go 
fo rward. turn right , and then do SQUARE again." And this last step enta ils 
going forward, turning right, and then doing SQUARE again, and so on 
forever. 9 

One disadvantage of this SQUARE, as opposed to the one we have been 
previously using, 

TO SQUARE :StZE 
REPEAT 4 [FORWARD :SIZE RIGHT 90[ 
END 

is that it goes on indefinitely and so is not a good bu ildi ng block to use in 
mak ing more complex drawings. On the other ha nd , this kind of indefinite 
repetition can be use ful in sit uations in IVhich you do not know (or cannot 
easil y figure out) how many times 10 repeat some sequence of steps. The 
follo wing program is an excellent example: 

81n TI LQ8o. d;.i,ioll alway, prod~c .. an inl~gcr quotient; for ;nSlan,..,. 76110 ),kld. 7. Our arc procNurc will 

8;" '" "" .. « ( r~",11 oni) .. hen Ih. DEGREES illpm;, 3 multiple or 10. 

9Compar.: If a genic ap(>t'"" and orf~. you In,,,,, .. iln.,. you ,hould u<o your 'nird .. ISh 10 ,,· .. h ror ,nrro 
mort wi,he, . 



~ 

~ 

'----' 
~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

--

,-

2.2.1. Thinking About Recursion 

POLY 50 120 POLY 50 160 

POLY 60 80 POLY 60 144 

Figure 2.10: Shapes drawn by the POLY 
program. 

TO POLY :SIDE :ANGLE 
FORWARD :SIDE 
RIGHT :ANGLE 
POLY :SIDE :ANGLE 
END 

Programming with ProeecUfet 123 

Figure 2. JO shows some of the many figures drawn by POLY as the angle 
varies. They aTC all closed figures, but the number of sides that must be 
drawn before the fig ure closes depends in a complicated way upon the 
ANGLE input to the program. ' O Using the indefinite repeat you can draw 
them all with a single, simple procedure. 

Recursion is the programming word for the ability to usc the term POLY as 
part of the definition of POLY or. in general, to write procedures that call 
themselves.! I 

The recursive procedures above have a very simple form- they merely 
repeat an unchangeable cycle over and over again. Recursion is a much marc 
powerful idea and can be used to obtai n much more complicated effects . We 
shall meet many examples. To take just a small step beyond the purely 
repetitive kind of recursion, consider 

TO COUNTDOWN :NUMBER 
PRINT :NUMBER 
COUNTDOWN : NUMBER - 1 
END 

Let 's examine what happens if you give the command 

COU NTDOWN 10 

To understand the effect of this command , look back at thc definition of the 
COUNTDOWN procedure. You see that it needs an input and that is uses the 
name NUMBER for this input. In this case, you have given 10 as the input, 
so the procedure takes NUMBER to be 10. 12 The first line says 

PRINT :NUMBER 

so it prints 10 and goes on to the next line, which is 

COUNTDOWN :NUMBER - 1 

or, in this case 

COUNTDOWN 9 

lDrt,i. phenomenon forms ,'''' ba,is fot a numbtr of mathematical in"e>ti",'ion. in~oh'inl symmeltY and 
numbtr Iheory. described in Abelson ud diS<"S.a (II. 

Illan&uaats li~e Fortran and (most ve"io", of) BASIC do not allow r","union becau~ Ihe implcmenta,ion or 

a ~ompul", lanauag" is simplifiw if o~ can assume (ha(lher. are no rl'<'ursive functions. 

12Usina ,he lernlinololY introd uced in SectiOll 2.1.2. we would say ,hal COUNTOOWN .... up a private 

library in ., hkh the name NUMBER is assodatw with 10. 



241Tt LOGO 

POLYSPt 5 120 

POLYSPISI44 

Figure 2.11 : Shapes drawn by the POLYSPI 

program. 

2.2.2. Conditional Commands and 
STOP 

This order causes the same effect as if you had typed in the command 

COUNTDOWN 9 

which would be to print 9 and then give the order 

COU NTDOWNS 

and so on .. _ In sum, the effect of 

COUNTDOWN 10 

is to print 10, 9, 8, 7,6, 5, 4,3,2,1,0, -1, -2, ... until you stop the 
process by pressing BACK. 

Another example of the same programming technique is the following 
modification of the POLY program on page 23: 

TO POLYSPI :SIDE :ANGLE 
FORWARD :SIDE 
RIGHT :ANGLE 
POLYSPI (:SIDE + 3) :ANGLE 
END 

Giving the command 

POLVSPI 090 

leads to the sequence of turtle moves 

FORWARD 0 
RIGHT 90 
FORWARD 3 
RIGHT 90 
FORWARD 6 
RIGHT 90 
FORWARD 9 
RIGHT 90 

which procedures a square-like spiral. 13 By changing the ANGLE input, you can 
draw all sorts of spiral shapes. as shown in Figure 2.11. Part of the power of 
recursion is the fact that such simple programs can lead to such varied, 
unexpected results. 

Suppose you want COUNTDOWN to stOp before printing O. You can do 
this as follows: 

TO COUNTDOWN :NUMBER 
IF :NUMBER : 0 STOP 
PRINT :NUMBER 
COUNTDOWN :NUMBER - 1 

END 

IlOr ··!lQUirll.·· as il was dubbtd by a fiflh·srade Loao I'roBramm .... who d;SCO\Ierw Ihi, fi&ur~. 

v 



/ 

, 

, 

, 

/ 

." -..J 

~ 
I 

TO TOWER :SIZE 

If :SIZE <: 1 THEN STOP 
saUARE :SIZE 
FORWARD ;SIZE 
TOWER :SIZE 12 

'"' 
Figure 2.12: PiClure drawn by TOWER SO. 

Programming wllh Procedures 125 

The IF statement is used in Logo [0 perform tests, in this case to leSI 

whether the value of NUMBER is zero. If so, the COUNTDOWN procedure 
STOPs. That is, rather than continuing with the next line in the procedure, it 

returns control to wherever the procedure was originally called from. So in 
response to the command 

COUNTDOWNS 

the computer prints 5, 4, 3, 2, 1 and prompts for a new command. 
Keep in mind that the idea of STOP is that when a procedure stops, the 

next command that gets executed is the one after the command that called 
the procedure. For example, 

TO BLASTOFF 
COUNTDOWN 10 
FORWARD 100 
END 

counts down from 10 to 1 and then moves the turtle. 14 

The IF statement is called a conditional expression. 11 has the form 

IF {some condition is true} {do some action} 

If the condition is true, then the rest of the line is executed. If not, execution 
proceeds with the next line. If you like, you can separate the condition and 
the action with the word THEN as in 

TO COUNTDOWN :NUMBEA 
IF :NUMBER - 0 THEN STOP 
PAINT :NUMBER 
COUNTDOWN : NUMBER - , 
END 

Either way is acceptable . The THEN is completely optional. 
The kinds of conditions that can be tested are generated by Logo 

operations called predicates. Predicates are things whose value is either true 
or fal se. COUNTDOWN uses = , which is true if the two things it is 
comparing are equal. Tho other predicates are >, which tests whether the 
number on its left is greater than the number on its right , and <, which tests 
for less than. These three predicates deal with numbers. IS Logo includes 
other predicates for dealing with other kinds of data . It is also easy to define 
your own special-purpose predicates (see Section 6.6). 

Here is a turtle program based on the COUNTDOWN model. It draws a 
tower of squares that get smaller and smaller and stops when the squares get 
very tiny, as shown in Figure 2.12 . 

14Th is Slopping behavior is jusl whal normally happens afler a procedure e~e.;ulrs ils final lin •. If you li k •. 

you can imalinc lhal ~ry prooolur. includes a STOP command al in end. 

IS AC1ually, .. can be u!iCd fOf ltslinl equalily of any IwO pie.;cs of lol O dala . A precise descriplion of Ihe 

behavior of .. is given in Scc1ion 12.6. 



26ITI LOGO 

2.2.3. Thinking Harder About 
R«ursion 

The recursion examples we have seen so far, in which the recursive call is 
the final step in the procedure. can be readily viewed as a kind of generalized 
repetition. 16 Other uses of recursion can be much more powerful but, 
unfortunately, much harder to understand. Let's compare the COUNTDOWN 
procedure from Section 2.2.2: 

TO COUNTDOWN ,NUMBER 
IF ,NUMBER. 0 STOP 
PRINT ,NUMBER 
COUNTDOWN :NUMBER - 1 
END 

with the following similar-looking procedure: 

TO MYSTERY ,NUMBER 

IF ,NUMBER. 0 STOP 

MYSTERY:NUMBER - 1 
PRINT :NUMBER 
END 

As we saw, 

COUNTDOWN 3 

prints 3, 2, 1. In contrast 

MYSTERY 3 

prints 1, 2, 3. Most people find this very hard to understand. 
Let's trace through the process carefully. You fi rst call MYSTERY with the 

input 3, so, as explained on page 9, MYSTERY sets up a private library in 
which NUMBER is associated with 3. It checks whether the value of 
NUMBER is 0, which it is not, so MYSTERY proceeds to the next line which 
produces the command 

MYSTERY 2 

Now let's stop and think. Eventually this second MYSTERY call will stop, 
and the original 

MYSTERY 3 

procedure will have \0 continue with the next command after the call. But 
this means that there will have to be, in some sense, two MYSTERY 
procedures existing at once-the one called by the command 

MYSTERY 2 

and the original one called by the command 

MYSTERY 3 

IGrhc sprcial cast of r~urs;on in whi<:h Ihc rccunive call ;, I~ final slep;s somCI;mff called tail f«l<FSion. 

Logo ;ndudff I«hniquff fa.- implerncminS lail r«union tFficicmly, so Ihal a lail recursive procedure un 
effCCtively run "forever" "';lhoUI run";". OUt of "oraBe. 



...... , JI., .... , 
I ·~·· I · I I ·~··I,I 

" ",*Ho •• (i' '''') : 

r---------~ . 
, . , . ... ' ...... .. . ,! L __ _ _ _ _ _ _ _ J .. '.' ...... 
Fig",,. 2.13: Beginning execution 01 

MY$TERY3. 

Programming with Procedure. I 27 

which is waiti ng for the other MYSTERY to stop, so it can co ntinue. 
Moreover, each MYSTERY has its own value for NUM BER- NUM BER is 2 
fo r o ne and 3 for the other. Each MYSTERY must maintain a separate 
private Iibrary.17 The situation is shown in Figure 2. 13. 

Let's go on. The fi rst thing that the 

MYSTERY 2 

procedu re does is check whether the value for NUMBER is equal to O. Since 
this is not the case, MYSTERY gives the command 

MYSTERY 1 

and so now there are three MYSTERY procedures! And 

MYSTERY 1 

does a test a nd calls up yet another 

MYSTERY 0 

which makes fo ur MYSTERY calls all existing at once as shown in Figure 
2. 14. Note that so far nothing has been printed . All that has happened is that 
MYSTERY procedures have called up more MYSTERY procedures. 

PII !NT NUN BEll PIII N. NUMSEII 

,..1." l .... " t ... '." 1 , •• , " ••• ... ~ .... ' ... ~ ... " ... ~ 
Figure 2.14: Complete 8M8Cution of MYSTERY 3. 

Now 

MYSTERY 0 

performs its test and fi nds that the value of NUMBER is indeed O. $0 it 
STOPs and the process conti nues with the procedure that called it, namely. 

MYSTERY 1 

This MYSTERY now proceeds with the next line after the cail , which says to 
print the value of NUMBER. Since NUMBER is I (in this MYSTERY's 
private library), it prints 1 . Now it is done and so returns to the procedure 
that called it , namely 

MYSTERY 2 

171n other words. Ihe privale library is associaled, nOI wilh a pr~urc. bUI with. liv~n c.llto. procedure 
(or what istcchnically called an l1CliWlliort of a pr~ure). 



28ITI LOGO 

2.2.4. Drawing Trees 

Figure 2.15: A binary tree. 

This MYSTERY now continues with the line after the call. which says to 
print NUMBER. Since NUMBER is 2 (in this private library), it prints 2 and 
returns to its caller, namely. 

MYSTERY 3 

which prints 3 and returns to its caller. which is the main Logo command 
level. 

Whew! Try going through this example again step by step, referring to 
Figure 2.14. In essence, this complex process is doing nothing more than 
unwinding the fo llowing rule: 

• When a procedure is called, the calling procedure waits until the second 
procedure stops and then cont inues wit h the next instruction after the call. 

Recursion. however. forces us to appreciate a ll the ramifications of this 
simple sounding rule. In particular: 

• There may be several instances (or "activations") of the "same" procedure 
all coexisting at once. 

• Each procedure activation has a separate private library, so the "same" 
name may be associated with different values in different procedure 
activations. 

• The order in which things happen can be very confusing. IS 

As another example of complex use of recursion, let's look at a program 
that draws a binary tree, as in Figure 2.15. 

Think about how you would describe this figure. One way to do it would 
be to say something like "the tree is a vee-shape with a smaller tree at each 
tip. And each smaller tree is a vee-shape with a still smaller tree al each of its 
tips, and so on." This is a recursive description of the tree. You can translate 
this description into a recursive procedure that draws the figure. You start 
with the following commands that make the turtle draw a vee-shape of a 
certain length and return to its initial position and heading: 

LEFT 45 
FORWARD :LENGTH 
BACK :LENGTH 
RIGHT 90 
FORWARD :LENGTH 
BACK :LENGTH 
LEFT 45 

This is the basic vee-shape of the tree . Now, according to the recursive 
description, the entire tree consists of this vee with smaller vees (say. half as 
big) drawn at each tip. So the TREE procedure should be something like 

18More spedfically. thi",. h.p~n in the rev.r~ ordo< from the way One mi, ht oxp«1. Thi . i • • oon~u.nco 
of lhe fact thai the last procedure called ;, the first o t>( 10 stOp. 

v 

>J 

'-' 

'-' 

V 

'--' '-' 

>J 

~ 

V 



~ 

~ 

'--' 
-' 

-' 

/ 

-' 

~ 

/ 

/ 

, 

/ 

, 

, 

TO TREE :LENGTH 
LEFT 45 
FORWARD :lENGTH 
TREE :LENGTH 12 
BACK :LENGTH 
RIGHT 90 
FORWARD :LENGTH 
TREE :LENGTH 12 
BACK :LENGTH 
LEFT 45 
END 

ProgrlmmlrtO with p rocedures 129 

But this doesn't quite work. Consider-if you call TREE with an input of 
20. this will ma ke the tur tle go lEFT 45, FORWARD 20 and call 

TREE 10 

which will make the turtle go LEFT 45, FORWARD 10 and call 

TREE 5 

a nd so on forever, 19 This is somet hing like the fo rever-running 
COUNTDOWN procedure o n page 23, o r even morc li ke the chain of 

MYSTERY procedu res on page 26, in that no procedure fi nishes unti l the last 
onc to be called has stopped . What you need is a stop rule to keep the 
process from going on forever. You can make the process stop by having the 
procedure just SlOp without drawing anythi ng if LENGTH is very small: 

TO TREE :LENGTH 
IF :LENGTH < 2 THEN STOP 
LEFT 45 
FORWARD :LENGTH 
TREE :LENGTH 12 
BACK :LENGTH 
RIGHT 90 
FORWARD :LENGTH 
TREE :LENGTH 1 2 
BACK :LENGTH 
LEFT 45 
END 

You can modi fy the TREE procedure to prod uce a proced ure TREE1 , in 
which the subtree branches have the same length as the o riginal branches, 
rat her than half the length. If you do this, however, then the branches of 
successive subtrees will not get smaller and smaller, which means that you 
cannot use the same stop rule as in TREE. A d ifferent strategy for providing 
a stop rule is to incl ude for TREE1 an ext ra input, DEPTH, which 
determi nes the "dept h" to which the tree is drawn. Each tree of a given depth 
spawns two subtrees of dept h one less. When the TREE procedure is called 
with DEPTH eq ual to 0, it just stops wit hout drawing: 

19-rhat Is. until LoIo run$ OUt or sto r.,c. 



301T1 lOGO 

Figure 2.16: Some ligures drawn by the 
NEW.TREE procedure. 

TO TREE1 :LENGTH :DEPTH 
IF :DEPTH : 0 THEN STOP 
LEFT 45 
FORWARD :LENGTH 
TREEl :LENGTH ·DEPTH -
BACK :LENGTH 
RIGHT 90 
FORWARD :LENGTH 
TREE1 :LENGTH :DEPTH - 1 
BAC K :LENGTH 
LEFT 45 
END 

Thinking in terms of recursive descriptions can take a lot of gelling used 
to, and the programs can be subt le. One especially subtle point about the 
TREE program is the fina l BACK and LEFT moves, which are needed to 
restore the turtle to its initial heading so that the different calls to TREE will 
fit together correctly. On the other hand , many seemi ngly complex designs 
have simple recursive descriptions and can be drawn by remarkably brief 
programs. The design of recursive turt le programs for drawi ng complex 
patterns is discussed extensively in Abelson and di$essa [I]. 

To illustrate the fl avor of recursive designs, here is a modificat ion to 
TREE1 , in wh ich the left branch of each vee is twice as long as the right 
branch. We'll also allow the angle of the vee to be va ried as an input. Figure 
2.1 6 shows some of the patlerns that result. 

TO NEW-TREE :LENGTH :ANGLE :DEPTH 
IF :DEPTH = 0 THEN STOP 
LEFT :ANGLE 
FORWARD 2 • :LENGTH 
NEW-TREE :LENGTH :ANGLE :DEPTH -
BACK 2 • :LENGTH 
RJGHT 2 • :ANGLE 
FORWARD :LENGTH 
NEW-TREE :LENGTH :ANGLE :DEPTH - 1 
BACK :LENGTH 
LEFT :ANGLE 
END 

~ 

'-' 

~ 

V 
'-../ 

'.J 

'-' 

'--' 

'--' 

v 

V 

V 

v 

v 

~ 

~ 

'-' 

'--' '--' 

v 

v 

v 

~ 

'-' 

V 

'--' 

v 

'--' 

'-' 

v 

'--' 

'-../ 
~ 

V 

~ 

~ 



Here is a square procedure. 

Here are two square procedures 
designed to allow variable size. The 
triangles show the turtle's inWal 
position . 

PrOleelSI" TUr1le Geomelry 131 

CHAPTER 3 

Projects in Turtle Geometry 

Here are some projects that lise Turtle Geometry. Refer 10 olher portions of 
this text for help in defining or editing programs. Feel free 10 change 

programs that are offered and to design new programs. Be sure to Iype TELL 
TURTLE before Irying any of Ihese projecls. 

TO SQUARE 
REPEAT 4 (FORWARD 60 RIGHT 90) 
END 

TO LSQUARE ,SIZE 
FORWARD :SIZE 
LEFT 90 
FORWARD :SIZE 
LEFT 90 
FORWARD ,SIZE 

LEFT 90 
FORWARD :SIZE 
LEFT 90 
END 



32 1 Tt lOGO 

Some procedures using RSQUARE and 
recursion. 

Some ideas for using square 
procedures. 

L 

n 

0' 

TO LSQUARE :$IZE 
REPEAT 4 (FORWARD :SIZE LEFT 9O( 
END 

TO RSQUARE :SIZE 
FORWARD :SIZE 
RIGHT 90 
FORWARD :SIZE 
RIGHT 90 
FORWARD :SrZE 
RIGHT 90 
FORWARD :SIZE 
RIGHT 90 
END 

0' 

TO RSQUARE :SIZE 
REPEAT 4 (FORWARD :SIZE RIGHT 9O( 
END 

TO MOVE :SIZE 
FORWARD :SIZE 
RIGHT 90 
FORWARD :SIZE 
LEFT 90 
END 

TO STAIRS :SIZE 
RSQUARE :SIZE 
MOVE :SIZE 
STAIRS :SIZE 
END 

~ 

-.J 

'-

-.J 

'-" 
-.J 

-.J 

~ 

J 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

~ 

'-' 

..J 
'-' 

'-' 

'-' 

'-" 

~ 

'-" 

'-' 

J 

-.J 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

-' 

-' 

-
-
-
-
--
-
-
-
-

, 

'-" 

0 
<> 
0 

r-+n.J TO BOXES 
RSOUARE 30 
MOVE 30 
R$QUAAE 20 
MOVE 20 
RSOUAAE10 
MOVE 10 
RSQUARE 5 
RIGHT 180 
PENUP 
MOVE 60 
RIGHT 180 
PENDOWN 
END 

0 

TO MANYBOXES 
BOXES 
FORWARD 30 
RIGHT 90 
MANYBOXES 
END 

ProjlJ(:la In Turtle Geomelly 133 

CO 



34 I TI lOGO 

A rectangle procedure designed 10 allow 
yariabie size and some examples thai 
use it. 

TO SPINSQUARES :SIZE 

RSOUARE :SIZE 
RIGHT 20 
SPINSQUARES :SIZE 
END 

SPINSQUARES 40 

TO GROWSQUARES :SIZE 
RSOUARE :$IZE 
RIGHT 20 
GROWSQUARES :SIZE + 5 
END 

TO RECTANGLE :LENGTH :WIDTH 
FORWARD :lENGTH 
RIGHT 90 
FORWARD :WIDTH 
RIGHT 90 
FORWARD :LENGTH 
RIGHT 90 
FORWARD :WIDTH 
RIGHT 90 
END 

~ 

~ 

~ 

.J 

'--' 
'-' 

'-' 

'-' 

V 

'-' 

-
'-' 

~ 

'-' 

'-' -
'-' 

; 

'-' 

; 

'-' 

~ 

'-' 

'-

; 

'-' 

'-' 

'-' -' 

..." 



, 

Examples using RSQUARE and REC
TANGLE. 

n 

TO FLOWER 

RECTANGLE 50 10 
RIGHT 20 
RECTANGLE 5 20 
RIGHT 20 
FLOWER 
END 

TO SPINRECS :SIZE 
IF :SIZE < 10 STOP 
RECTANGLE :SIZE 20 
LEFT 30 
SPINRECS :SIZE - 5 
END 

TO HOP :SIZE 
FORWARD :SIZE 
RIGHT 90 
FORWARD 3 
LEFT 90 
END 

TO TELESCOPE :SIZE 
IF :SIZE < 6 STOP 
RSQUARE :SIZE 
HOP :SIZE 
TELESCOPE :SIZE - 6 
END 

Projects In Tllrtle Geometry 135 



3e I T. LOGO 

Here are some examples Ihal use a 
lria ngle procedure. 

TO ROCKTOP 
LEFT 30 
FORWARD 30 
LEFT 120 
FORWARD 30 
END 

TO ROCKET 
RECTANGLE 80 30 
LEFT 90 
RECTANGLE 15 15 
BACK 30 
RIGHT 90 
RECTANGLE 15 15 
FORWARD 80 
ROCKTOP 
END 

TOTRI 
REPEAT 3 (FORWARD 70 RIGHT 120( 
END 

'-" 

'-" 

-
~ 

-
'-' 

'-' 

'-' 

~ 

~ 

, 
--' 

'-' 

--' 

~ 

'-' 

'J 

~ 

'-' 

-
J 

-
-
'-' 



-
, 
, 

, '-' 

-

A tria ngle proced ure designed to allow 
variable size and an exa mple thai 
uses it. 

This proced ure is diHerent in design but 
has a simila r result. 

Some more triangle examples. 

TO TRIANGLE :SIZE 
FORWARD :SIZE 
RIGHT 120 
FORWARD :SIZE 
RIGHT 120 
FORWARD :SIZE 
RIGHT 120 
END 

TO FLUFF :SIZE 
IF :SIZE < 10 STOP 
TRIANGLE :SIZE 
FLUFF :SIZE - 10 

TO NEWTR1ANGLE :SIZE 
LEFT 30 
TRIANGLE :SIZE 
RIGHT 30 
END 

TO CREEP :SIZE 
PEN UP 
FORWARD :SIZE 
PENDOWN 

END 

Project, tn Tunt, Gtomelfy I 37 



'-' 
36 / T I LOGO 

V 
TO LOOPS :SIZE 

NEWTRIANGLE :SIZE '--' 
CREEP :SIZE '--" 
RIGHT 60 '-' 

LOOPS :SIZE 
END '-' 

'-' 

'--' 

'--' 

'-' 

'-' 

TO NEWLOOP :SIZE 
IF :SIZE < 20 STOP '-' 

NEWTRIANGLE :SIZE 
~ 

CREEP :SIZE/2 
RIGHT 60 '--
NEWLOOP :SIZE - 5 
END 

'-' 

'-' 

And one more. '--" '-' 

TO LEFTANT '-' 
LEFT 15 
FOAWAAD30 '-' 

lEFT 120 
'-' 

FORWARD 15 
BACK 15 

'-' 
RIGHT 120 
BACK 30 v 
RIGHT 15 
END '-' 

TO RIGHT ANT '-' 

RIGHT 15 
FORWARD 30 '-' 

RIGHT 120 
FORWARD 15 
BACK 15 

~ 

LEFT 120 
BACK 30 J 

LEFT 15 
END V 

TO ANTS '--' 
RIGHTANT 
LEFTANT 

'--" '-' 

END 
'-' 

'-' 

'-' 



TO BUTIERFLY 
RIGHT 60 
WING 
RIGHT 180 
WIN.G 
RIGHT 120 
ANTS 
RIGHT 150 
TRIANGLE 30 
END 

TOWING 
TRIANGLE 80 
TRIANGLE 60 
TRIANGLE 40 
TRIANGLE 20 
END 

ProJeds In Turtle Geometry I 39 

RCP and LCP are abbreviations/or "Right Circle Piece" and "Left Circle 
Piece." RARC and LA RC stand for "right are" and "left arc." A circle can 
be made from pieces of either left or right arcs, leaving (he turtle at the 
left-most or righl-masl painl of the circle. 

TORCP:R 
RIGHT 15 
FORWARD :R12 
RIGHT 15 
END 

TO LCP :R 

LEFT 15 
FORWARD :R/2 
LEFT 15 
END 

TO RARC:R 
REPEAT 3 [RCP :R[ 
END 

TOLARC :R 
REPEAT 3 (LCP :R] 
END 

TO RCIRCLE :R 
REPEAT 12 [RCP :R[ 
END 

TO LCIRCLE :R 
REPEAT 12(LCP :R] 
END 



.a I T I LOGO 

Examples Using Circle Procedures. 

TO SHRINKRCIRCLE oSlZE 
IF :SIZE < 4 STOP 
RCIRCLE :SIZE 
SHRINKRCIRCLE :SIZE - 2 
END 

TO RSLINKY :SIZE 
RCIRCLE :SIZE 
PU RT90 FO 10 LT90 PO 
RSLlNKY :SIZE 
END 

TO SPINS LINK :SIZE 
RCIRCLE :SIZE 
RIGHT 20 
SPINSLINK :SIZE 
END 

TO GROWCIRCLE ,SIZE 
REPEAT 4 (RCP ,SIZE( 
GROWCIRCLE :SIZE + 1 
END 

'-' 

'-' 

'--" 

~ 

'-' 

V 

'-' 

'-' 

v 

'-' 

'-' 

-../ 

~ 

'-' 

'-' 

'-' 

-' 

~ 

'-' 

v 

V 

~ 

v 

'-' 

~ 

v 

, 

'-' 

v 

~ 

v 

V 

~ 

.-
~ 

'-' 



-
, 

-
-
-
-

, 

, 

Examples using RARe and LARC. 

POLY procedures have variable size 
and angle. Here are some examples. 

SIDE = 50 A NGLE = J60 

TO RAY :SIZE 
RARe :StZE 
LARC :SIZE 
RARC :SIZE 
LARC :SIZE 
END 

TO SUN oSlZE 
RAY:$IZE 
RIGHT 160 
SUN :SIZE 
END 

TO POLY :SIDE :ANGLE 
FORWARD :SIDE 
RIGHT :ANGLE 
POLY :SIDE :ANGLE 
END 

SlDE =60 ANGLE =BO 

Project! In Turtle Geometry I .' 

SlDE = 80 A NGLE = 144 



"2 1TI LOGO 

POLYSTEP is a piece of a POLY 
procedure. Here are some exa mples 
IIs ing il . 

51D£=20 ANGL£ = 40 

TO POLYSTEP :SIDE :ANGLE 
FORWARD :SIDE 
RIGHT :ANGLE 
END 

SIDE= 100 ANGLE= 156 

TO TWOPOLY :SIDEl :ANGLEl :SIDE2 :ANGLE2 
POLYSTEP :SIDEl :ANGLEl 
POLYSTEP :SIDE2 :ANGLE2 
TWOPOLY :SIDEl :ANGLEl :SIDE2 :ANGLE2 
END 

SIDEI = 30 ANGLEI =60 SID£2=6O ANGLE2=210 

SIDEI =30 ANGLEI =90 51DE2 = 50 ANGL£2 = 135 

'-./ 

-.../ 

'-.../ 

-
'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'--' 

~ 

'-' 

'-' 

-
~ 

'-' 

V 

'--' 

'--' 

~ 

'-' 

'-' 

-
'--' 

'-' 

~ 

'-' 

"-' 

-./ 

-
-



More programs using POLYSTEP. You 
may ntfll to change (he Incrementing 
"alue Inside of the procedure, Ihac Is, 
(he value being added (0 (he side each 
lime tbe prognm i'e(una;. 

ProjKU In Turtle Geometry I Q 

SIDEI = 25 ANGLE! = 190 SIDE2 =50 ANGLE2 = 200 

TO POlVSTEP :SIDE :ANGlE 
FORWARD :SIDE 
RIGHT :ANGlE 
END 

TO POLVSPIRAL :SIOE :ANGLE :INC 
POLVSTEP :SIOE :ANGLE 
POlVSPIRAl (:SIDE + :INC) :ANGlE :INC 
END 

SIDE = I ANGLE= 45 INCREMENT=I 

SIDE - I ANGLE-45 INCREMENT-J 



44 / TI l OGO 

Here's an example that begins by 
defining a shape and uses it to make a 
more interesting shape. 

n 

SIDE = 5 ANGLE = 120 INCREM ENT = ] 

SIDE = 5 ANGLE = 144 INCREMENT = ) 

TO DESIGN 
FORWARD 20 
RIGHT 90 
FORWARD 20 
RIGHT 90 
FORWARD1Q 
RIGHT 90 
FOAWARD10 
RIGHT 90 
FORWARD 20 
RIGHT 90 
FORWARD S 
RIGHT 90 
FORWARDS 
RIGHT 90 
FORWARD 10 
END 

'-" 

'-' 

V 
'---/ 

'-" 

J 

'-" 

V 

'-' 

~ 

'-' 

v 



~ 

)leels In Turtle Oaomelry / 45 
~ 

TO DESIGN4 
~ DESIGN 

DESIGN 
~ DESIGN 

DESIGN 
END 

~ 

"' - TO OEStGN4 

- REPEAT 4[DESIGN[ 
END 

And two more shapes. 

-- TOCAY$TAL 

- DESIGN 
LEFT 45 - FORWARD 35 
CRYSTAL 
END 

~ 

/ 

/ 

-
/ 

- TO JENGU 
DESIGN 
DESIGN 

- LEFT 90 
JENGU 

- END 

-
/ 

-
- ~ 

/ 

/ 

-



46 / TI lOGO 

Here are some programs using INSPI . 
Try various inpuis . 

TO INSPI :SIDE :ANGLE 
POLYSTEP :SIDE :ANGLE 
INSPI :SIDE (:ANGLE + 10) 
END 

SIDE = 10 ANGLE= 1 

SIDE = 10 ANGLE= 10 

SIDE = 7 ANGLE= 3 

'--' 

'-' 

~ 

'-' 

'-" 

'-' 

'-' 

'-" 

'-' 

'-" 

'-' 

~ 

'-' 

~ 

~ 

~ 

'-' 

~ 

~ 

'-" 

-
'-' 

'-' 

~ 

j 

J 

'-' 



, 

, 

Here is a sequence of procedures Ihal 
slarl wllh a leaf (VEE) and end wilh a 
foresl (TREES). 

v 

SIDE = 7 ANGLE::j 

TO VEE 
LEFT 45 
FORWARD 10 
BACK 10 
RIGHT 90 
FORWARD 10 
BACK 10 
LEFT 45 
END 

TO BRANCH 
FORWARD 15 
VEE 
FORWARD 15 
VEE 
FORWARD 10 
BACK 40 
END 

TO BUSH 
LEFT 60 
REPEAT 6 [BRANCH RIGHT 20[ 
BRANCH 
LEFT 60 
END 

ProJe.::te In TUr1le Geometf)' / .1 



48 1 TI LOGO 

111 

Here are some projecl ideas using Ihe 
procedures you have already seen. Feel 
rree 10 make up your own projecls. 

TO GREENTREE 
FORWARD SO 
BUSH 
BACK 50 
END 

TO MOVE 
PENUP 
RIGHT 90 
FORWARDeD 
LEFT 90 
PENDOWN 
END 

TOTREE$ 
REPEAT 3 [GREENTREE MOVE) 

MOVE 
GREENTREE 
MOVE 
GREENTREE 
END 

o 0 o 
o 



l 

o 

Geometry I ~9 ProJKla In TUr1le 

00 
~ 



\.J 

\.J 

'-' 

v 

V 

.-.J 

'-' 

V 

V 

V 

V 

V 

'J 

'J 

'-' 

v 

'-' 

'-" 

'-" 

'-' 

V 

V 



, 

0 

/ 

, 

-
-
, 

0 

J 

/ 

/ 

J 

4.1. Sprites 
, 

0 

4.1. 1. Exploring with Sprites 

AnlmatioR 151 

CHAPTER 4 

Animation 

We've secn how 10 use Logo to draw with the turtle. In this chapter, we show 
how to use sprites to make pictures that move . Sprites, like turtles, arc 
graphical objects. Like turt les, they respond to commands FORWARD and 
RIGHT. But unlike turt les. sprites can change thei r cotor and thei r shape, 
and, mosl importantly, sprites can beset in motion. We begin by introducing 
the Logo commands for dealing with sprites , both one at a time and in 
groups, and give some simple procedures thaI control spri tes. In Section 4.2 
we show how you can define your own shapes for sprites 10 supplement the 
shapes thaI are built into Logo. Section 4.3 introduces Iiles. Tiles, like 
sprites, can be given various shapes and colors, but they cannot move. They 
are useful for making elaborate backgrounds fo r screen graph ics. In Section 
4.4 we combi ne sprites, ti les, and Logo programming in the design of a 
simple movie. 

A sprite, like a turtle, is an object that lives on the computer display 
screen. Like a turtle, a sprite has a position and a heading, and responds to 
the commands FORWARD, BACK, RIGHT, and LEFT. Unlike turt les, sprites 
can be given various colors and shapes. You control a sprite's color by means 
of the SETCOLOR command (abbreviated sq, using any of the 16 color 
names (or color numbers) given in the chart on page 14. You can also tell a 
sprite to CARRY a given shape. Logo comes with five predefined shapes for 
sprites, given in the following chart below. You can also define your own 
shapes using the MAKESHAPE command as described in Section 4.2. 

1 PLANE 
2 TRUCK 
3 ROCKET 
4 BALL 
5 BOX 

To begin explori ng with sprites, type 

TELL SPRITE 1 

(followed, as are all Logo command lines, by pressing ENTER). This indicates 
10 Logo that subseq uent commands will be addressed to sprite number I. If 
you have been using the turtle, clear it from the screen using the NOTURTLE 
command. Next type 
HOME 

As with the lurtle, HOME places a sprite at the center of the screen. I At this 
point you won't see anything on Ihe screen, because you have nOI given the 

IHOME does nOi rest! a spr;le ~ headin& as il dOC'! .... ilh Ihe !UTile. 



~2/TI LOGO 

sprite a color or a shape. Type 

SETCOLOR :RED 
CARRY :ROCKET 

and you should see a red rocket at the center of [he screen.2 

The rocket responds [0 FORWARD and BACK commands. Typing 

FORWARD 50 

makes the rocket move up. If you type 

RIGHT 90 

you will nOi see any change on the screen. However, a subsequent 

FORWARD 50 

will make the rocket move sideways . As with the turtle, RIGHT and LEFT 
change the direction of mot ion. But unlike turtles, the image of the sprite on 
the screen does not rotate: a sprite shape always appears in the same 
orientation. 

As with the turtle, you can change a sprite's heading by using the 
SETHEADING command. For example, typing 

SETHEADING 90 

will set the sprit e's heading towards the right, and the next move it makes will 
be in that direction. TI Logo also includes the built-in names NORTH , EAST, 
SOUTH, and WEST that you can use together with SETHEADING. For 
instance, 

SETHEADING :EAST 

will give the same resu lt as SETHEADING 90. 
The most important difference between sprites and turtles is that sprites 

can be set in motion. This is done usi ng the command SETSPEED 
(abbreviated SS). Type 

SETSPEED 10 

and the rocket will move slowly across the screen. Giving the command 

SETSPEED 100 

will make the rocket go much fas ter. In general, the SETSPEED command 
takes as input a number between - 127 and 127.3 Positive speeds make the 

2you ca n al$O obtain 'he $a me .HOC! usin, the Mum"" .. of the colo, and shap'" 

SETCOLOA 6 
CARRY 3 

As descri bed in 1he nOle on page 14. (he uS( of (he name and (I>c colo n refl« 15 (he general way in which 

names are used in Logo. 

SETSPEED DOESN'T UKE Inum"" f AS INPUT 

~ 

'--' 

'-' 

V 
'-J 

'-' 

V 

'-' 

'-' 

v 

~ 

~ 

'-' 

'-' 

V 

~ 

~ 

,.J 

---./ '-' 

'-' 

'-' 

'-' 

'-' 

~ 

~ 

'-' 

.J 

'-' 

'-' 

'-' 

'-' 

'-' 

"--' ~ 

'-' 

~ 

~ 



, 
, 

, 

, 

, 

, 

.I 

, 
4.1.2. Practice with Sprites 

, 

, 
, 
, 

, 

, 
, 
, '-' 

, 
, 

.I 

sprite move in the direction of its heading. Negative speeds make it move in 
the opposite direction. 

Now type 

LEFT 90 

This makes the rocket move vertically and illust rates that you can change a 
sprite's direction white it is moving. Giving a $ETCOLQR command will 
change the rocket's color. 

More Sprites 
Now let's add another sprite to the picture: 

TELL SPRITE 2 
HOME 
SETCOLOR :GRAY 
CARRY:TRUCK 
RIGHT 90 
SET$PEED 5 

makes a gray truck move slowly across the screen. Add another sprite: 

TELL SPRITE 3 
HOME 
SETCOLOR :YELLQW 
CARAY :BALL 

RIGHT 45 
SETSPEEO 10 

Now you have a yellow ball moving diagonally. You can have morc than one 
sprite carry the same shape. For example, you can add another truck: 

TELL SPRITE 4 
HOME 
SETCOLOR :BLACK 
CARRY :TRUCK 

RIGHT 90 
SETSPEEO 8 

At this point you should take some time to play with sprites. There are 32 
sprites in all , numbered from 0 through 31. Use TELL to pick a sprite, 
fo llowed by CARRY, SETCOLOR, and HOME to give it a shape, a color, and 
an initial position. Then move it using FORWARD, BACK, LEFT, RIGHT, 
and SETSPEED. At any point, the sprite that responds to your command is 
the one that you designated by the previous TELL instruction. 

Here are some things to note in your exploring: 

Overlapping Sprites 
When two sprites overlap, the one wit h the smaller number will appear to 

be on top. 

Four Sprites on a Line 
When you have many sprites on the screen, you will notice that some of 

them will flicke r o r partly disappear. This reflects a restriction built into TI 
Logo that at most 4 sprites may appear on a horizontal screen line. When 
there are more than 4 sprites on a horizontal line, the portions of the fifth , 



54ITI LOGO 

o .. 

I 

-127 , 0 
0.0 , 21,0 

-0, 96 

Figure 4.1 : The x,y coordinale system 
lor sprites. 

sixth, .. . ,sprites on the same lines wi ll be masked out. (The sprites that are 
masked are the higher numbered sprites .) 

FREEZE and THAW 
At any point, you can stop all motion by typing the FREEZE command. 

The THAW command restores the motion. 

Making Sprites Disappear 
The CLEARSCREEN will erase the text on the screen, but will not erase 

the sprites. To make a sprite vanish, tell it to SETCOLOR O. 

No Pen 
Unlike the turt le, sprites cannot carry a pen and cannot leave a trail on the 

screen. Pen commands such as PENUP and PENDOWN are always ignored 
by sprites. 

BIG and SMALL 
Typing the command BIG will make all sprites double in size. The SMALL 

command restores sprites to their original size. (These commands are not 
included in TI Logo I.) 

Coordinates for Sprites 
As with the turtle. you can position a sprite on the screen with X,Y 

coordinates using the SXY command. (See Figure 4.1) You can also obtain a 
sprite's position and heading using XCOR, YCOR, HEADING, SHAPE, and 
COLOR. In addition, XVEL and YVEL output the x and y components of the 
sprite's velocity. The command SV lakes two numbers as inputs and changes 
the sprite's velocity by setting the x and y components of the velocity to these 
inputs. In all cases, the coordinates in question are those of the spri te 
specified by the most recent TELL command. 

Wraparound 
When sprites move beyond an edge of the screen, they wrap around to 

reappear at the opposite edge. This wraparound behavior extends to other 
sprite attributes besides position. For example, color numbers for sprites 
"wrap around" after the maximum val ue of 15; thus SETCOLOR 16 is 
equ ivalent to SETCOLOR 0, SETCOLOR 17 to SETCOLOR 1, and so on. 
Shape numbers and sprite numbers behave si milarly. 

4.1.3. Talking to More Than One Sprite So far we've seen how to control sprites using TELL, but only one sprite at 
at a Time a time. You can also use TELL to talk to a group of sprites all at once. 

Typing 

TELL :ALL 

directs subseq uent commands to all 32 sprites . For instance, you can use Ihe 
following procedure to clear all sprites from the screen by setting their color 
to 0: 

TO CLEARSPR1TES 
TELL ,ALL 
SETCQLOR 0 
END 

You can also give TELL a list of sprite numbers, and subsequent 

~ 

~ 

'-' 

'-' 
'-./ 

~ 

'-' 

'-/ 

'-/ 

V 

V 

V 

V 

'-' 

V 

V 

V 

V 

'-' 
V 

V 

V 

'-' 

'--' 

'--' 

V 

V 

V 

'-/ 

'--' 

'--' 

'--' 

'-' V 

V 

v 

v 



FIgure " .2: A squadron 01 lOUf planes Ilylng 

in 'ormatlOn 

commands wi ll be direeled to those sprites. For instance, 

TELL [1231 
CARRY :BALL 

TELL]4 5 6] 
CARRY :TRUCK 

Anlm,tlon I 55 

will give a ball shape to sprites I, 2. and 3. and a truck shape to sprites 4, 5, 
and 6. In fac\, TELL :ALL is a special case of th is, because ALL in TI Logo is 
JUSt a name for the lisl of numbers 0 through 31. 

Namin~ Groups of Spriles 
It is oft en convenient to be able to refer 10 a group of sprites by name, 

ralher than by Iyping the list of numbers. For example, let 'S make a squadron 
of four pla nes fl ying in formation, as shown in Figure 4.2. 

We'll use sprit es \, 2, 3, and 4 to carry the planes, so we'll give the name 
SQUADRON to Ihe li sl [1 2341: 

MAKE ~SQUADRON [I 2341 

This illustrates the general way in which Ihe Logo command MAKE is used to 
name Ihings. Notice that the name SQUADRON is preceded by a qUOlation 
mark. Once we've given the MAKE command, we can refer to the lisl [1 2341 
as :SQUADRON . \\'e'll discuss the use of MAKE more fu lly in Section 6. 5. 

Here is a procedure that iniliali1es the squadron of planes. II fir st stops all 
four sprites (i n case they had been moving) and sets them at the center of the 
screen, pointing to the right (head ing 90). Then it spreads sprites 1 and 2 a bit 
horizontall y. sprites 3 and 4 a bit vcrlica1iy, and putS the squadron in motion. 

TO SQUAD 
MAKE ·SQUADRQN]1 234] 
TELL :SQUADRON 

SETSPEED 0 
HOME 
SETHEADING 90 
CARAY :PLANE 
SETCOLOR :BLACK 
TELL 1 FORWARD 20 
TELL 2 BACK 20 
TELL 3 LEFT 90 FORWARD 10 RIGHT 90 
TELL 4 LEFT 90 BACK 10 RIGHT 90 
TELL :SQUADRON SETSPEED 20 
END 

Notice how TELL is used 10 dirttt commands either to the individual spriles 
or to the entire sq uadron . Once you have given the SQUAD command. you 
can fly the squadron a rou nd usi ng S ETSPEED, RIGHT, and LEFT. (When 
SQUAD terminates, the effect of its fina l command , TELL :SQUADAON , 
will cause subsequent commands to still be directed to the entire 
SQUADRON.) 

EACH and YOURNUMBER 

It is onen useful (0 be able to lalk 10 a group of sprites all at once, bUl 10 
have each sprite do a slightly different thing. The Logo command EACH 

takes a list of commands as input and processes these commands for each 
of Ihe sprites you a re currently talking to (as specified by the previous 



56I T I LOGO 

TELL). EACH is most useful in conjunction with the Logo command 
YOURNUMBER (abbreviated YN), which outputs the number of the current 
sprite . 

For example, set your squadron fl ying across the screen as above, and type 

TELL :SQ UADRON 
EACH [SETSPEED 10 • YOURNUMBER) 

The planes will break fo rmation , because they arc now going at different 
speeds: sprite 1 at 10, sprite 2 at 20, sprite 3 at 30, and sprite 4 at 40. Not ice 
thai the commands fo r EAC H are enclosed in brackets as a list, just as wit h 
REPEAT (Section 1.3.4). 

EACH [SETCOLOR YOURNUMBER[ 

will set the planes to di fferent colors: sprite I to color I (black), sprite 2 to 
color 2 (green), sprite 3 to color 3 (lime), and sprite 4 to color 4 (blue). 

Combi ning EACH and REPEAT yields a clever li ttle procedure to help you 
explore with sprites:4 

TO SPREAD :COMMANDS 
EACH [REPEAT YOURNUMBER :COMMANDS[ 
END 

Try the following 

TELL :ALL 
SETSPEED 0 
HOME 
SETHEADING 0 
CARAY:BALL 
SETCOLOR :RED 
SPREAD [RIGHT 10[ 
SETSPEED 20 

The S PREAD points the sprites at lD-degree increment s all along a ci rcle. 
When you start them all going, the effect is that of a circle of sprites 
exploding outward from the center of the sc reen .~ Notice thatl he input 10 

S PREAD is a lisl of com mands. The use of YOURNUMBER as the first 
input to REPEAT in SPREAD means that S PRITE 0 will repeat the list of 
commands zero times , sprite I will repeat it one time, sprite 2, two times, ctc. 
Remember to type the input to SPREAD as a list, as in 
S PREAD [RIGHT 10). 

Here's another nice thing to do with SPREAD: 

4This example i. courtesy or A. diSessa. 

~Thefe's an Imeresting phenomenon Imkin, here: as soon as the sprites begi n to wrap around the borders of 
the SCf~n. the pattern startS to look random. flut if you say SETSPEED -20. causing the sprites to rcverS( 

dir...:tion. they will e.'entually all cOnVef," at the ~nter of the SCr~n . 

~ 

'--' 

oJ 

V 

'-' 
V 

V 

oJ 

'-' 

V 

'-' 

'--' 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

'-' 
V 

V 

'-' 

'-' 

'-' 

V 

'-' 

V 

'-' 

'-' 

'-' 

V 

V 

V 

'-' '-' 

'-' 

~ 

'-' 



-
, 

, 

, 

, 4.2. Defining Sha pes 

, 

-
, 

, 

-
, 

, 

, 

, 

, 

, '--
Figure 4.3: Appearance 01 the screen 

, In response to MAKESHAPE 1. 

, 

, 

TELL[1 234561 
SETSPEED 0 
SETHEADING 0 
HOME 
CAAAY:BALl 
SETCOLOR :RED 
SPREAD (FORWARD 30 RIGHT 60J 

AnlmaUon I 57 

This posi tions the 6 sprites at the ver tices of a regular hexagon. To see why. 
think about the relation between this and the POLY procedure (page 23). By 
choosing different numbers of sprites and different angles, you can make 
si milar patterns based on other regular polygons. 

To WHO(m) A re You Talking? 

With all these possibil it ies for TELL, it is useful to be able to chetk which 
sprite or group of sprites you are currently talking to. The Logo command 
WHO indicates thc sprite or list of sprilcs to which commands are currently 
directed. For example: 

TELL SPR ITE 1 
FORWARD 100 
PRINT WHO 
SPRITE 1 

TELL :SQUADRON 
SETSPEED 20 
PRINT WHO 
1234 

If you are talking 10 the turtle or the background, then WHO will output 
TURTLE or BACKGROUND. 

The shape carried by a sprite can be any of the five shapes built into Logo. 
The Logo MAKE$HAPE command (abbreviated MS) allows you to create 
your own shapes or to modify any of the built-in shapes. 

To define a new shape, first decide what number shape you are defining. 

The built-in shapes have the numbers given in the table on page 5 I. In 
general , you can have 26 different shapes, numbered 0 th rough 25. 

Suppose you want to mod ify the PLANE shape (shape I). Type 

MAKESHAPE 1 

You will see on the screen a 16 x 16 grid of small squares with the plane 
design blacked in on the grid, as shown in Figure 4.3. The background of the 
screen has also changed color 10 indicate that you are now using the shape 
editor. 

To change the shape. you move the cursor around on the grid, blacking 
in new squares and whiting out others. The keys that move the cursor are the 
keys marked with arrows: 5, D, E, and X. Pressing any of these keys moves 
the cursor in the direction of the corresponding arrow. (The cursor wraps 
around if you move it past the edge of the grid.) When you move the cursor 



58 ITI LOGO 

Figure 4.4 : A new PLANE shape. 

4.2. 1. Exam ple: Birds Flying 

Figure 4.5: UPWING and DOWNWING shapes 
lor flying birds. 

out of a square, it leaves Ihat square blank. If you hold down Ihe FeTN key 
and move Ihe cursor, Ihen Ihe square Ihal Ihe cursor leaves wi ll be blacked 
in.6 Try changing {he shape of {he plane 's wings. as shown in Figure 4.4. 

When you are fi nished changing the shape, press the BACK key. Logo exits 
the shape editor, and the new shape will be installed as shape number I 
(PLANE). Any sprite you tell to CARRY :PlANE or CARRY 1 will now have 
the new appearance. 

As an example of defining new shapes, let's make some flying birds. Begin 
by using the shape editor to define two shapes corresponding to birds with 
wings up and wings down. For these, use two new shape numbers 6 and 7. It 

is good practice to assign mnemonic names to the shapes you usc and to 
work with the names rather than with the numbers directly: 

MAKE " UPWING 6 
MAKE "DQWNWING 7 

Now use the shape editor: 

MAKESHAPE :UPWING 

MAKE$HAPE :DOWNWING 

to define the shapes shown in Figure 4.5. 
Now set up a group of 6 sprites, called BIRDS, to carry these shapes: 

TO SETBIRDS 
MAKE " BIRDS [1 23456] 
TELL :BIRDS 
SETSPEED 0 
HOME 
SETCOlOR :WHITE 
CARRY ,UPWING 
SETHEADING 45 
SPREAD IFORWARD 201 
SETHEADING 90 
END 

The SPREAD procedure (See Seclion 4.1.]) gives a useful way to spread the 
sprites out along a diagonal. Now you can set the birds in motion: 

6U"" fCTN on Iht TI 99/4A. SHlF"Ton 'he 99/ 4. 

v 

v 

~ 

V 

~ 

V 

V 

V 

'-' ~ 

V 

~ 

V 



Figure 4.6: A line 01 birds created 
by SETBIRDS. 

Anlm.Uon 159 

TELL :BIRDS 
SETSPEED 20 

The result, shown in Figure 4.6, is a line o f 6 birds drifting across the screen, 
all with their wings up. 

Typing 

CARRY :OOWNWING 

makes the birds put their wings down . Alternating this with 

CARRY :UPWING 

makes the wings flap. You can define a procedure that continues the 
flapping: 

TO FLAP 
CARRY:UPWING 
WAIT 30 
CARRY :DOWNWING 
WAIT 30 
FLAP 
END 

The Logo command WAIT makes the computer wait for a given number of 
sixtieths of a second. In this case the procedure is waiting 112 second between 
wing beats. 

You now have all the ingredientS for a simple movie: 

SETBIRDS 
SETSPEED 20 
FLAP 

The birds will continue flapping until you stop the procedure by pressing the 
BACK key. 

4.2 .2. Two Notes on the Shape Editor When you enter the shape ed itor using MAKESHAPE, the sprites will still 

4.3. Tiles 

be visible on the screen. You can take advantage of this fact. Before typing 
MAKESHAPE, tell one or more sprites to CARRY the shape you are 
defining. Then , as you mark in the grid using the shape editor, you will see 
the shape in iu actual size carried by the sprite. 

When the shape editor is in use, the only keys that have any effect are the 
arrow keys, BACK (to exit to Logo) and CLEAR, which clears all the squares on 
the grid . 

The fina l kind of graphical object that you can address with TELL in Logo 
is called a Iile. A tile, like a sprite, can have a color and a shape. Unlike a 
sprite, a tile cannOt move. Tiles are useful in designing backgrounds for 
graphics. 

You can have 256 different ti les, numbered 0 through 255. In making 
screen backgrounds, you should normally avoid using tiles 0 through 10 and 
32 through 95, si nce these are used to create screen characters as described in 
Section 4.3.3. In particular, tiles 0 and I are used for the regular cursor and 
the shapes editi ng cursor, and cannot be changed. 

To design a tile, you use the Logo command MAKECHAR (abbreviat ed 
MG). This works almost identically to MAKESHAPE (Section 4.2) except 



60Ifi LOGO 

Figure 4.7: Using MAKECHAR to make a tite 
in the shape 01 a spiral. 

4.3 .1 Positioning Ti les on the Screen 

. 
" " " 
" " " 
" " 
" " 
" " 

Figure 4.B: The display screen as a grid of 
columns and rows. 

Figure 4.9: Using PUTTILE to place spirals 
on the screen. 

that the grid for a tile is only 8 squares on a side-one quarter the size of the 
grid for a sprite . For example. you can use MAKECHAR to design a ti le that 
looks like a small spiral. Let this be, say. tile 96: 

MAKECHAR 96 

You now obtain a grid on which you can draw the spiral , as shown in Figure 
4.7. 
Once you have defined a ti le, you can give it a color using TELL and 
SETCOlOR 

TELL TILE 96 
SHCOlOR :RED 

To place a tile on the screen you use the PUTIILE command (abbreviated 
PT). Th is takes as input the number of the tile you wish to put on the screen, 
followed by the screen position, specified as a column number and a row 
number. Figure 4. 8 shows how the screen can be viewed as a grid numbered 
by columns and rows. There are 32 columns, numbered 0 through 31. and 24 
rows, numbered 0 through 23. 

The center of the screen is column 16, row 12. Hence, with tile 96 defined 
as above. you can place a small red spiral at the center of the screen with 

PUTIILE 961612 

Figure 4.9 shows more spirals placed on the screen, via 

PUTItLE 961612 
PUTIt LE 961010 
PUTItLE 96 20 20 
PUTIILE 96 10 20 
PUTItLE 96 5 5 

Warning 
Observe that the column and row numbers used with PUTTILE to place 

a tile on the screen are not the same as the X,Y coordinates used with SXY 
to position sprites and turt les on the screen. You cannot use SXY (or 
FORWARD, LEFT. and so on) when talking to liles. Section 7.4.1 includes 
some useful procedures that will aid you in dealing with this problem. 

~ 

'J 

'J 

'-' 
'-' 

'--' 

'-' 

'--' 

'--' 

'--' 

'-' 

'--' 

'--' 

'--' 

'--' 

'--' 

'--' 

'-J '-' 

'--' 

'-' 

'--' 

'--' 

'--' 

v 

'--' 

'--' 

'-' 

'--' 

'-' 

'-' 

'--' 

'-' '--' 

'--' 

'--' 

'--' 



, 

4.3.2. Foreground and Background 
Colors 

"nlm,llon I 81 

We saw just above that tiles can be given a color by using the S ETCOLOR 
command. Actually, each tile has two colors associated with it: a/oreground 
color and a background color. When you show a tile, the blacked-in squares 
(on the MAKECHAR grid) will be shown in the foreground color, and the 
other squares on the grid will be shown in the background color. If you do 
not specify a background color, as in 

SETCOLOR ,RED 

then only the foreground color will be changed.' To set a background color, 
use SETCOLOR with a list of the two color numbers. For instance, to give 
the spiral defined above (tile 96) a foreground color of RED (color 6) and a 
background color of white (color 15), you type 

TELL TILE 96 
SETCOLOR (6 15( 

If you give this command with the spirals on the screen, as in Figure 4.9, 
each will appear as a red spiral with in a white square. s 

Color Groups 
One restriction on tile colors is that every group of 8 ti les must have the 

same color. That is, tiles 0 through 7 must have the same color, tiles 8 
through 15 must have the same color, and so on. Changing the color of a tile 
(either foreground or background color) changes the color of every tile in the 
group. 

' 'The: backgrou nd color of a ti l~ is ini tial ly defined 10 M CLEAR (tolor 0) SO thaI you will not 5« 'he 

backaround . 

8you <an accompl ish tho ~m. color chana. u.i ng color lIam., in".ad of num Mr. by typing 

SETCOLOR SENTENCE ;REO ;WHITE 

'The: Lo,o command SENTENCE. IU we shall 5« in Sec1ion 6.4 is usN 10 COnSt'UC1 lim. 



82 1Tt lOGO 

4.3.3. Characters as Tiles 

Group 1 
Code Character 

Number 
32 (space) 
33 
34 • 
35 # 
36 $ 
37 % 
38 & 

39 

Group 5 
Code Character 

Number 
64 @ 

65 A 
66 B 
67 C 
68 D 
69 E 
70 F 
71 G 

The characters that Logo print s on the screen are. in fact, defined as tiles , 
usi ng tile numbers 32 through 95. The following chart shows the 
correspondence between tile numbers and characters. and how these liles are 
arranged in groups: 

Group 2 Group 3 Group 4 
Code Character Code Character Code Character 

Number Number Number 
40 48 0 56 8 
41 49 57 9 
42 50 2 58 
43 + 51 3 59 
44 52 4 60 < 
45 53 5 61 
46 54 6 62 > 
47 55 7 63 ? 

Group 6 Group 7 Group 8 
Code 

Number 
72 
73 
74 
75 
76 
77 
78 
79 

Character Code Character Code Character 
Number Number 

H 80 P 88 X 
I 81 Q 89 Y 
J 82 A 90 Z 
K 83 S 91 [ 
L 84 T 92 , 
M 85 U 93 
N 86 V 94 A 

0 87 W 95 

You can take advantage of Ihis to modify the way in which Logo prints 
charactcrs. For instance, typing 

MAKECHAR 52 

allows you to edit tile 52, which is thc numeral 4. If you change it as shown 
in Figure 4.10, then all [he 4s printed by Logo from thcn on will have [his 
ncw shape. Tiles 2 through \0 are initiall y uscd for miscellancous portions of 
the TI master title ~crecn.9 

Anothcr thing you can do is usc SETCOLOR to change the color in which 
characters are printed on the screen. 

TELL TILE 48 
SETCOlOR :WHITE 
TEll TILE 56 
SETCOLOR ;WHITE 

~ 

'-' 

'-' 
'--" 

'-/ 

'-" 

~ 

~ 

'.J 

'-' 

~ 

~ 

'-' 

'-' 

~ 

v 

'-' 

'-' 

~-

'-' 

V 

, 
~, 

-' 

'.J 

-
-' 

~ 

'.J 

'.J 

'--" 

'-' 

~ 

'-' 



," 

Figure 4. 10: Using MAKECHAA 52 to define 
a ne .... style lor Ihe numeral 4. 

4.4. Project: A Simple Movie 

Animation 163 

will ca use all tiles in the sa me group as 48 and 56 (that is tiles 48 through 55 
and 56 through 6], which includes all the numerals and :, ;, <, = , >, ?) to 
be printed in white, while the other characters will be printed in black. 

Turtle lines as Tiles 
Another way thai tiles are used in Logo is 10 create the lines drawn by the 

turtle. Each time the turtle draws inside a small screen square, a tile is 
created whose "shape" is the turtle line. As Ihc turt le draws in more and 
more squares, it uses more and more tiles, using first tiles 0 through ]2 and 
then tiles 96 through 255. For this reason, if you have some tiles defined and 
then use the turtl", the tile shapes may be destroyed. This also explains the 
meaning of the OUT OF INK erTor message (page 6). The turtle is "out of 
ink" when all available ti les have been used. 

You can also set a background color when drawing with the turtle. 
Typing 

TElL TURTLE 
SETCOLOR [{color I } (color2)] 

and drawing with the pen down will cause each sq uare the turtle passes over 
to be filled in with (color21, with a th in line in {colorl} drawn through the 
sq uare. 

In this section, we'll combine what we've learned about sprites and tites to 
create a simple movie. The movie, shown in Color Plate I, shows an ocean 
with waves and whitecaps. A boat sai ls atong the ocean and birds fly 
overhead. This project also illustrates how a substantial Logo program is 
designed and implemented as a cluster of si mple procedures. 

If you look at Plate I , you'll see Ihat there are five parts to the picture: the 
sky, the ocean, the sun, the boat, and lhe birds. 

The sky is simple. We'll simply use the screen background after changing 
its color to SKY (color 5). The ocean and the sun will be assembled from 
tiles, and the boat and the bi rds will be sprites. 

The Ocean 
Let's begin by drawi ng the ocean. There arc two parts: the top row, 

consisting of the waves, and the rest of the water. Start with the rest of the 
water, using a ti le that will give a square of blue water with a small whitecap. 
Call 1his tile WATER and use tile 108: 

MAKE "WATER 108 
MAKECHAR :WATER 

Figure 4.11 shows the water tile Ihal you make with Ihe MAKECHAR 
com mand. The color should be a foreg round color of WHITE for the 
whitecap (color 15) and a background color of BLUE (color 4) for the water. 



64/TI lOGO 

For the top row of waves, use three ti les: WAVE1 , WAVE2, and WAVE3, 
whose shapes are also shown in Figure 4. 11 . The color fo r these tiles is 
foregro und BLUE, background CLEAR. Si nce the color is di ffere nt from the 
color for the WATER tile, you must create Ihe waves usi ng tiles in a different 
color group. (See Section 4.3.2.) You can use ti les 100, 101, and 102 for the 
waves: 

••• • •• ••••• •••• ••• 
Figure 4.11: Shapes for waler and wave tiles. 

MAKE " WAVEl 100 
MAKE " WAVE2 101 
MAKE " WAVE3 102 

Now we'll draw the lap row of waves on the screen. The idea is to start at 
the leftmost column of the screen, placing a sequence of three ti les, WAVE1, 
WAVE2, WAVE3, and repeal this over and over for as many columns as there 
is room. A good position for the top row of the ocean is row 15, which we' ll 
call OCEANTOP: 

MAKE "OCEANTOP 15 
\.J 

v 

v 

~ 

'-" 

v 

v 

'-' 

-' 

'-' 

-' 

'-' 

v 

'-' 

'-' 

v 

-' 

J 

V 



--

AnlmaUon 165 

The fo llowing procedure draws the top row of the ocean. It is called initially 
with the starting column as input: 

TO WAVETOPS :COL 
IF :COL > 31 STOP 
PUTTILE :WAVEl :COL :OCEANTOP 
PUTTILE :WAVE2 :COL+ 1 :OCEANTOP 
PUTIiLE WAVE3 :COL + 2 :OCEANTOP 
WAVETOPS :COL + 3 
END 

You should compare this recursive "test and stop" procedure for m with the 
COUNTDOWN or TOWER procedures discussed in Section 2.2. To actually 
draw Ihe waves, you can now give the command : 

WAVETOPSO 

The rest of the ocean is drawn by usi ng PUTTILE with the WATER tile. 
Here are two useful procedures that fi ll the screen with a given tile, starting 
from a specified lap row: 

TO MAKEROWS :TILE :TOPROW 
IF :TOPROW > 22 STOP 
MAKEROW :TILE 0 :TOPROW 
MAKEROWS :TILE :TOPROW + 1 
END 

TO MAKEROW :TILE :COL :ROW 
IF:COL > 31 STOP 
PUTTILE :TILE :COL :ROW 
MAKEROW :TILE :COL+ 1 :ROW 
END 

These a lso use a recursive scheme similar to COUNTDOWN (Section 2.2). 
MAKEROW fill s in a single row by placing tiles in successive col umns until it 
reaches column 31. MAKE ROWS calls MAKEROWon successive rows until it 
reaches the bOllom of the screen at row 22. With these procedures, the body 
of the ocean can now be drawn as 

MAKEROWS :WATER :OCEANTOP + 1 

[fhe top ocean row is one below the wave tops.) 
Here, then, is a procedure that draws the complete ocean : 10 

TO MAKEOCEAN 
TELL TILE :WATER 
SETCOLOR {15 4J 
TELL TILE :WAVE1 
SETCOLOR J4 OJ 
WAVETOPSO 
MAKEROWS :WATER :OCEANTOP + 
END 

IOAllthT«liles namn WAVE1 . WAVE2. and WAVE3 lIa"( lbtir ~olon ~ 10 forf8round SLUE. back.round 
CLEAR, by lflli", any Oflf oflhfm 10 do so-this is becau~ IMy are all pan of Ih( lam. color &TOUp. 



6(1 I T , LOGO 

The Sun 
The su n in the picture is formed from 4 tiles, each a Quarter circle: 

MAKE "SUN1 113 
MAKE "SUN2114 
MAKE "SUN3115 
MAKE "SUN4 116 

Since these are to be yellow, you must pick tiles in a differenl color group 
than either the waves or the water. Figure 4. 12 shows the four sun ti les 
constructed using MAKECHAA. 

The fo llowing procedure positions the tiles on the screen: 

TOMAKESUN 
TELL TILE :SUN1 
SETCOLOR :YELLOW 
PUTTILE :SUN1 257 
PUITILE :SUN2 26 7 
PUITILE :SUN3 25 8 
PUITILE :SUN4 26 8 
END 

Notice that selling the color of SUN1 sets all 4 su n tiles since they are in the 
same color group. 

•••••• •••• ••• •• •• • 

• • •• ••• •••• •••• 
Figur. 4.12: The sun constructed from four liIes . 

•••••• •••• ••• •• • • 

• • •• ••• •• • •••••• v 



•••••• •••••• ••••• •••• ••• •• • • 
••••••• ••••••• 
• • •• 

••••••• ••••••• •••••• ••••• ••••• •••• ••• • 
••••••• ••••••• 

• 1 •• 
Figure 4.13: The BOATSHAPE lor the movie. 

Anlm.llon I 87 

The Boal 

The boat i~ a si ngle sprit e that moves ho rizontally across the screen. You 
can define a BOATSHAPE as shape number 9: 

MAKE ~ BOATSHAPE 9 
MAKESHAPE :80AT$HAPE 

and construct the shape shown in Figure 4.1], 
Use sprite 0 to carry thc boat: 

MAKE " BOAT 0 

Here is the procedure that sets up thc boat: 

TOMAKEBOAT 
TELL :BOAT 
SETHEAOiNG 90 
SETCOLOA :BLACK 
SXY ( - 50) ( - 50) 
CARRY :BOATSHAPE 
SETSPEED 5 
END 

The Birds 

Finally, we' ll add birds flying across thc screen. You do this by 
incorporating Ihe bird shapes and Ihe S ETBIRDS and FLAP procedures from 
Section 4.2. 1, with a fe w small changes. 

As before we'll have 6 bi rds, using sprites 1 through 6: 

MAKE " BIRDS {1 2345 6{ 

The bird shapes will be UPWING and DOWNWING as shown in Figure 4.5 : 

MAKE " UPW1NG 6 
MAKE " DOWNW1NG 7 

The FLAP procedure is the same as before: 

TO FLAP 
CARRY :UPW1NG 
WAIT 30 
CARRY:DOWNWING 
WAIT 30 
FLAP 
END 

Setting up the birds will be si milar to the S ETBIRDS procedure on page 
58, with a few changes to make the movie more interest ing. First of all. 
you can make the bi rds be different colors. Colors 8 through 15 give a 
good set of colors. so we ca n set each sprite I through 8 to the color 
7 + YOURNU MBER. You can also have the birds travel al slightly diffe rent 
speeds and at slightly d ifferent headings. This laller is convenientl y done 
using the SPREAD procedure (page 56) . 



&SITI LOGO 

TO MAKEBIADS 
TELL :BIRDS 
CARRY:UPWING 
EACH [SETCOLOR 7 + YOURNUMBER[ 
$ET$PEED 0 
HOME 
SETHEADING 90 
SPREAD [LEFT 1[ 
SPREAD [FORWARD 10[ 
EACH ISETSPEED 5 + YOURNUMBERJ 
END 

Putting It All Together 
The only thing that remains is to write a procedure that puts all the parts 

together. This clears the screen, sets up the sky by changing the 
BACKGROUND color to SKY (color 5), draws all the parts of the picture, 
and sets the birds flapping: 

TO MOVIE 
CLEARSCREENANDSPRITES 
MAKESKY 
MAKEOCEAN 
MAKESUN 
MAKEBOAT 
MAKEBIRDS 
TELL :BIRDS FLAP 
END 

TO CLEARSCREENANDSPRITES 
CLEARSCREEN 
TELL :ALL CARAY 0 
END 

TO MAKESKY 
TELL BACKGROUND 
SETCOLOR :SKY 
END 

This completes the movie, as well as a substantial Logo project. Notice 
how we were able to isolate the different parts of the project by using 
separate procedures. Even though the program as a whole is long, the 
individual procedures are rather short and could be designed and tested 
separately. This is one of the important advantages of Logo's procedural 
organization. 

To save these procedures and shapes on a cassette tape or floppy disk, see 
Section 5.2, "Saving and Retrieving Information." To save both your 
procedures and your tile and sprite shapes, be sure to choose option 3. 

'-' 

V 

~ 

V 

'-../ 
~ 

--.I 

~ 

'-' 



-
j 

-
, 

-
-
J 

-
J 

-
, 
/ '-' 

, 
, 

, 

5.1. Managing Workspace 

5.1.1. PO 

5.1.2. ERASE 

5.2. Saving and Relrieving 
(nrormalion 

Workspace, FltIng. and Debugging I 69 

CHAPTER 5 

Workspace, Filing, and Debugging 

When you use the Logo system. you can think of the computer as having two 
memories. The first memory, called workspace, is where Logo keeps track of 
the procedures and variables you have defined. Each time you define a 
procedure or assign a value to a name, that information becomes pari of the 
workspace. When you leave Logo by pressing CUtT~r by turning off the 
computer, the information in the workspace is destroyed. The second and 
more permanent memory consists of files that yOll save on diskette or on 
cassene tape. Each fil e contains a complete workspace. 1 The normal way to 
use the Logo fi le system is to work for a wh ile on a project and then, when 
you arc finished for the day. to save your workspace in a file. The next time 
you use Logo. you can read in your saved workspace and continue where you 
left off. You can also maintain a number o f different files containing the 
workspaces for different projects you are working on. 

The Logo system includes commands for examining and deleting various 
parIs of the workspace. These are useful for keeping track of what 
procedures are currently defined and for getting rid of unwanted definitions. 

The basic command for examining workspace is PO. If you type PO 
followed by the name of a procedu re. Logo prints the definition of the 
procedure. PO also has a few variant s; 

PP Prints out the titles of all procedures in workspace. 
PN Prints out the names and associated values in the global library. 
PA Prints out all the procedures and names in the workspace. 

The ERASE command is used to gel rid of parts of the workspace. 
ERASE followed by a procedure title name removes the definition of the 
procedu re. ERASE fo llowed by a variable name, as in 

ERASE UX 

will erase a variable name from the global library. (In this example, the 
variable name X.) 

The Logo system allows you to save procedure definitions on diskette or 
on cassette tape, or to print thcm on a printer. The Logo commands SAVE 
and RECALL are used for storing and rctrieving. 

lyou ~an alw ~1CC11<) save only lhe p.ocedu.~ o. only lhe Iprilc and lile shapes comained in the ,,·o.hpa~ , 



70fTI lOGO 

5.2. 1. Using Cassette Tape 

5.2.2. Using Diskette 

When you give the SAVE command, Logo fi rst displays a menu, as shown 
in Figure 5.1, asking you to indicate whether you wish to save (I) only your 
procedures and names, (2) only your shapes, or (3) both of these. Press I. 2. 
or 3 10 indicate your choice. (You ord inarily choose 3 when saving new 
shapes-ot herwise choose I.) Next. Logo asks you to indicale Ihe device used 
to save informal ion, as shown in Figure 5.2. 

S RVE 

P"£SS FO .. 
P .. OC .... u.I[S 

• '" "'T", ...... 2 

P ..... •• "CI< · .. ". T' UU;o 

Figure 5. 1: Screen display menu oNeong 
SAVE options, 

• • 

DEV I CE 

C .. SSE.,.TE 
"' S I<.T1'£ 

."V'''6 .... L 

Figure 5,2: Screen display menu oNering 
SAVE device options. 

Pages 1-8 through 1-12 of the User's Reference Guide Ihat comes with your 
TI 99/ 4 or 99/ 4A contain detailed infor mat ion about setting up and using a 
casselle recorder to save and recall information. It is particularly important 
that you adjust the volume and tone control senings properly the fi rst ti me 
you save or recall procedures, and Ihen mark those setti ngs so that they can 
be used again the next time you wa nt 10 save or n~ea l 1. If you arc using your 
cassette recorder only for saving a nd recalling with your computer, you might 
want to tape the volume and tone adjustment wheels in position so that they 
do not ehange accidentally between uses. 

To save or recall information using a cassette recorder, first give the SAVE 
or RECAl l command. Then choose whether \ 0 save o r recall (1) procedures 
only, (2) shapes only, or (3) both shapes and procedures. Then choose ( I) 

from the device menu (see Figure 5.2) to choose the cassene recorder as the 
device for saving or recall ing. 

Once you choose 10 use a cassette, the computer will give exaci instructions 
for using the cassetle, telling you which cassette bu nons and computer keys 
to press, and when. The process is quite straightforward. You usc the cassette 
recorder's playback mode to recall information, and its record mode to save 
information. The computer wil[ tell you whether an error has occurred in 
saving o r recalling. In case of error, you may have 10 repeat the entire process 
of savi ng o r recalling. The User's Reference Guide that comes wilh your 
computer o ffers suggestions about what 10 eheck in case of errors in savi ng 
or recall ing. 

In conlrast to cassette tape, a single diskette may contain many different 
files, and the files are dist inguished by the faCl thal they arc named.2 

2lkrore u5in, a blank dc-hu. for 'he firSL lime 10 », .• files. 'M disk"'!e muSl be ini,iatiud ... i,h ,h. TI Di s~ 
Managn eanrld,.. "hleh i. pada~ wi,h 'he disk oonl'oIl ..... Pt~cc !he blank di skene in Ihe d,ive and 

fonow 1M inSlrlK"lions pro-'idcd ",i,h ,he \)isk Manag.r. 

'-' 

V 

'-../ 

'-' 
'-' 

~ 

V 

'-' 

V 

'-./ 

~ 

'-../ 

'-' 

'--' 

~ 

V 

'-../ 

'-' '-../ 

V 

V 

V 

'-' 

'-./ 

'-' 

'-' 

'-' 

V 

'-' 

~ 

'-' 

'V 

'-J 
'-' 

V 

V 

'--' 



-
-
./ 

-
/ 

, 

-
/ '-' 

Wor1ltpaCe, FlIlng, and OebtJgglng 171 

When you type SAVE and indicate "(2) disketle" in response to Logo's 
query, Logo will next ask you for a file name under which thc information 
should be stored. This is shown in Figure 5.3. You may use rile na mes up to 8 
characters long. If you use Ihe same names as a fi le that is already on the 
disk, the information in the old fi le will be replaced by Ihe new information 
being written. 

, ........ F'LE lOR ... ' 
Pit ..... . 'E N'ER ' 

0" ......... 
• • "Co<· FO .. , , L UGO 

Figure 5.3: Screen display asking for file name. 

If you press the space bar in response to Logo's request for a file name, 
then Logo will review the fi le names on the disk in alphabelical order, 
pri nting another name each time the space bar is pressed. To replace a file, 
press ENTER when the file name appears on the screen.l 

Keep in mi nd that the name you give your file has no relalion to the names 
of the procedures thaI will be saved in the file. Each time you save a file, all 
procedures in the workspace are incl uded. 4 

When working on large projects, it is a good idea to save your workspace 
periodically in a file. Also, as you continue to make modificat ions, you 
should keep on disk the last two or th ree versions of your project. A 
tech nique for doi ng this is to include a version number as part of the file 
name. For example, if you are working on a project called CIRCLES, save 
the information the first time as CIACLESt. After you have made 
modificalions, save Ihe updated version as CI RCLES2. You can use the 
util ities provided with the Disk Manager to get rid of unneeded versions. As 
you work on the project, it's a good idea 10 always keep arou nd the previous 
two or three versions, just in case you mistakenly save a bad version on disk. 

Recalling Files From DiskelU' 
If you give the RECALL command and specify "(2) disketle," Logo will 

ask you for the name of Ihe file to recall. You may eit her type in a file name, 
or press the space bar to ask Logo to review the names of the fi les currently 
on the diskette. Each time you press the space bar, a new file na me appears. 

lWhm r .... iewinll file: nlm", like (hi,. )'00 canOOl. (~pt" a n",,' rile: name. To l)'pt" a new rik name. pin!; B.o\Ct< (0 
,Clurn (0 Loao and bqin aaain w;(h SAVE. 

4This 5Om~lim~s causes confusion "i(b beginners. For enmpk. if 5Omron~ hal procedures BOX and HOUSE. 
lhey "rile boIh riles BOX and HOUSE. lhinking (hal a ~p.1rale rile is n=led (or each procedu'~' Til<: result 

i. (ha( (he)' end up w;,h ''''0 (ilos. each ronllinina bolh plocNurOS. In ge""raJ. you Il\ould name )'our fites 
wilh a name ,hal d=ribos lbe aro~{I of proceduros brinll $.1,·ed. 



72 I TI lOGO 

5.2.3. Saving and Recalling Usi ng 
Other 

5.2.4. Ol her Uses of Ihe File SYSlem 

When you reach the file you walll, press ENTER. The informal ion wi ll be 
read, and Logo will return to command Icvel. 

The third option, (3) other on Ihe device menu, allows you to use a second 
or third disk drive. s If you choose option (3), you wilt be prompted for 
device and file names (Figure 5. 4) : 

DEV I CE 

PliES. F Oil 

2 "'''''£TT£ 

'YP,, ' D£V' CS " .. .. " , .. " . 1.." ...... .. S K 2 • • UXE II _________________ _ 

~"O: • •• •• II;K· ... " . " 1.. ,, " 0 

" "Y'N," "LL 

Figure 5.4: After choosing option (3). other 
on Ihe device menu. you will be prompled 
for device and file name. 

Your response must include the letters DSK (meaning "disk"), a number (2 
or 3). a period (.), and a file name . It must be typed on one li ne with no 
spaces, as shown in the example. 

Repeat the same process when you recall information saved using option 

(3). You can re<:a ll it fro m a different disk drive if you wish. For example, 
you can recall a file saved on disk 2, from disk I, but you must recall it usi ng 
option (3). 

Although SAVE and RECALL are almost always used 10 save and restore 
complete workspaces, it is also convenient to be able to manipulate files in 
other ways. For example, su ppose you want 10 merge the procedure 
definitions in two files to creale a larger fi le . You can do this as fo llows: 

1. Start ing with an empty workspace, RECALL the firsl file. 

2. RECALL the second file. Now your workspace contains the defi nitions in 
both fi les . 

3. SAVE your workspace as the new, combined file . 

As anOlher example, suppose you want to delete a few procedure 
definitions fro m a file. One way to do th is is to RECALL the file, ERASE the 
unwanled defi nitions, and SAVE the new workspace usi ng Ihe same file 

name. 

v 



~ 

~ 

-
-
-
-
/ '--' 

/ 

~ 

-

S.2.S. Obtaining Hard Copy: the 

PRINTOUT Command 

5.3. Aids for Debugging 

5.3.1. Pausing [x«ulion with the AID 
K,y 

WOfkepace, Filing. and Oebugglng I 73 

The PRINTOUT command allows you to pr int all the procedures in your 

workspace using a TI Thermal Printer or an RS232 printer. To use an R$232 
printer you must have an RS232 card in your Peripheral Expansion Box or 
an RS232 Expansion unit attached 10 your com put er. When yOli type 
PRINTOUT, you will first be prompted for the name of the device yo u are 
using. 

If you are using a T I T hermal Printer, just type TP, and the printer will 
begin printing the contents of your workspace. If you have an RS232 printer, 
the device name must include the symbols "RS232. BA "," and a baud rale, 

all typed without any spaces. For example, 

RS232.BA = 9600 

9600 is the baud rate in this example - the rate at which information can be 
sent to the printer. This will depend on the capabilities of your part icular 
printer, so you will have to consult your printer manual for this information. 

Next, you will be asked for a line length, which must be less than the 
longest line length your printer can handle. Again, this will vary from printer 
to printer. After you specify the device name and line length, your printer 
will begin printing. 

One of the main features of Logo as a computer language for ed ucat ion is 
that students design and write programs as well as use them. Debugging a 
program is a crucial part of the programming process. This section describes 
features included in the Logo system to aid in debugging programs. 

When Logo is running a procedure, pressing the AID key works somewhat 
like pressing the BACK key-it stops procedure execution. The difference is 
that AID stops the procedure "in the context where it is executing" and allows 
you to examine the values of local names. 

As a si mple example, consider the FLAG and RECTANGLE procedu res 
that we introduced in Section 2.1.2. Suppose thaI RECTANGLE had a 
bug-an ext ra last line that calls RECTANGLE recursively. so that the 
procedure keeps running forever: 



TO RECTANGLE :HEIGHT :lENGTH 
FORWARD :HEIGHT 
RIG HT 90 
FORWARD ,LENGTH 
RIGHT 90 
FORWARD :HE IGHT 
RIGHT 90 
FORWARD ,LENGTH 
RIGHT 90 
RECTANGLE :HEIGHT :lENGTH 
END 

Now suppose you inadvertenliy use this procedu re as part of FLAG: 

TO FLAG ,HEIGHT 
FORWARD :HEIGHT 
RECTANGLE (,HEIGHT I 2) ,HEIGHT 
BACK :HEIGHT 
END 

If you run FLAG 50 you will see the turtle draw part of the flag and then get 
"stuck" tracing the same rectangle over and over. If you now press AtD, you 
will see a message like this: 

PAUSE AT LEVEL 10 LINE 8 OF RECTANGLE 
L10? 

This message tells you that Logo was executing the RECTANGLE procedure, 
line 8, when you pressed AtD. The meaning of level here is the same as that 
typed by error messages and described on page 23: you are 10 levels away 
from the typed-in command-your typed command called FLAG which 
called RECTANGLE , which called RECTANGLE again, which called 
RECTANGLE again, and so on. 

The prompt L 10? indicates that you are now typing commands within the 
context of RECTANGLE at level 10. You are free to type and execute any 
Logo command JUSt as if you were at top level. The big difference is thaI 
now the variable names you use will refer to names in the privale library of 
the procedure in which you paused. In the current example, the private 
libraries fo r FLAG and RECTANGLE aTe as shown in Figure 2.5 on page 20, 
so that we could examine RECTANGLE 's private variables: 

L 10? PRINT :HEIGHT 
25 
L 10? PRINT :lENGTH 
50 



5,3.2. TRACEBACK 

-" 

5.3.3. The DEBUG Option 

WorIIlpace, FlUng, ,nod D.bugglng I 75 

This ability to examine local variables can be useful when you are trying to 
track down bugs. 

Pressing BACK from within such a "pause break" causes Logo to return to 
top level and wait for a new comma nd, Also, executing a command thai 
causes an error will ret urn Logo to top level.6 

When you are within a pause, you ca n use the TRACEBACK command to 
find out "where you are." For instance, typi ng TRACEBACK in the example 
above yields: 

L f O? TRACEBACK 
WE'RE NOW INSIDE RECTANGLE, FLAG 

In general, TRACEBACK indicates the chain of procedures from whcre you 
are currently back to the top level. In Ihis case, the pause happens inside 
RECTANGLE , which was called by FLAG, which was called at command 
level. 

Normally, when Logo encounters an error, it halls execution, types an error 
message, and ret urns to command level. Alternatively, you can direct Logo to 
enter a pause when an error is encountered, so that you can examine the 
values of local variables, as with AID. The DEBUG command acts as an 
"on-ofP' switch that controls Ihis option. Thrn on the option by typing 
DEBUG : 

DEBUG 
ON 

Logo's response indicates that the debug oplion is now on. 
With the option turned on, suppose the RECTANGLE had another bug-a 

misspell ing in the second line: 

TO RECTANGLE :HEIGHT :LENGTH 
FORWARD :HEIGHT 
RIG XT 90 
FORWARD :LENGTH 
RIGHT 90 
FORWARD :HEIGHT 
RIGHT 90 
FORWARD :LENGTH 
RIGHT 90 
RECTANGLE :HEIGHT :LENGTH 
END 

Executing FLAG 20 now results in the fo llowing error: 

TELL ME HOW TO RIGXT 
AT LEVEL 2 LINE 2 OF RECTANGLE 

L2? 

6unl .... the DEBUG ofllion hal bttn KI. Stt $tttion S.l.l below. 



16 / TI LOGO 

As with using AID, we can now type commands at level 2, for example, to 
print the values of local variables (alt hough examining local variables isn't 
much help in dealing with this particu lar bug), 

Typing DEBUG when the debug option is on, turns the option off: 

DEBUG 
OFF 

'-" 

'-' 

'-../ 

'-' 

'-./ 

~ 

'-./ 

'-' 

~ 

V 

'-' 

'-' 

'-' 

V 

~ 

'-' 

~ 

~ 

~ 

~ 

V 

~ 

'-' 

v 

~ 

~ 

~ 

'--' 

'--' 

~ 

~ 

v 

'J 

'-./ 

~ 

V 

V 



6 .1. Numbers and Arilhmelic 

Numbers, WordS, and Lis ts 177 

CHAPTER 6 

Numbers, Words, and Lists 

In the previous chapters, we used turtle geometry 10 introduce the basic 
techniques for writing Logo procedures. \Ve now move away from graphics 
to discuss Logo programs that work with "data." Like most computer 
languages, Logo provides operations for manipulati ng nu mbers and 
character strings, which in Logo arc called words. One significant difference 
between Logo and other simple program ming languages is that Logo also 
provides the ability to combine data into structures called lisls. This chapter 
introd uces these three ki nds o f data objects-numbers, words. and 
[isIS-together with simple programs that manipulate them . The most 
important concept in worki ng with Logo data is the notion of a procedure 
that ou/pulS a value. This is introduced in Section 6.2 below. We also discuss 
the use of Logo variables for naming data and give a mo re complete 
explanation of testing and conditionals than the one provided in Section 
2.2.2. The material presented here provides enough background to complete 
many programmi ng projects such as the ones described in Chapter 7. 

We have already seen examples of using numbers in turtle programs. 
Logo provides the basic arit hmetic o perations of addition, subtraction, 
multiplication, and division, denoted by +, -, +, and I, respectively. In 
com bined arithmet ic operations, multiplications and divisions are performed 
before additions a nd subtractions, unless you use parentheses (0 make the 
grouping explicit: 

PRINT 3 + 2.5 
13 

PRINT (3 + 2) • 5 
25 

TI Logo deals with integers only. The division operation I truncates its 
q uotient to be an integer: 

PRlNT5/2 
2 

Warni ng 
T I Logo can only handle integers in the range ± 32767 (that is, in the range 

between _ 21s and 2 13) . If you do a computation that exceeds this range (e.g., 
adding 32767 plus 1), the answer returned will be incorreCi but there will be 
no error message: 

PRINT 32767 + 1 
-32767 



78 1TI LOGO 

6 .2. Outputs Using the arit hmet ic operations presented above, you can write procedures 
that manipulate numbers. For example, 

TO PSQUARE :X 
PRINT :X. :X 
END 

pri nts the sq uare of its input , and 

TO PAVERAGE :X :Y 
PRINT (:X + :Y) I 2 
END 

prints the average of its two inputs: 

PSQUARE 100 
10000 
PAVERAGE 1 3 
2 

These procedures may be instruct ive, but they are not very useful. 
PSQUARE. for exam ple, just prints the square of its input. Having 
computed the square, there is not hing more you can do with it. Yet the whole 
power of the procedure concept is that you should be able to usc procedures 
as bllilding blocks in defining more complex procedures. You can make 
complex turtle programs by com bining the designs drawn by simple 
procedures. But there is no way to combine PSQUARE and PAVERAGE 
to obtain, for instance, the sq uare of the average of two nu mbers. 

What is needed is some way fo r a procedure not only to compute some 
resull, but also to make that result accessible to other procedures. In Logo, 
this is accomplished by the OUTPUT command. To sec how it works, 
compare the PSQUARE procedure above with the following: 

TO SQUARE :X 
OUTPUT :X • :X 
END 

When SQUARE runs, it returns its resul t as an output that is to be used as an 
input to whatever command caned SQUARE. For example, you can type 

PRINT SQUARE 3 
9 

in which case the output of SQUARE is passed to PRINT to be printed. More 
significantly, you could type 

PRINT (SQUARE 3) + (SQUARE 4) 
25 

Here SQUARE is called twice, and the results are combined by + before 
bei ng passed to PRINT. You can do the same thing with computing averages 
by defining a procedure: 

TO AVERAGE :X :Y 
OUTPUT (:X + :Y) I 2 

END 

-
'J 

'J 

'-' 
'-./ 

'-" 

'-" 

~ 

'-' 

v 

~ 

v 

'-' 

~ 

'-' 

~ 

~ 

~ 

'-./ 
oJ 

'-' 

J 

V 

~ 

v 

'-' 

V 

V 

~ 

~ 

~ 

'J 

'-./ 'J 

v 

'-' 

'-' 



---
--
-
, 

-
~ 

--
-' 

6.2. 1. Combining Operations 

Numbers, WOfds. and Lists I 79 

The OUTPUT command is just what is needed to combine operations. For 
instance, you can find the square of the average of twO numbers: 

PRINT SQUARE (AVERAGE 4 6) 
25 

or the average of the squares: 

PRINT AVERAGE (SQUARE 4) (SQUARE 6) 
26 

Alternatively, you can define a procedure to return this value to be used ill 
further processing: 

TO AVERAGE,OF.SQUARES :X :Y 
OUTPUT AVERAGE (SQUARE ,X) (SQUARE ,V) 
END 

As with any procedure, once you have defined a procedure thai outputs 
some result , Ihal procedure becomes part of Logo's working vocabulary and 
can be used JUSt as if it were a primitive command. For instance, Logo has 
no primitive abso\U{e value function. But if you define one: 

TO ASS oX 
IF ,X < 0 THEN OUTPUT (- 'X) 
OUTPUT oX 
END 

then you can use this ABS operation in performing further computations. 
When a procedure executes an OUTPUT instruction. it returns the 

indicated output to the procedure that called it, and no further commands 
within the procedure are executed. Thus, for example, only one of the two 
OUTPUT instructions in ABS will be executed each time ABS is called. 

To help you visualize outputs. Figure 6.1 shows a diagram, similar 10 the 
diagrams in Section 2.1.2. for the procedure calls involved in executing the 
command line 

Figure 6.1: Procedure calls in e~ecuting PAINT PRINT SQUARE (AVERAGE 4 6) 
SQUAAE (AVERAGE 4 6). 

SQUARE and AVERAGE each have a private variable X, but since these are 

in different private libraries, there is no conflict. 
As shown in the diagram, you can regard inputs and outputs as 

communication channels between procedures. If procedure A calls procedure 
B then A can use inputs to communicale values to B. B's output enables it to 
communicate values back to A. 

A very common error in Logo programming is to altempt [0 make a 
procedure output without using the OUTPUT instruction. For example. you 
might attempt to define AVERAGE as 

TO AVERAGE :X :Y 
(oX + ,V) I 2 

END 

Calling this procedure, say 

AVERAGE 4 6 



SOITI lOGO 

6.2.2 . Example: Remainders and 
Random Numbers 

6.3 . Words 

would result in the error message 

TELL ME WHAT TO DO WITH 5 

ATLEVEL 1 LINE 1 OF AVERAGE 

when the procedure was execUied. In general, you should say what Logo is 
supposed to do with generated values-print them, output them, o r whatever. 

One useful operation you can create with OUTPUT is a REMAINDER 
procedure, which outputs the remainder of its twO arguments: 

TO REMAINDER :NUM :DIV 
OUTPUT :N UM - (:NUM I :DIV) • :DIV 
END 

The procedure works by taking advantage of the fact thaI division in Logo 
truncates the quotient. Therefore, when you take :NUM I :DIVand multipl y 
Ihe result by :DIV. you obtain Ihe largest multiple of :DIV that is less than 
:NUM . Sublracting this from :NUM yields the remainder. 

You can use REMAINDER to implement another useful procedure called 
RAND, which takes a positive number n as input and outputs a random 
number between 0 and n - I. RAND uses the Logo built-in operation 
RANDOM , which re!Urns a single digit (0-9) selected at random: 

PRINT RANDOM 
5 
PRINT RANDOM 
2 

To implement RAND, you can begin by writing a procedure RANDOM4, 
which outputs a four.digit random number. (We'll only worry about using 
RAND with inputs less than 10,000.) 

TORANDOM4 
OUTPUT RANDOM + 10. RANDOM + 100. RANDOM 

+ 1000. RANDOM 
END 

Now, to obtain a random number less than some number n, you simply need 
to take Ihe remainder by n of the number returned by AANDOM4: 

TO RAND :N 
OUTPUT REMAINDER RANDOM4 :N 
END 

In Logo, stri ngs of characters are called words. Logo provides operations 
for manipulating words: combining words into longer words and breaking 
words into pans. As with numbers, words may be passed among procedures 
as inputs and outputs. 

To indicate a word in Logo, you Iype the character Siring prefixed by a 
quotation mark, as in: 

PRINT "WHOOPIE 
WHOOPIE 

'-./ 

'-./ 

'-' 
'-J 

'-./ 

'-oJ 

'-' 

'-./ 

'-oJ 

'-' 

'-' 

v 

'-' 

'-' 

~ 

'-' 

'-' 

'--' '--' 

'--' 

V 

'-./ 

'-./ 

'-' 

'-./ 

'-' 

'-oJ 

'-' 

'-' 

V 

-J 

'-oJ 

'-J '-' 

'-' 

'-" 

'--' 



, 

, 

, 

, 

, 

/ 

J 

/ 

J 

, 

, 

J '-' 

J 

Numbelll, Wordl, Ind LlIII/81 

Notice that (u nlike the rule in English) the quotation mark goes only at the 
beginning of the word. The word itself is taken 10 be all of the characters 
between the quotation mark and the following space or the end of the line. 
Beware that if you put a qUOlation mark at the end of a word, that quotation 
mark will be taken to be part of the word: 

PRINT "A" 
A" 

Logo provides the following operations for extracting parts of words: 

FIRST 
LAST 
BUTFIRST 

BUTLAST 

Outputs the first character of its word input. Abbreviated F. 
Outputs the last character. 
Outputs a word containing all but the first character. 
Abbreviated BF. 
Outputs a word containing all but the last character. 
Abbreviated BL. 

Here are some examples: 

PRINT FIRST " ABCD 
A 
PRINT BUTFIRST "ABCD 
BCD 
PRINT LAST BUTLAST "ABCD 
C 

In the th ird example, the thing that is printed is the LAST of the BUTLAST of 
ABCD which is the LAST of ABC which is C. 

For constructi ng larger words from smaller ones, Logo provides the 
WORD operation. This takes two words as inputs and combines them to 

form a single word: 

PRINT WORD nNOW ~HERE 
NOWHERE 

Sample Procedures Thai Use Words 
The fo llowing retursive procedure is a word analogue of the 

COUNTDOWN procedure on page 24: 

TO TRIANGLE WORD 
PRINT:WORD 
IF :WORD ::: FIRST WORD THEN STOP 
TRIANGLE BUTFIRST WORD 
END 

TRIANGLE "LOLLIPOP 
LOLUPOP 
OLL/POP 
LUPOP 
LfPOP 
{POP 
POP 
OP 
P 



82ITI l OGO 

Whereas COUNTDOWN reduced a number to smaller numbers by 
successively subtracting 1, TRIANGLE reduces a word to smaller words by 
successively removing the first character. The process stops when the word 
has been reduced to a single character, that is, to a word that is equal to its 
own firs t character. 

TRIANGLE illustrates the use of words as inputs to procedures. As an 
example of words as outputs, consider the simple procedure DOUBLE, 
which takes a word as input and outputs the word concatenated with itself: 

TO DOUBLE:X 
OUTPUT WORD :X :X 
END 

PRINT DOUBLE " BOOM 
BOOMBOOM 

Observe the imparlance of using OUTPUT: you can operate on a word using 
DOUBLE and use the resull as an input to other operations; 

PRINT DOUBLE DOUBLE "BOOM 
BOOMBOOMBOOMBOOM 

TRIANGLE DOUBLE" ABC 
ABCABC 
BCABC 
CABC 
ABC 
BC 
C 

Warning: Words and Numbers 
In Tl Logo, you can form words whose characters are all digits. But 

these are not treated as numbers, even though they look like numbers. For 
example, the arithmet ic operations will not accept something like "25 as 
an input. Conversely, the word-manipulating operations do not work on 
numbers. This disti nction between words and numbers can be confusing, 
because error messages that result from inappropriate inputs do not 
distinguish between numbers and words: 1 

PRINT FIRST "25 
2 

PRINT FIRST 25 
FIRST DOESN'T LIKE 25 AS INPUT 

PRINT "25 + 5 
+ DOESN'T LIKE 25 AS INPUT 

PRINT 25 + 5 
30 

Ill> add (0 (he conrusion. (he buill·in op<1'l(ion WOAO? whkh (aU whC1hr. its inpuL is I .... ord. 'eLurns 

TRUE for number •. 

'-" 

--./ 

'--' 
'-' 

--./ 

'-' 

'-" 

'-" 

'-' 

'-' 

'-' 

'-' 

'-' 

'--

'-" 

~ 

-./ 

'--" '-' 

-..J 

'-' 

'-' 

'-' 

'-' 

'-' 

'--

'--' 

'--' 

~ 



6.4. Lists 

Numbers, Words, and Uele I 63 

Many languages fo rce the programmer to work with text in terms of 
character strings. A long text must be viewed as a long character string that 
is manipulated on a eharaeter-by-character basis. One of the ad vantages 
of Logo is that it allows you to manipulate sequences of words on a 
..... ord-by-..... ord basis. In Logo, a sequence o f words is called a IiSi. A list may 
be indicated by separating the words in the list by spaces and enclosing them 
in square brackets:! 

PRINT [THIS IS A LIST] 
THIS IS A LIST 

Notice that the words in the list are not qUOted and that the surrounding 
brackets are not printed. The spaces between the words serve only to delimit 
the words. Extra spaces are ignored : 

PRINT [EXTRA 
EXTRA SPACES 

SPACES( 

The Logo operations FIRST, LAST, BUTFIRST, and BUTLAST that we 
introduced for use with words also operate on lists . When used with lists. 
these operations pick out the fi rst or last word of the list, rather than the fi rst 
or laSI character. as they do wit h words. 

PRINT FIRST ITHIS IS A LIST! 
THIS 

PRINT FIRST BUTFIRST (THIS IS A LIST! 
IS 

PRINT BUTLAST (THIS IS STILL A LIST] 
THIS IS STILL A 

PRINT BUTFIRST (THIS( 
(blank line) 

Note that in the last example, taking all but the first word of a list that has 
only one word produces a list containing no words, called the emply list. II 
can be typed into Logo as I j.3 

In Logo, a list is never considered to be equal to a word. For example, a 
word is not considered equal to a list that contains that single word , even 
though Logo print s these in the same way: 

PRINT ~ BUBBLE 
BUBBLE 

PRINT (BUBBLE( 
BUBBLE 

PRINT " BUBBLE . (BUBBLE) 
FALSE 

2Logo tiSis art u~ IlOl only for makinl Kqutncn of worlis. bu!;l)~ for crealinglia!a SlrUClUrn in l~ntTal. 
Sec S«tion 11. 1. R~m(ll1bfr!o lielimi! liSlI ... ·i,h Jquar~ brackcc5 (land not parenlhcsn (). 

3rn lh. curr~nl implemenla!ion of rr loao. lakinalhe eUTFIRST Or eUTLAST of. singl. characl., .. ord 
(i. • .• r(ll1O\';n,111 chauC10u ('Onl ' .. o.d) ,n"'I$;n Ih~ .mply liM . 



'-' 
84 / TI LOGO 

SENTENCE is the operation for putting [isIS together, analogous to 
~ 

WOAD for words. SENTENCE (abbreviat ed SE) takes words or lists as 
V 

inputs and assembles these into one list : '--' 
'-' 

PRINT SENTENCE (THIS IS((HOW SENTENCE WORKS( 
THIS IS HOW SENTENCE WORKS '-' 

PRINT SENTENCE "THIS (IS TOO( ~ 

THIS IS TOO 

'-' 
PRINT SENTENCE "THIS " ALSO 
THIS ALSO .J 

v 
Sam ple Procedures That Use Lists 

Here are the lisl procedures analogous to the word procedures TRIANGLE '-' 
and DOUBLE of Sect ion 6.3. NO!ice that we have changed the stop rule for 
TRIANGLE to lest fo r an empt y input. '-' 

TO TRIANGLE.lIST :X ~ 

IF oX : (( STOP 
PR1NT :X 

v 

TRIANGLE. LIST BUTFIRST :X 
~ 

END 

~ 

TO DOUBLE.LlST:X 
OUTPUT SENTENCE :X :X 

~ 

END 

'-./ 
V 

TRIANGLE. LIST (THIS IS A LIST] 
THIS IS A LIST '-J 

ISA LIST 
A LIST ~ 

LIST 
'-' 

PRINT DOUBLE.LlST (HUP 2 3 4) 
HUP234HUP234 '-' 

TRIANGLE.LlST DOUBLE. LIST (DING DONG] 
.....,; 

DING DONG DING DONG 
DONG DING DONG '-' 

DINGDONG 
~ 

DONG 

'-' 
The main thing to observe in these examples is that lists. like numbers and 
words, can be passed between procedures as inputs and outputs. -The following Jist procedures make use of the Logo command READUNE 
(abbreviated RL), which makes it easy to write interactive programs using .J 

lists. READUNE waits for you to type in a line (term inated by ENTER) and 
output s the typed-in line as a list. '-

TO BOAST -' 
PRINT (WHO'S THE GREATEST?] 
IF READLINE : (ME] THEN PRINT ]OF COURSE!] STOP >.../ 

PRINT (NO, TRY AGAIN] 'J .....,; 
BOAST 
END 

~ 

'-

~ 



-
-
, 

-
" 

- 6.5. Naming 

-
-
, 

-
--
, 

" 

-
" 

'-.J 
" 

, 

-
-

BOAST 
WHO'S THE GREATEST? 

> MIGHTY MOUSE 
NO. TRY AGAIN 
WHO'S THE GREATEST? 
> ME 
OF COURSE! 

Numbers, Words, alld Lists 185 

NOie the prom pt > printed in the example above. Logo prints this prompt 10 
remind yo u thaI it is wailing fo r you to respond to a REAOLINE. Bear in 
mind thai READUNE always outputs a list. If you type a single word , the 
output o f READLINE will be a list contain ing lhal one word. 

Here's anmher example: 

TO CHAT 
PRINT [WHAT'S YOUR NAME?] 
PRINT SENTENCE [HELLO] READLINE 
PAINT [TYPE SOMETHING YOU LIKE) 
PRINT SENTENCE [I'M GLAD YOU LIKE) READUNE 
END 

Notice how the second line of the procedure is constructed: the list being 
PRINTed is a SENTENCE of two things-the list (HELLO] and the list 
output by READ LINE. 

CHAT 
WHAT'S YOUR NAME? 
> lUCY 
HELLO LUCY 
TYPE SOMETHING YOU LIKE 
> PICKLE JELLO 
I'M GLAD YOU LIKE PICKLE JELLO 

We have seen different kinds o f naming in Logo programs: the use of 
names to refer to inputs to procedures and (he idea of naming procedures 
themselves. In Chapter 4, we also saw that (he Logo command MAKE can be 
used to give names to things. 

Consider the fo llowing example: 

MAKE " NUMBER 5 
PRINT :NUMBER 
5 

In the first line you tell Logo th at you are going to call the number 5 by the 
name NUMBER . The first input to MAKE is the name and the second input 
is the thing you are naming. The effect o f the command is to establish a 
relationship between the wo rd NUMBER and the number 5. We express this 
by sa yi ng that "5 is the thing associa ted with NUMBER." In the line 

PRINT :NUMBER 



86 I TI lOGO 

you can see how: recovers the thing associated with the name, just as it 
recovers the value associated with an inpul to a procedure. Here are more 
examples: 

MAKE "COLR "YELLOW 
PRINT "COLR 
COLR 

PRINT,COLR 
YELLOW 

MAKE "SLOGAN [I LOVE BANANASI 
PRINT :SLOGAN 
/ LOVE BANANAS 

PRINT SENTENCE (BUTLAST ,SLOGAN) ,COLR 
I LOVE YELLOW 

In these examples, and in most programs, the name is specified as a literal, 
quoted word. This is nOI Ihe 9nly possibilit y: 

MAKE (WORD " PART " 1) [DO MI SOL] 
PRINT :PARTl 
DOM/SOL 

Here is a tricky example: 

MAKE " FLOWER " ROSE 
PR INT :FLOWER 
ROSE 

MAKE HOWER [IS A ROSE IS A ROSE] 
PR INT :FLOWER 
ROSE 

PRINT :ROSE 
IS A ROSE IS A ROSE 

In the Ihird command line, the name associated with [IS A ROSE IS A 
ROSEl is not the literal word FLOWER, bUI rather the rhing associated with 
FLOWER, thaI is, the word ROSE. Therefore, 

MAKE :FLOWER <somet hing > 

has the same effect as 

MAKE " ROSE <somet hing> 

The Logo function THING retu rns the thing associated with its input. The 
use of : is actuall y an abbreviation fo r TH ING in Ihe case where the input to 
THING is a quoled lileral word. BUI THING can be used in more general 
circumstances. 

MAKE "NAME1 [JOHN Q. CITIZEN] 
PRINT ,NAME1 

JOHN Q. CITIZEN 

-
'-' 

'-' 

J 
'..J 

'-" 

'-" 

~ 

'-' 

J 

'-' 

'-' 

v 

'-' 

'-' 

J 

'-' 

--' 

'-' -
'-' 

'-' 

'-' 

'-' 

'-' 

'-" 

'-' 

'-' 

'-' 

'-" 

'-' 

'-" 

'oJ 

'..J 'oJ 

'-' 

v 

'-' 



~ 

.../ 

.../ 

~ 

~ 

'-" 

~ 

~ 

'-" 

~ 

'-" 

~ 

'-" 

~ 

~ 

~ 

J 

-' 

J 

~ 

~ 

-' 

J 

~ 

~ 

~ 

~ 

~ 

./ 

J 

~ 

-' 

-' 

-' 

Plate 1 

Plate 1 

Plate 3 

Plale. 

\.J 

Changing background and pen colors can have a dramatic effect. Plate 1 shows 
POLY design drawn in black on a standard (cyan) background. Plate 2 shows 
the same design drawn in white on a black background. (Chapter 2.) 

Plates 3 and 4 show the effects of changing background and pen colors for a 
POL YSPI design. The figure in plate 3 was drawn in black on a yellow 
background. The figure in plate 4 Wall drawn in white on orange. (Chapler 2.) 



PIlle 5 

rio ... 

vvv 

rio .. 7 

rio ... 

A group of truck-shaped sprites, spread in a circle on the screen. (Chapter 4.) 

An expanded view of the sailboat-shaped sprite used in the MOVIE project 
described in Chapter~, as seen while usinl the sprite editor. The normal size 
of the sprite is seen at the rilht. 

The completed MOVIE project described in Chapter ~ shows a boat movina 
across the water while a group of birds flap their way across the sky. 

The FLOWERMOVIE project described in Chapter 7 shows how to make 
a Iroup of Dowers sprout from the ground as bulbs, grow up to different 
heights, and burst into full bloom. 

v 

V 

V 
V 

'-' 

V 

'-' 

V 

V 

V 

V 

V 

V 

V 

v 

V 

U 

V 

V 

V 

V 

V 

V 

V 

'-' 

'-' 

'-' 

V 

V 

V 
V V 

V 

V 

'-' 



--
- ~ --
-
---
-

-
-
-
-
-
-
- '-../ 

--
-

6.5.1. local and Global Names 

«'" '" ..... .. "." .... 
Figure 6.2: Private libraries for DEMO and 

CHANGE. 

PRINT THING " NAMEl 
JOHN Q. CITIZEN 

PAINT THING (WOAD " NA " ME1 I 
JOHN Q. CITIZEN 

PRINT THING (FIRST (NAME1 PLACE1]) 
JOHN Q. CITIZEN 

Numbers, WOfds, and Lllta 181 

There is also the Logo predicate THING? , which takes a word as input and 
outputs TRUE if Ihe word has something associated with it. 

PRINT THING? ~ NAMEl 
TRUE 

PRINT THING? " NAME2 
FALSE 

In Section 2.1.2 we saw Ihal Ihe names of inputs are privQIe 10 the 
procedu res usi ng them . Di ffe rent procedures reference names in different 
pri vate libraries, and two procedures may use the same names for different 
purposes without any conflict. The same holds true if the procedure uses the 
MAKE command to change Ihe value associated with some input name. This 
is illustrated in the following exa mple. 

TO DEMO:X 
PRINT:X 
CHANGE :X 
PAINT :X 
END 

TO CHANGE :X 
MAKE "X :X + 1 
PAINT :X 
END 

DEMO 1 
1 (printed in DEMO) 
2 (pri nted in CHANGE) 
1 (printed in DEMO) 

The important point to not ice is that when the value o f X is printed in 
DEMO the second time, it is still I, even tho ugh CHANGE "changed" X to 2. 
The reason is that DEMO and CHANGE each have their own meaning for X 
in different private libraries, as shown in Figure 6.2. When CHANGE uses 
the MAKE statement it changes its X, but nOt DEMO's. 

When you use a MAKE statement at command level. you a re also 
associating a value with a name in some library. But this is not a librar y 
associated with any proced ure. Rather it is a library associated with the 
command level. Defini tions in this library are someti mes called global 
variables. Just as the private libraries of two procedures are d istinct , names 
in procedure libraries will not con flict with names in the global library. 
Compare the fo llowing exa mple 10 the o ne above. 



88ITt lOGO 

6.5.2 . • "ree Variables 

MAKE ~X 1 
CHANGE :X 
2 

PRINT X 
1 

One of the reasons that procedures are so importam is that they provide a 
way to design complex programs in small pieces. But whenever you design 
something by breaking it into pieces, you eventually have to deal with the 
issue of how these pieces can interact. The importance of the private library 
mechanism is that it guarantees that the names used by differem procedures 
will refer to different th ings and hence that the only way procedures can 
interact is through inputs and outputs. This guarantee provides a good 
handle on controlling the complexity of the emire program. 

Someti mes. however, it is convenient for procedu res to imeract other than 
through inputs and outputs. For example. if the computat ion performed by a 
procedure depends on a large number of parameters, it may be cumbersome 
to specify them all as inputs each time the procedu re is called. Again, usi ng 
only inputs and outputS to pass information may require passing 
"superfluous" inputs through many levels of nested procedures umil they 
reach the procedure that actually needs them. For these reasons it is useful to 
be able to have the computat ion performed by a procedure depend not onl y 
on the information provided explicitly by the inputs, but also on in formation 
that is implicit in the context in which the procedure is used. 

Consider the following procedure: 

TO NEW PRICE :P 
OUTPUT :P + :OVERHEAD 
END 

Suppose you would like to be able to use this procedure in such a way that 
the price computed depends on some OVERHEAD that is obtai ned from the 
context in which the procedure is used. For example; 

MAKE wOVERHEAD 50 
PRINT NEW PRICE 100 
150 
MAKE nOVERHEAD 25 
PRINT NEW PRICE 100 
125 

You might also wam to have the context determined by a procedure. as in 

TO TRY :OVEAHEAD 
PRINT NEW.PRICE 100 
PRINT NEW PRICE 200 
END 

TRY 100 
200 
300 

TRY SO 
150 
250 

-
'-" 

'-" 

V 

'-" 
'-' 

V 

'-' 

'-' 

'-' 

V 

V 

'-" 

'-" 

'-" 

~ 

~ 

'-' 

-.J V 

V 

V 

'-" 

V 

'-' 

'-" 

'-' 

~ 

'-" 

~ 

'-' 

V 

'-' 

'J '-' 

'-' 

'-" 

'-" 



~ 

~ 

~ 

~ 

~ 

-
-
/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

--
-
/ 

/ 

-
-

'-

6.6. Co nditional Expressions and 
Predicates 

Numbel$, Worda, and LI,t, 189 

The name OVERHEAD in the NEW.PA ICE procedure is what is technically 
known as a free variable. A free variable is a name that is used in a 
procedure, but not as a name for an input. As the NEw'PR ICE example 
shows, Logo procedures can have free variables. The presence of free 
variables leads to the following rule for finding the value associated with 
a name in a Logo procedure: 

• If the name is one of the names of the inputs to the procedu re, the value 
can be found in the procedure's private library. 

• Otherwise, see if the name is in the library of the procedu re that coiled the 
current procedure. 

• Otherwise, see if the name is one of the names in the procedure that called 
that procedure, and so on, alilhe way through 10 the global library. 

Free variables provide a powerful mechanism for passing information 
between procedures. But their indiscriminate use leads to obscure programs 
and may result in intractable program bugs. This is especially true if you use 
MAKE 10 change the value of a free variable, since the actual variable 
affecled may appear arbitrarily far back in the nest of procedure calls. 

We saw in Section 2.2.2 the use of conditional expressions IF ... THEN 
in Logo programs. This section provides more information about condi tional 
expressions. 

IF and TH EN can be augmented by the Logo primitive ELSE. For 
example, the following procedure tells whether a number is positive o r 
negative: 

TO SIGN :N 
IF :N < 0 THEN OUTPUT ~NEGATIVE ELSE OUTPUT "POSITIVE 
END 

PR INT SIGN 57 
POSITIVE 
PRINT SIGN (10 - 20) 
NEGATIVE 

IF. . THEN ... ELSE expressions are often confusing for beginning 
programmers, due to the need 10 work with a si ngle statement that specifies 
both a test and the actions to be taken depending on the outcome of the test. 
Logo therefore includes another form of conditional that separates the 
testing from the actions. Th is form is TEST ... 1FT ... IFF. The TEST used 
in a procedure checks some condition. Subseq uent procedure lines that begin 
with 1FT and IFF are executed or not , depending on the result of the TEST. 
Here's another way to write the SIG N procedure usi ng TEST: 

TO SIG N :N 

TEST: N < 0 
1FT OUTPUT "NEGATIVE 
IFF OUTPUT "POSITIVE 
END 

A proced ure can include more than one TEST, and any 1FT or IFF 
statements always refer 10 the mOSt recem TEST. Also, the result of a TEST 
is kept private within a procedure, so the use of 1FT and IFF within a 
procedure is not affected by any TESTs performed in a subprocedure . 



90 111 l OGO 

Predicates; TRUE and FALSE 
The conditions checked by IF and TEST are known as predicates. We 

already introduced the Logo predicates>, <, and == for working with 
numbers. Section 12.6 gives a complete list of the predicates built into Logo. 
It is also easy to define new predicates, because a predicate in Logo is 
nothing more than a procedure that outputs either the word TRUE or the 
word FALSE. For instance, you can transform the SIGN procedure given 
above into a predicate that outputs FALS E if the input is less than 0 and 
TRUE 0lherwise:4 

TO POSITIVE? :X 
IF :X < 0 OUTPUT "FALSE ELS E OUTPUT ~ TRUE 
END 

As another example, the following predicate takes a word as input and tests 
whether it begins with a vowel: 

TO BEGINS.wITH .VOWEL? :X 
IF (FIRST 'X) = "A OUTPUT " TRUE 
IF (FIRST 'X) = " E OUTPUT "TRUE 
IF (FIRST 'X) = " 1 OUTPUT "TRUE 
IF (FIRST :X) == "0 OUTPUT ~ TRUE 
IF (FIRST :X) == NU OUTPUT NTRUE 

OUTPUT " FALSE 
END 

Once a predicate has been defined , it can be used with IF or TEST just as 
if it were one of the predicates built into Logo. Here is a procedure that adds 
"a" or "an" to a word. as appropriate:s 

TO ADDAOR.AN :X 

TEST BEGINS . WITH . VOWEL? :X 
1FT OUTPUT SENTENCE " AN :X 
IFF OUTPUT SENTE NCE N A :X 
END 

PRINT ADD.A.OR.AN "COM PUTER 
A COMPUTER 
PRI NT ADD.A.OR.AN "ELEP HANT 
AN ELEPHANT 

41( is. ,ood programmina habillo name predicaln wilh nameS Ihal ~nd wilh a qunlion mark. As far as lh~ 

logo sysirni is coo«rnod. lhough. lhe question mark has no special significance. It is treatod as an ordinary 

character. 

SUI .. on. when.,.,., 5eC how 10 lak~ ad\'aOla~ of l ogo lists as dala mUClurn. we will loam mOre flexibl. 

ways of computing funclions like BCGINS.WITH.VOWEL. Comparelhe ah ... nali\·~ version of Ih. 
ADO.A.OR.AN pr~ur. Ihal;S usM in the AN IM AL program of ~ion 11.3.2. 

-
'-" 

'-" 

V 
'--' 

-J 

~ 

'.J 

'.J 

'.J 

~ 

'.J 

'-/ 

~ 

~ 

~ 

'.J 

-J 

'--' 
~ 

-J 

'-/ 

-J 

'-/ 

'-' 

'--' 

'-/ 

'-/ 

'--' 

~ 

'.J 

'-/ 

V 

'--' '.J 

'-/ 

'-' 

'.J 



" 

Number" Word" Irld LIsts 191 

You can regard IF and TEST as operations that take an input that must be 
either TRUE or FALSE. In fact, the primitive predicates built into Logo are 
themselves operations that output TRUE or FALSE:6 

PRINT3 > 5 
FALSE 
PRINT "XYZ ~ "XYZ 
TRUE 

For combining predicates, Logo includes the operation BOTH, which takes 
two inputs that must be either TRUE or FALSE and outputs TRUE if both 
inputs are TRUE and FALSE ot herwise. There is also EITHER, which 
outputs TRUE if at least one of its inputs is TRUE, and NOT, wh ich outputs 
TRUE if its input is FALSE, and FALSE if its input is TRUE. 

PRINT BOTH (1 < 2) (2 > 3) 
FALSE 
PRINT EITHER (1 < 2) (2 > 3) 
TRUE 
PRINT NOT (2 + 2 = 4) 
FALSE 

For example, here are three equivalent ways to write a predicate 
BETWEEN?, which tests whether a spedfied number is in a given range: 

TO BETWEEN? :X :LOW :HIGH 
IF:X < :LOW OUTPUT ~ FALSE 
IF :X > :HIGH OUTPUT "FALSE 
OUTPUT "TRUE 
END 

TO BETWEEN? :X :LOW :HIGH 
IF EITHER (X < ,LOW) (X> ,HIGH) OUTPUT" FALSE 
OUTPUT "TRUE 
END 

TO BETWEEN? :X :LOW :HIGH 
IF BOTH (NOT ('X < ,LOW)) (NOT (X > ,HIGH)) OUTPUT"TRUE 
OUTPUT " FALSE 
END 

BOTH and EITHER are themselves predicates that output TRUE or 
FALSE. This means that the second two versions of BETWEEN? can also 
be written in another way, in which the TRUE or FALSE output by BOTH 
and EITHER is output directly to the procedure that calls BETWEEN?: 

6ft LoIO II indudtS sp«ial TRUE and FALSE whkh OOIPUI lh( words TRUE and FALSE. rtSp«l;vdy. Thus, 
;n TI Logo II you can u~ TRUE and FALSE "';lh or WilhoUl quOItS. as)OO prder; for uampl~. 

IF :X .. 5 OUTPUT "TRUE . ., 
IF:X .. 5 OUTPUT TRUE 

Ire boIh valid. In lhe firll ~Iease ofTI logo. only lhe fim form will wor~, 



92 111 LOGO 

6.7. Details on Logo Syntax 

6.7.1. How Logo Separates 
Lines into Words 

6.7.2. Using Parentheses 

TO BETWEEN? :X :LOW :H1GH 
OUTPUT BOTH (NOT (oX < oLOW)) (NOT (X > oHIGH)) 
END 

TO BETWEEN? X oLOW oHIGH 
OUTPUT NOT EITHER (oX < oLOW) (oX > oHIGH) 
END 

This section collects some informalion about how Logo inlerprets the 
command lines that you type to it. This includes such in formation as where 
to include spaces and parentheses in command lines and how Logo groups 
seq uences of commands. 

Any Logo line is interpreted as a sequence of words. In general, you must 
separate words by spaces. For example, if you mean to type 

FORWARD 100 

and instead type 

FOAWARD1 00 

Logo will respond with the error message 

TELL ME HOW TO FORWARD100 

because it will interpret FORWARD100 as a single word and look for a 
procedure with that name. 7 As a general rule , it is a good idea to type each 
line with spaces between the differenl elements. For example: 

PA INT ( 3 + 4 ). 5 
35 

Logo does , however, understand that parenlheses and arithmetic operators 
are normally meanl to break words, so 

PRINT (3 + 4).5 
35 

works, too . In fac t, if you define a procedu re that incl udes a line such as the 
previous one, and later print out the procedure, you will find that Logo has 
inserted spaces inlo the line. 

We have already seen some complex Logo expressions; for example, the 
fo llowing line is from the AVERAGE.OFSQUARES procedure in Section 
6.2.1. : 

OUTPUT AVERAGE (SQUARE :X) (SQUARE :Y) 

In this line, the OUTPUT command takes one inpu t, which is the result of 
AVERAGE. AVERAGE in turn takes two inputs: 

70f tourse. you may have aCluaUy definccl a procodurc who~ name was FORWAR0100. in "'hich ca~ l Ojo 
would run lhal procfllure. 

'-" 

V 

V 
'-.J 

V 

'-' 

'-' 

'-' 

'-' 

V 

'-' 

'-' 

'-' 

V 

'-' 

'-' 

'-' 

'-' '-' 

'-' 

-' 

'-' 

'-' 

.~ 

'-' 

'-' 

'-" 

'-" 

'-' 

'-' 

V 

V 

'-' 
~ 

'-' 

~ 

'-' 



-' 
-
-
-
~ 

~ 

~ 

~ 

~ 
~ 

~ 

-' 

~ 

/ 

~ 

-
-
-

'--' -

Numbers, Worda, and Llsta 193 

(SQUARE oX) 

(SQUARE oY) 

Notice that parentheses perform grouping by enclosing Ihe operation 
together with its inputs. That is, you should write 

(SQUARE oX) 

and not 

SQUARE (oX) 

to indicate that :X is the input to SQUARE.s 
In fact, this expression would work perfectly well if you wrOt e it without 

any parentheses at all, 

OUTPUT AVERAGE SQUARE :X SQUARE :Y 

because when Logo interprets the line, it breaks things up according to the 
fo llowing method. The fir st word it sees is OUTPUT, and this requires one 
input. So Logo scans the line tryi ng to find thai input. The next thing it runs 
into, though, is AVERAGE, which requires two inputs of its own . So Logo 
now scans to find two inputs for AVERAGE and ru ns into SQUARE , which 
requires one input which Logo finds as :X. This completes the input [0 
SQUARE and also completes the first input to AVERAGE. Logo now look s 
for the second input to AVERAGE, and the next thi ng it sees is another 
SQUARE, which req ui res one input. Logo fi nds this as :Y. Now SQUARE 
has its input. This completes both inputs 10 AVERAGE , which completes the 
entire input to OUTPUT. 

Generalizing this method, you can see that as long as Logo knows how 
many inputs each procedure needs. and as long as each procedure name is a 
prefix operator (i.e., it is written to the left of its input s), then you don', 
need parentheses at all in writing Logo commands. On the other hand, 
parentheses help considerably in enabling the human eye to see the patt ern. 
So unless you are very practiced. you should not write a complex expression 
without parentheses for fear of nOt being able to read it the next day. 

The above rule for parsing expressions is modified for infix operators (i. e., 
operators that are written between their inputs, rather than to the left of 
them). In a line such as 

AVERAGE 3 + 2 7 

the 3 is combined with the 2 by + before any unit is assigned as an input to 
AVERAGE, so the line gets broken up as: 

AVERAGE (3 + 2) 7 

8Thi, ful~ ~a n be confujing. $'l>I'e 'he la"~r (xprffiion is mOre like SQUARE (X). "hi~h i. "ha, i, u .. d in 

malbema,its Or in langu3ge$ like BASIC or f'aKal. Keep in mind Ihal palemh~ in Logo ale used 10 

indica'~ grouping, nOl as spn:ial s)'mboh for ""Iimillng ,h. Ii" of inpUiS ' 0 fUl>I'lions. 



94ITI lOGO 

which gives 6. The general rule is that the infix arith metic operators +, -, ., 
and I have higher priority than prefix operators. 

T he infix predicates >, <, and = have lower priority Ihan prefix 
operators. So 

AVERAGE 3 5 > AVERAGE 2 4 

must be combi ned as 

(AVERAGE 3 5) > (AVERAGE 2 4) 

or you will get an error message. 
Logo's rules for parentheses are designed to enable you to write simple 

expressions without worrying about parentheses. For complex expressions, it 

is beller to use parentheses to avoid confusion. 

SENTENCE with a Variable Number of Inputs 
Although we haven 't mentioned it yet, the SENTENCE operation can take 

a variable number of inputs, as in the following example, 

PRINT (SENTENCE [THE BIG[ [BAD[ [WOLF!) 
THE BIG BAD WOLF 

which uses one SENTENCE operation to combine three things into a lis t . 
The fact that S ENTENCE is com bining three things rather than its usual two 
is indicated by the parentheses grouping SENTENCE together with its inputs. 
In th is way, SENTENCE can take any number of inputs. 

Exa mples 

Here are a few examples il lustrating the rules discussed above, including 
some common errors and their explanations: 

PRINT SENTENCE " A ~ B tI C 

AB 
TELL ME WHAT TO DO WITH C 

The default number of inputs to SE NTENCE is 2, so SENTENCE combines 
A and B, and the resul t is printed by PR INT. Now Logo is faced wilh the rest 

of the line, and it runs across the symbol " C. Since there are no outstanding 
operations that need inputs, Logo compla ins that there is nothing to do with 

the " C. 

PRINT (SENTENCE " A "8"C) 
A B C 

Here parent heses are correct ly used to group the Ihree inputs to SENTENCE. 

PRINT (SENTENCE " A "8"C) 
TELL ME MORE 

The problem here is that there is no space separating the " C fro m the closing 
parentheses. Logo therefore interprets "C) as a two-character word which is 

the third input to SENTENCE a nd goes on to search for more inputs. 
Remember that when you indicate a word with a quotation mark , you must 

use a space to separate it from the rest of the line. 

'-' 

~ 

V 
'-./ 

~ 

~ 

~ 

,~ 

'-
~ 

'-' 

'-' 

'-J 

~ 

'-' 

~ 

'-' '-' 

~ 

-' 
'-' 

v' 

v 

~-

'-' 

~ 

v 

'-' 

--
~ 

......' 
'-./ 

'~ 

----
...... 

v 



6.7.3. The Minus Sign 

-
-
/ 

-
/ 

-
~ -

, 

PRINT SENTENCE (" A " 8 "C) 

TELL ME WHAT TO DO WITH " e 

Number., Words, and lisle I 95 

The problem here is that when you use parentheses to indicate grouping, you 
should group an operation together with lIS inputs. The parentheses are being 
used in this example as they would be used in BASIC, to surround the inputs 
alone. But Logo always tries 10 interpret a parenthesized expression as a 
complete unit, which does not make sense in Ihis case. 

If the minus sign is preceded by a space and followed by a number, then TI 
Logo tries to interpret i[ as a negation sign. Otherwise, minus is interpret ed 
as subtraction, in the context where that makes sense. Here are some 
examples: 

PAINT 1-2 
- 1 (infix subtraction) 

PAINT 1 - 2 
- 1 (infix subtraction) 

PRINT 1 - 2 
1 
TELL ME WHAT TO DO WITH - 2 
(Logo interpreted the - as negation. and got stuck.) 
PRINT -2 
- 2 (negation) 
PRINT - 2 
-2 (negat ion) 

In the last example, even though there is a space after the -. no value was 
pending that could be regarded as an input to - on the left , so Logo 
interpreted the - as negation . 

When used in lists, the minus sign written before a number is regarded as 
signaling a negative number. Otherwise - is regarded as a separate word in 

the list:9 

PRINT FIRST 1- 2 3) 
-2 
PRINT FIRST ( - 2 31 

PRINT FIRST 12 - 31 
2 
PRINT FIRST I-X 31 

In the third example, the list has three words: 2 , - , and 3. In the fo urth 
example, the list also has three words: -. X, and 3. 

91n the first release of TI Loao. the minus si&ll is always imtfpreted as a so:parate word in a lisl . Th is makes it 
imfJ(lSliiblc to dirtttly 1)'pC: in lim comaining negat" ·c numbers. Such lim mUll be ronSlruC1ed using 
SENTENCE. 





7.1. Arithmetic Quiz Program 

~ 

/ 

J 

J 

/ 

J 

'-' 
J 

More logo ProJectal 97 

CH APTER 7 

More Logo Projects 

This chapler presents four open-ended projects, suitable for beginning 
students. The first project is a simple arithmetic quiz program similar to the 
drill and practice computer systems used in some schools. The next project 
shows how to use lists to write programs that generate "random" sentences. 
We then reprint a paper by Papert and Solomon [II J that describes a simple 
game-playing program and discusses ideas about how to involve students in 
planning and carrying out complex projects . Finally, we use sprites and tiles 
to design a movie more elaborate than the one discussed in Section 4.4. 

Here's a simple arithmetic drill and practice program: 

QUIZ 
HOW MUCH IS 37 + 64 
> 101 
GOOD 
HOW MUCH IS 29 + 46 
> 87 
THE ANSWER IS 75 
HOW MUCH IS 21 + 11 
> 32 
GOOD 
and so on. 

Designing a quiz program that works [ike this is a good programming 
project for elementary school students. I Here is one of many possible 
versions. It uses the RAND procedure discussed on page 80. 

TO QUIZ 
MAKE " NUM1 RAND 100 
MAKE " NUM2 RAND 100 
MAKE " ANSWER :NUM1 + :NUM2 
PRINT (SENTENCE [HOW MUCH IS] :NUM1 [+] :NUM2) 
MAKE ~ REPLY READNUMBER 
TEST :REPLY = :ANSWER 
[FT PR[NT [GOOD] 
IFF PRINT SENTENCE [THE ANSWER IS] :ANSWER 
QUIZ 
END 

TO READNUMBER 
OUTPUT FIRST READLINE 
END 

lA nd desi",i", such a pro,ram is probably a beu~r educational e~ptrlencc than u$;n, such a program. which 
is unfortunatelY much more typical of how computers are currently used in 5Choob. 



98 1T! lOGO 

7.2. Random-Sentence Generators 

You use READNUMBER rather than READLINE directly because 
READ LINE OUtputS a list . If the user types in a single number, READLINE 
outputs a list conraining that number as its only item. 2 To obtain the number 
itself, you extract the first item from the list returned by READLINE. 

You can also modify AEADNUMBER to check that the response is actually 
a number: 

TO READNUMBER 
MAKE ~ IN FIRST READUNE 
TEST NUMBER? :IN 
1FT OUTPUT :IN 
IFF PRINT [PLEASE ANSWER WITH A NUMBER[ 
IFF OUTPUT READNUMBER 
END 

The behavior of QUIZ is now: 

OUIZ 
HOW MUCH IS 6 + 14 

> BO 
PLEASE ANSWER WITH A NUMBER 
> 20 
GOOD 
elc. 

Observe that the recursive call in the final line of the procedure makes the 
procedure keep asking until the user responds with a number. 

QUIZ is a good programming project because it has a simple core, yet there 
are SO many extensions and variations. Some of these are as follows: 

• Allowing the user to keep trying a question until getting the correct answer 

• Keeping score 

• Progressing to harder and harder problems when the score is good 

• Giving advice 

You can have lots o f fun with programs that print random sentences. In 
designing such programs, it is very useful to have as a building block a 
procedure PICKRANDOM that takes a list as input and outputs an item 
selected at random from a list ; for example: 

PRINT PICKRANDOM IEENEY MEENEY MINEY MOl 
MEENEY 
PRINT PICKRANDOM [EENEY MEENEY MINEY MOl 
MO 

PICKRANDOM is not built into Logo as a primitive, but it can be 
implemented by using lisls and recursion, an aspeci of Logo programming 
that we have nOI yel discussed. PICKRANDOM is implemented in terms of a 

2Thus. if you $t'I ANSWER 10 be 1M lUI fC1l1fnN by READ LJNE. ANSWER would ne"~f be equal 10 lhe sum 

of NUMl lnd NUM2. wllich is. numbl'r. For uampif. ,r lhe user types 7 foliowN by EMTEJII. lhe val ue 
.C1l1m'" by REAOLJNE ""JI M 1M lis/ 111. nOllh~ "limber 7. 

'-' 

V 

'-' 
'--' 

'-' 

'--' 

V 

'-J 

'-J 

\..-, 

'-J 

~ 

'-J 

'-J 

'-' 

'-J 

'J 

V 

V 

'-J 

J 

V 

~ 

~ 

'-J 

V 

'-J 

~ 

'-J 

\J 
'-' 

J 

~ 

'J 



J 

More LOQO Projects 199 

./ procedure PICK, which outpulS the nth item in a given list: ] 

~ 
TO PICKAANDOM :X 

J 
OUTPUT PICK (1 + RAND (LENGTH :X)) :X 
END 

PICK is defined as follows: 

J 

TO PICK :N :X 

J IF :N "" 1 OUTPUT FIRST :X 
OUTPUT PICK (:N - 1) (BUTFIRST :X) 

J END 

./ We will st udy programs such as these in Chapter 10, and we will explain how 
PICK and PtCKRANDOM work in Section 10.2.1. In the meantime you can 

J regard PICKRANDOM (and give it to beginning students) as a black box. 
Once you have PICKRANDOM , it is easy 10 generate simple random 

J sentences of the form {noun } {verb} by picking words at random from lists 
of nouns and verbs: 

J 

TOCHATIER 
J 

MAKE " NOUNS [DOGS CATS CHILDREN TIGERS[ 

J 
MAKE "VERBS [RUN BITE TALK LAUGHI 
BABBLE 
END 

J TO BABBLE 
PRINT SENTENCE (PICKRANDOM :NOUNS) 

(PICKRANDOM :VERBS) 
BABBLE 

J END 

./ CHATIER 
CATS LAUGH 

J TIGERS TALK 

./ 
CHILDREN BITE 
TIGERS BITE 

J DOGS TALK 

J 

You can make the sentence generator more interesting by occasionally 
te ll ing the computer to ask for a new noun or verb to be typed in and added 
to the corresponding list. For nouns this can be done with 

J 

TO LEARN.NOUN 
PRINT [TEACH ME A NEW NOUN] 
MAKE " NOUNS SENTENCE :NOUNS READLINE 

~ END 

./ 

J 3tn the firsl rclease of Tl loao. LENGTH must also be implcmcnlcd as a plocNu.e: 

TO LENGTH :X 
~ IF:X. [IOUTPUTO J 

OUTPUT 1 + LENGTH BUTFIRST :X 

END 



100IT I lOGO 

Observe Ihal Ihis uses Ihe SENTENCE operalion 10 combine Ihe typed-in 
word wilh the list of current nouns. There is a similar LEARN .VERB 
proced ure for verbs. 

Now you can modify BABBLE to ask for a new noun or verb every 50 
often (1 chance in 10): 

TO BABBLE 
IF (RAND 10) = 0 LEARN .NOUN 
IF (RAND 10) :: 0 LEARN. VERB 
PRINT SENTENCE (prCKRANDOM :NOUNS) 

(PICKRANDOM :VEABS) 
BABBLE 
END 

The behavior of the program is now 

CHATIER 
CHILDREN TALK 
TIGERS RUN 
TEACH ME A NEW VERB 
> WALK 
DOGS RUN 
CATS BITE 
TEACH ME A NEW NOUN 
> BANANAS 
DOGS WALK 
BANANAS BITE 

There are many extensions 10 Ihis project, ind uding making more complex 
senienCe5 by adding ot her parIS of speech such as adjeclives and adverbs, 
matchi ng singular verbs with singular nouns and plu ral wilh plural, and 
generat ing random "poeITY." Paper! [151 describes the experience of one 
13-yeaT-old while engaged in such a project: 

One day Jenny came in very excited. She had made a discovery. "Now I know 
why we have nouns and verbs," she said. For many years in school Jenny had 
been drilled in grammatical categories. She had never underslOod the differences 
between nouns and verbs and adverbs. But now it was apparent that her 
difficulty with grammar was not due to an inability to work with logical 
categories. It was something else. She had not been able to make any sense of 
what grammar was about in the sense of what it might be/or . .. But now, 
as she tried 10 get the computer to generate poetry. something remarkable 
happened. She found herself clasSifying words into categories, not because she 
had been told she had to but because she needed to. In order 10 "teach" her 
computer to make strings of words that would look like English, she had to 
"teach" it to choose words of an appropriate class. What she learned about 
grammar from this experience with a machine was anything but mC(hanical 
or routine. Her learning was deep and meaningful. Jenny did more than learn 
definitions for particular grammatical classes. She understood the general idea 
that words (like things) can be placed in different groups or sets, and that doing 
so could work for her. She not only "understood" grammar, she changed her 
relationship to it. 

-
'J 

'-' 

'-' 
\..../ 

'--' 

'-' 

'-' 

"-' 

'-' 

v 

'-' 

\J 

'-' 

\J 

'-' 

v 

'-' 

'-' '-' 

V 

V 

"-' 

V 

'-' 

'-' 

"-' 

'-' 

-..I 

'-' 

~ 

v 

v 

'-' v 

--' 

~ 

\J 



~ 

~ 

/ 

~ 

-
-
~ 

-
-
~ 

~ 

-
-
~ 

-
-
-
~ 

./ 

./ 

~ 

-' 

-
-

More logo Projects 1101 

7.3. Ni m: A Game-Playing Program This section is a slightly modified version of a paper written by Seymour 

7.3. 1. The Sub-Goal Plan 

Papen and Cynthia Solomon, which was originally published as an MIT 
Arti ficial Intelligence Laboratory Memo 1141. [t illustrates some ideas about 
how 10 init iale begi nning students int o the art of plann ing and writing a 
program complex enough \0 be considered a proj ect rather than an exercise 

on using the language or simple programming ideas. 
The project is 10 write a program to playa simple game ("one-pile Nim" 

or "21 ") as invincibly as possible. The project was developed by Papert and 
Solomon for a class of seventh-grade students taught during 1968-69 at the 
Muzzey Junior High School in Lexington , Mass. This was the longest 
programming project these students had encountered, and the intention was 
to give them a model of how 10 go about working under these conditions. To 
achieve this, the teachers worked very hard to develop a clear organization of 
sub-goals, which they explained to the class at the beginning of the 
three-week period devoted to this particular program. You would not expect 
beginners to fi nd as clear a sub-goal st ruct ure as this one; but once they have 
seen a good example, they are more likely to find clear sub-goals in the 
future for other problems. Thus the primary teaching purpose was to develop 
the idea of splitting a lask into sub-goals. The intent was 10 provide the 
students with good models of various ways in which this can be done and 
to have them experience the heuristic power of Ihis kind of planning (as 
opposed to jumping straight into writ ing programs). 

A sub-goal st ructure can be imposed on a problem in several ways. One 
way is by "chopping," that is, by recognizing that the final program has 
dist inct functions that can be performed by separate subprocedures. But this 
is not the only way. Many heuristic programs can be simpli fied rather than 
chopped. We illustrate this by first writing a procedure to play the entire 
game of Ni m, but in a "dumb way." Once we have done so, we can study its 
performance, decide why it plays bad ly and strengthen its play. Th us the 
successive part ial solutions to the problem appear as making a procedure 
progressively"smarter." 

Describing the evolution of the program in this way has the additional 
benefit of allowing one to make an analogy valuable in two senses: by using 
themselves as models, st udents acquire a fertil e source of ideas about 
programming; on the other hand, the ex perience of debugging programs 
can have a therapeut ic effect in leadi ng them 10 see their own mistakes as 
emotionally neutral bugs rather than as emotionall y charged errors. 

The key idea for subdivision of the problem is to write a series of 
programs, each of which is "smart er" than the previous one. The fi rst 
program knows nothing about the strategy o f play. It does not generate 
moves , but asks each of two human players in turn what move to make. For 
example, it may act as a scorekeeper, just keeping track of the number of 
sticks without bothering about whet her the move is legal. From scorekeeper 
the machine can advance 10 referee. This means that it checks the move for 
legality and event ually declares the game over and announces the winner. 
After we have a working mechanical referee, we start making a mechanical 
player. The first version of a player chooses legal. but not necessarily good 
moves. Indeed, it generates a move randomly. uses its ability as a referee to 
decide if il is legal, and then either accepts it or generates another random 
move. 

When this works, the child may make the program smarter and smarter by 
adding features or by writing a completely new version until finally-if all 
goes well-a player with an in fallible strategy is evolved. 



102 1T IlOGO 

A natural form for programs of intermediate smanness is the following: 
the program has a list of simple situations in which i\ knows how \0 play; in 
other sit uations it plays randomly. In other words, it plays by the form of 
strategy used by most children in most st rategic games . 

In working with a class, a good moment should be seized to prod (he 
slUdents into noting and discussing the analogy between this very si mple 
heuristic program and themselves-particularly, how the program gets to be 

smarter through more or better knowledge. Seeing the program as a cogniti ve 
model is a valuable and exciting experience for the students. They can easily 
be drawn imo discussion about how meaningful such models arc. To keep the 
discussion alive, the teacher should be equipped with arguments and 
examples to counteract extremist, and so sterile, positions. For example, if 
the students feel that the program is too si mple to be a model of human 
thinking, the teacher might discuss whether a toy ai rpl ane is a useful model 
of a jet-airplane. Does it work by the same principles? Can you learn about 
airliners by st ud ying toy models? On the other hand, if a class swi ngs over to 
the position that there reall y is no difference. the teacher can ask questions 
about whether the program could learn by itself without a program mer. If 
th is is too enthusiastically accepted it is well for the teacher to ask: " How 
much do you learn without bei ng told?" Ideally, the teacher should merely 
guide the discussion without having to say any of this. Bul awareness of such 
argument will permit more sensitive guiding. An interesti ng exercise and base 
for discussion is to have the students slUdy various programs of intermediate 
smartness, classify their bad moves by degrees of stupidity, and give the 
program grades (or say why they think doing so is silly!). 

The strat ifi cation of the project has the good feature of allowi ng students 
to fi nd their own levels. A slower child who gets only as far as the random 
player, nevertheless has the taste of success if his program does what it does 
well. Tendencies to feel inferior should be counteracted by the teacher's 
atti tude and by the teacher's encouraging individual variations so that no 
child 's fi nal program is a mere subset of a more advanced one . The teacher's 
computer culture can be very relevant in th is delicate kind of situation. 
Although the richness of programming permit s st udents to generate man y 
fertile ideas, sensitive filtering by the teacher can enormously improve the 
achievement -to-frustration ratio. 

."irs t Steps with the Students 
A move in Nim consists of taking one, two, or three matchsticks from a 

given pile. Tho players move alternately. The player who takes the last stick 
wins. 

The first step is 10 see that everyone knows the rules and understands what 
the first program does, for exam ple, by imitat ing its function or by writing 
imaginary scripts. In the course of discussing this the teacher introduces some 
names so the class can talk about what the program is doing. 

Here is an example of a scri pt: 

THE NUMBER OF STICKS IS 8 
JOAN TO PLAY. WHAT'S YOUR MOVE? 
2 
THE NUMBER OF STICKS IS 6 
BILL TO PLAY. WHAT'S YOUR MOVE? 
3 
THE NUMBER OF STICKS IS 3 
JOAN TO PLAY. WHAT'S YOUR MOVE? 
3 
JOAN IS THE WINNER! 

'-' 

'--/ 

-
'-' 

'-' 

~ 

~ 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

../ 

'-' 

'-

'-' 

, 
v 

'-' 

v 

'-' 

'-' 

'-' 

'--

'-' 

'-' 

'-' 



7.3.2. A Simple Scort ketper 

More Logo Profeet,l t03 

Later in the project the teacher can insist that the students consider what 
happens when a player replies to WHAT'S YOUR MOVE? by 5 or COW. In the 
beginnning the teacher should discourage all but the most competent student s 
from worrying about "funny" answers before gell ing the program to work 
with normal answers. 

Examining the script you see thaI there must be names for: 

• The current number of sticks-say STICKS 

• The move-say MOVE 

• The next player-say PLAYER 

• And, a lillie more subtle, the other player-say OPPONENT 

To be sure that everyone understands, they are asked to fill in these " Logo 
things" for successive rounds, following the previous script. 

Round No . 
1 

2 
3 

:STlCKS 
8 
? 
3 

:PLAYER 
JOAN 

? 
? 

:OPPONENT 
BILL 

JOAN 
? 

:MOVE 
2 
3 
? 

If this is the first game-playing program, the teacher builds up 10 it by 
aski ng some sta ndard questions: 

• What shall we call the procedure? (Let's say NI MPLAY) 

• What must NIMPLAY do? 

• What must NIMPLAY know? 

Possible answers are 

• Announce the remai ning number of st icks. 

• Announce the player to move. 

• Get the move and make all the modifications. 

• Recursc. 

To do this, N1MPLAY must remember :STICKS, :PLAYERS , and 
:OPPONENT from the previous round and get :MOVE by asking fo r it. The 
first three things must be passed from one call to NIMPLAY 10 the next , so 
they should be inputs. On Ihe other hand , :MOVE comes from the human 
player, so it does not need to be an input. If you look ahead, you may notice 
that later on :MOVE will sometimes come from a procedure-that is, when 
the machine gets to be smart enough to make its own moves. So 10 keep the 
door open for changes , the problems of gelling :MOVE and using it are 
separated. The standard way to do this is to plan on a subprocedure-say, 
called GETMOVE. 

Now students can write NIMPLAY: 

TO NIMPLAY :STICKS :PLAYER :OPPONENT 
Whcn in doubt, have lOIs of inputs. 

PRINT SENTENCE ITHE NUMBER OF STICKS lSI :STlCKS 
Announce the number of sticks. 



104/TI lOGO 

PRINT SENTENCE :PLAYER [TO PLAY. WHAT'S YOUR MOVE?] 
MAKE " NEWSTICKS ,STICKS - GETMOVE 

Pretend GETMOVE has already been written. 
NIMPLAY :NEWSTICKS :OPPONENT :PLAYER 

Recursion line. Notice how :PLAYER 
and :OPPONENT are reversed. 

END 

TOGETMOVE 
MAKE " MOVE READNUMBER 

See READNUMBER procedure on page 97. 
OUTPUT :MOVE 
END 

From Scorekeeper to Referee 
As referee the program has some new tasks: 

• To decide whether the game is over 

• To declare the winner if it is over 

• To make sure that :PLAYER takes I , 2, or 3 slicks each lime 

The first two task s are achieved by adding a test and a stop line to 
NiMPLAY. For example, 

TEST :NEWSTICKS = 0 
1FT PRINT SENTENCE PLAYER [IS THE WINNER'[ 
1FT STOP 

The third task can be accomplished by giving GETMOVE a "try-again" 
form, using the MEMBER? predicate which takes an item and a list as inputs 
and checks whether the item is in the list. MEMBER? ca n be given 10 

students as a black box. The implementation of MEMBER? is explained on 
page 143. 

TOGETMOVE 
PRINT [YOU MAY TAKE 1,2, OR 3 STICKS[ 
MAKE" MOVE READNUMBER 
TEST MEMBER? :MOVE [1 231 
IFF OUTPUT GETMOVE If the TEST is FALSE, try again. 
OUTPUT :MOVE 
END 

With thcsc changes, NIMPLAY is ccrtainly a referee-but sti ll has some 
rough edges. For example, when :STICKS is 2, GETMOVE gives permission 
to take I , 2, or 3 stick s! And if :PLAYER takes 3 sticks, :STICKS becomes 
ncgative, and the game will go on forever, because of a "slip-by" bug. 
However, we shall leave it as an exercise to remedy these minor failings. 

In presenting this section to students, thc teacher may want to work 
through one of the two major modifications with the class and let the 
students struggle with the other. Thc slip-by bug we would leave to the class 
to discover and cure. Those who miss it at this stage will find its presence 
more obtrusive later. If so, a profitable discussion may develop on the 
question of why the bug was not found-perhaps because thc human playcr 
always makes reasonable moves so that :$TICK$ never becomes negative 

~ 

'-' 

'-' 

'-' 
'-J 

'-' 

'-' 

v 

'-' 

'-' 

'-' 

'-' 

'--' v 

~ 

v 

'-' 

'-' 

~ 

'-' 

'-' 

v 

~ 

v 

-



7.3.3. A M«hanical Player 

Strategic Play 

MOle logo Project, / 105 

even though the machine allows il. Later we shall see that when the machine 
makes its own moves, it is not to be so cooperative un less it is told to be. 

Examples of individual frills to a referee program arc: timing moves, 
declaring the winner a move or two ahead ( !), allowi ng a player to ta ke a 
move back, printing a score sheet, givi ng advice (!), establishing and 
imposi ng handicaps (!) , and changi ng the rules. 

How can the machi ne choose a move? The si mplest way is by using 
PICKRANDOM .4 For example, you could a llow GETMOVE to make the 
choice: s if a person is to play, use READNUMBER; if the machine is to play, 
use PICKRANDOM . But it has to be told whether the player is human or the 
computer. $0 it must have an input. 

TO GETMOVE :PLAYER 
TEST :PLAYER = [COMPUTER] 
1FT MAKE NMOVE PICKRANDOM [1 23) 
IFF PRINT [YOU MAY TAKE 1, 2, OR 3 STICKS] 
IFF MAKE " MOVE READNUMBER 

as before 

At this stage the sl ip-by bug may become serious. O ne way to ki ll it is to te ll 
GETMOVE about :5TICKS and have it try again if :MOVE comes up greater 
than :STICKS. To do this you change the ti tle line to: 

TO GETMOVE :PLAYER :STICKS 

and add a pair of lines after the two MAKEs. 

TEST :MOVE > :STICKS 
1FT OUTPUT GETMOVE :PLAYER :STICKS 

The plan for writi ng the Nim-playing program in many strata now calls for 
it to recognize a few special numbers and know what to do in those cases, but 
continue 10 play st upidly in other cases . However, by this time it is likely that 
the class has already discovered the fu JI strategy. It may still be worthwhile to 
encourage at least some member to follow the origi nal plan as an instructive 
joke. In this section we illustrate a general question-a nswer tech nique for 
classroom discussion to encourage habits of heuristic neatness in the 
students' own thinking. 

A good exercise is to observe NIMPLAY in its present condition and 10 

collect and classify its mistakes. An example of a classification made by a 
student is: 

• DUMB MISTA KES 

* There were 5 Slicks and the machine took 2. (If the machi ne had any 

~he PICKRANDQM pr~ure (page 142) ~an t... \!Ifiuen by Ihe teacher and gi"en 10 51udents a. a 

"primili'·e." 

SNOIi« Ihil anlhropomorphi,m. Wt find il u .. fullo lalk of pr~~rt:5 a5 agents. of Iheir "5Ia" of 

knowlt'llge." of "Ielling Ihem," of having them "Ialk 10" one ""OIher. And we pr~nl Ihis 10 $lUdems a, a 
deliberate melaphor that they may find u .. ful . 



106ITl LOGO 

sense, it would leave the opponent with 4.) 

• There were 6 or 7 sticks and the machine did nOt leave 4. 

• SU PER DUMB MISTAKES 

• There were 2 or 3 sticks and the machine did not take all! 

We shall write a procedure to avoid first "super dumb mistakes" and then 
"d umb mista kes". 

• Question: What program form? Answer: TEST. 

• Question: What do we test fo r? English answer: Whether there are I, 2, or 
3 sticks. Logo answer: TEST MEMBER? :STICKS [1 23). 

• Question: What is the action if the test is passed? English answer: Take a ll 
the sticks. Logo answer: OUTPUT :STICKS. 

• Quest ion: What if it is not passed? English answer: Move just like before. 
Logo answer: MAKE " MOVE PICKRANDOM [1 23). 

Now put this toget her to make a procedure to make the move: 

• Quest ion: What must the proced ure know? Answer: :STICKS-so it needs 
an input. 

TO MAKEMOVE ,STICKS 
TEST MEMBER? ,STICKS [1 23( 
1FT OUTPUT :STICKS 
IFF OUTPUT PICKRANDOM (1 23( 
END 

The procedure is used in place of PICKRANDOM in GETMOVE. So don't 
forget to change GETMOVE! 

Now extra lines can be added. For example: 

TEST ,STICKS ~ 5 
1FT OUTPUT 1 

The Smart Player 
By this time everyone should be very close to understanding the strategy, 

for example, in the following form : 

• Question: How does the game end? Answer: When a player leaves 0 stic ks. 

So let's try maki ng the main actor be the number of sticks we leave. If we can 
leave 0 that's great. But if we have more than 3 we can't. So we mUSt think 
ahead. 

• Question: What can we leave to help us leave 0 next time? Answer: 4. 
Because the opponent will leave I, 2, or 3. 

• Question: What can we leave so as to be able to leave 4 next time? 
Answer: 8. 

• Question: So 0, 4, 8 are good numbers 10 shoot at for leaving. What 
others? Answer: 12, 16, . 

• Question: How could you describe the numbers 0, 4, 8, 12, 16, ... 
Answer: They are all divisible by 4. REMAINDER :NUMBER 4 is O. 

-
'-" 

'-' 

'-' 
'-' 

'-" 

'-' 

v 

'-' 

'-' 

'-" 

'-' 

'-" 

'-' 

'-' 

~ 

'-' 

'-" 

'-' ~ 

v 

'-' 

~ 

'--' 

'-' 

v 

'-' 

'-' 

~ 

'-' 

'-./ 

'-' 

V 

'-../ 
'-' 

'--' 

-
'-' 



~ 

~ 

/ 

'--' 
~ 

~ 

-
-
-
~ 

7.3.4. Frills and Modifications 
~ 

-
~ 

~ 

~ 

- '--' 

~ 

-
~ 

~ 

./ 

~ 

./ 

More Logo Projects 1107 

• $64 Queslion: I f I give you :NUMBER, how can yOll use it to f ind the 

next number down divisible by 47 Answer: Subtract 
REMAINDER :NUMBER 4. 

So there we are! The smart invinci ble Nim player is made by replaci ng 
MAKEMOVE by SMARTMOVE:6 

TO SMARTMOVE :STICKS 
MAKE " REM REMAINDER :STICKS 4 
IF :REM "" 0 OUTPUT 1 
OUTPUT :REM 
END 

It reall y doesn' t matter in this case . 

Write superprocedures or make additions 10 the present procedure to 

produce transcripts such as the one following. 

NIM 
DO YOU KNOW HOW TO PLAY NIM? 
NO 
HERE ARE THE RULES: YOU WILL BE SHOWN A COLLECTION OF X'S. 
YOU MAY REMOVE 1, 2, OR 3. THE PLAYER WHO TAKES THE LAST X 
WINS. THIS IS PROBABLY TOO VAGUE FOR YOU TO UNDERSTAND, BUT 
TRY PLAYING AND I'LL CORRECT YOUR MISTAKES. 
ARE YOU READY? 
lAM 
PLEASE SAY "YES" OR "NO" 
YES 
OK. NOW TELL ME THE NAME OF THE FIRST PLAYER. 
JOAN 
NOW THE NAME OF THE OTHER PLAYER. 
COMPUTER 
HOW MANY STICKS DO YOU WANT TO START WITH? 
THIRTY-ONE 
I'M A DUMB COMPUTER. TYPE A PROPER NUMERAL. 

3' 
JOAN TO PLAY. 
THERE ARE 31 STICKS . 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
JOAN, TAKE " 2, OR 3. 
3 
COMPUTER TO PLAY. 
THERE ARE 28 STICKS. 
XXXXXXXXXXXXXXXXXXXXXXXXXXXX 
I TAKE 1 
JOAN TO PLAY. 
THERE ARE 27 STICKS. 
XXXXXXXXXXXXXXXXXXXXXXXXXXX 
TAKE " 2, OR 3. 
3 

6U .. ,be REMAINDER proceduro f,om page 80. 



l08/TI lOGO 

1.3.5. A Listing or the NIMPLAY 
Procedures 

7.4. Growing Flowers 

In addition to such fri lls, there are unlimited possibilities to play with the 

ideas in the procedure after it has been made to work. Here are three 
exam ples 10 illustrate the idea that the project has not necessarily run out 
when the procedu re is debugged: 

• An interesting si mple modification to the rule of the game is to change the 
1-2-3 rule to a 1-2 rule or a 1-2-3-4-5 rule. Write a procedure that asks what 
rule is to be used and then plays by thai rule. 

• Our stop rule was: the player who takes the Jast stick wins. Change this to: 
whoever takes the last stick loses. (The latter is the tradi tional form.) 

• The game can be embedded in a more complex one, stlch as moving 
counters along marked paths on a board. If there is just one linear path, 
the problem is identical, but if branches are allowed, interesting 
complexities arise. 

Here is a lis ting of the final fo rm of the NIMPLAY procedures. Besides the 
three procedures listed below, the project also makes use of the REMAINDER 

procedure on page 80, the READNUMBER procedure on page 98, and the 
MEMBER? procedure on page 143. 

TO NIMPLAY :STICKS :PLAYER :OPPONENT 
PRINT SENTENCE [THE NUMBER OF STICKS IS) :STICKS 
PRINT SENTENCE :PLAYER [TO PLAY. WHAT'S YOUR MOVE?) 
MAKE " NEWSTICKS :STlCKS - (GETMOVE :PLAYER :STICKS) 
TEST :NEWSTICKS • 0 

1FT PRINT SENTENCE :PLAYER [IS THE WINNER!) 
1FT STOP 
NIMPLAY :NEWSTICKS :OPPONENT :PLAYER 
END 

TO GETMOVE :PLAYER :STlCKS 
TEST :PLAYER • )COMPUTER) 
1FT MAKE" MOVE SMARTMOVE 
IFF PRINT )YOU MAY TAKE' , 2, OR 3 STICKS) 
IFF MAKE " MOVE READNUMBER 
TEST MEMBER? :MOVE (1 23) 
IFF OUTPUT GETMOVE :PLAYER :STICKS 
TEST :MOVE > :STICKS 
1FT OUTPUT GETMOVE :PLAYER :STICKS 
OUTPUT :MOVE 
END 

TO SMARTMOVE 
MAKE " REM REMAINDER :STICKS 4 
IF :REM '" 0 OUTPUT 1 
OUTPUT :REM 
END 

In this sect ion we' ll design a movie, shown in Color Plate [I. The scene 
starts at night, with some bulbs planted in a Jawn. The sun rises and the sky 
grows light. Then the flowers begin to grow. As the flowers grow, they sprout 
leaves and buds. Finally they burst into color and bloom. 

This movie is more complex than the one in Section 4.4, because it requires 
tighter coordi nat ion between sprites and tiles. The grass is made up of tiles, 

~ 

'-' 

'-' 

'-' 
'-" 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

~ 

'-" 

'-' '-' 

V 

'-' 

'-' 

'J 

oJ 

'-' 

v 

'-' 

-

-



-

-

7.4.1. Coordinates for Sprites and Tiles 

,., 

101 

-127.0 

1f;'c;,========"",,\31 , 0 C,C 

o.n 

0,96 

I '\ 
C,C 

127,0 

\. ...J 
0, - 9' 

Figure 7,1: Comparison of tile coordinates (a) 
with spri te coordinates (b). 

More logo Projects /109 

and the sun is a sprite. The flowers are made up o f both tiles and sprites, 
which will require some subtlety in the implementation. 

The problem with making shapes by combining ti les and sprit es is that the 
x, y coordinates used to position sprites on the screen arc nOI the same as the 
row and col umn numbers used to position tiles. Rowand column numbers 
are interpreted as character positions, shown in Figure 7 .Ia. Colu mns are 
numbered from left to right, 0 through 31, and rows arc numbered from top 
to bOllom, 0 through 23. On the other hand, sprite and turtle coordinates are 
specified in terms of an x coordinate between - 127 and 127, and a y 

coordinate between - 96 and 96, as shown in Figure 7.Jb. 
It will be useful, therefore, to have some procedures that convert from one 

coordinate system to the other. Here is a procedure that returns the x 
coordinate corresponding to a given column: 

TOCOlX :COl 
OUTPUT (8. :COL) - 128 
END 

Similarly. we can convert a row number to a y coordinate: 

TO ROWY :ROW 
OUTPUT (- 8 . :ROW) - 96 
END 

Using these two procedures, we can write a procedure PUTSPRITE, si milar 
to PUTTILE, which posit ions a sprite at a given col umn and row: 

TO PUTSPRITE :SPRITE :COLUMN :ROW 
TELL :SPR ITE 
SXY (COlX :COlUMN) (ROWY :ROW) 
END 

Converting coordinates the other way, it is also useful to be able to find the 
row and colum n position of a sprite. The following procedures retu rn the 
column number corresponding to the XCOR of the current object and the 
row number corresponding 10 YCOR: 

TOXCOl UMN 
OUTPUT (XCOR + 128) I 8 
END 

TOYROW 
OUTPUT ( - YCOR + 96) I 8 
END 



110 l T I LOGO 

7.4.2. Defining the Shapes 

Figure 7. 2: Shape for GRASS tile 

LEFTSTEM 

AIGHTSTEM 

LEFTSTEMl 

AIGHTSTEM1 

1.1 

To make the movie, you will need some shapes, both fo r \iles and sprites . 
The grass will be a regular paltern , consisting o f a background with a small 

"blade" in it, as shown in Figure 7.2 . We' ll use \ile number 8 for th is pattern 

MAKE " GRASS 8 

and give it a foreg round color OLIVE and a background color GREEN , 
wh ich wi ll color Ihe blade slight ly darker than the rest. 

We' ll a lso usc Ihe li[es fo r Ihe Siems and leaves of Ihe flowers. There a re 
rou r different ti les: ordi nary lefl and right halves of a slem , and left and 
right halves with leaves on them: 

MAKE " LEFTSTEM 100 
MAKE " RIGHTSTEM 101 
MAKE ~ LEFTSTEMl 98 
MAKE ~ RIGHTSTEM1 99 

These will a ll be colored OLIVE wit h a CLEAR backgrou nd color, so we can 
put Ihem all in the same color group. (See page 61 .) Figure 7.3 shows the 
shapes for these liles: 

As the flo wers grow, they evolve through Ihree different shapes-b ulbs, 
buds. and blooms: 

MAKE " BULB 6 
MAKE " BUD 7 
MAKE " BLOOM 8 

••••• ••• •• •• • • • ••• ••••• 
Ibl 

~ 

'-' 

'-' 

'-' 
~ 

'-' 

'-' 

'-' 

v 

'-' 

'-' 

'-' 

~ 

'-' 

~ 

'-' 

'-./ 

~ 

'-

'-' 

~ 

'-

'-" 

'-" 

-
V 

'-.J 
~ 

'-" 

'-

-



~ 

-
.J 

J 

-
J 

~ 

J 

J 

-
-

/ 

/ 

'-' 

Figure 1.3: Tile shapes flower stems. 

BULB 
BUD 

BLOOM 

Figure 7.4: Sprite shapes for the flowers. 

1,1 

1.' 

•••• •• •• • • I 
• ••• ••••• 

Idl 

MOfI Logo Projects I nl 

Usc MAKESHAPE to define these three shapes as shown in Figure 7.4 . 
Finally, you need a shape for the su n. The simplest thing 10 do here is \0 

use the BALL shape built into Logo. 

Ibl 



112 1TI LOGO 

1.4.3. The Grass 

1.4.4. Planting the Bulbs 

1.4.5. Sunrise 

To make the grass, you need to lay down a solid block of ti les, starting 
from some rowan Ihe screen and working downwards. This is exactly the 
way that the WATER was handled in the movie in Section 4.4 , and you can 
use the same MAKE ROWS procedu re that we used there . For MAKE ROWS, 
you must speci fy the ti le number and the top of the block. Row 14 is a good 
posit ion at which to sta rt: 

MAKE "GRASSTOPROW 14 

TO MAKEGRASS 
TEL L TILE :GRASS 
SETCOLOR SENTENCE :OLlVE :GREEN 
MAKEROWS ,GRASS ,GRASSTOPROW 
END 

Plant ing a bulb is si mply a matter of posit ioning a sprite that is carrying 
the BU LB shape. The following procedure posit ions a given sprite at a given 
column and row. Not ice how the PUTSPRITE proced ure (page 109) comes in 
handy. 

TO PLANTBULB :SPRITE :COLUMN :ROW 
PUTSPRITE :SPRtTE :COLUMN :ROW 
TELL SPRITE :SPRITE 
SETeOlOR ,GREEN 
CARRY :BULB 
END 

Now you can plant all the bulbs. Use sprites 0 through 5 to make six 
flo wers. Choose column numbers to spread the flowers out on the screen, 
and position the bulbs two rows above the tOp grass row. ' 

TO P LANTBULBS 
MAKE "BULBROW :GRASSTOPROW - 2 
PLANTBU LB 0 5 :BULBROW 
PLANTBU LB 1 8 :BULBROW 
PLANTBU LB 2 12 :BULBROW 
PLANTBU LB 3 20 :BULBROW 
PLANTBULB 4 16 :BU LBROW 
PLANTBULB 5 24 :BU LBROW 
END 

To make the sunrise, you need onl y have a sprite move upwards carrying 
the BALL shape, while the sky changes color: from BLACK 10 BLUE 10 SKY 
10 CYAN. You can use sprite number 10 for the sun , starti ng it near the tOp 
row of grass towards the right of the screen. 

7This is bc<au~ a sprile;, 2 "h.rm ... pOsh ions high .• nd 1M inpulS ,uppli~ 10 f>UTSf'RITE 'llCCify lhe 

po;ilion of 'he IOp·ler, .;orne< of 'he shape. 

~ 

'-./ 

~ 

~ 

'-../ 

'-' 

'-' 

'-' 

'-' 

'-' 

'-

'-' 

'-' 

'-' 

~ 

'-' 

'-' 

-./ 

'---' -' 

'--' 

-./ 

'-' 

'J 

-./ 

'-

'-' 

~ 

~ 

'-../ 

'-' 

~ 

'-' 

'-.J 
.J 

'-' 

~ 

'--' 



- ' 

1.4.6. Growing the Flowers 

~ 

oJ 

~ 

oJ 

~ 

~ 

./ 

~ 

~ 

~ 

MAKE "SUN 10 

TO SUNRISE 
COLORBACKGROUND:BLUE 
TELL SPRITE :SUN 
SXY 75 20 
CARRY:BALL 
SETCOLOR ,YELLOW 
REPEAT 30 (FORWARD 1 WAIT 10( 
COLORBACKGRQUND:SKY 
REPEAT 30 (FORWARD 1 WAIT 10( 
COLORBACKGROUND:CVAN 
END 

More Logo Prole!:l! / 113 

Now you must grow the bulbs into flowers. The first step is 10 set the color 
of the tiles for the stem: 

TO MAKESTEM 
TELL TILE :LEFTSTEM 
SETCOLOR (SENTENCE :QUVE :CLEAR) 
END 

The color of the stems is OLIVE, slightly darker than the GREEN of the 
grass and the bulbs. Note that since all the stem pieces are in the same color 
group, you need only set the color of one of the pieces. (See Section 4.3.2.) 

To make the flower grow, you want to make it appear that a stem is 
growing, pushing up the fl ower shape carried by a sprite . In o rder to 
accomplish this, you can use a trick: lay down a Se<:t ion of the stem in the 
same position as the sprite shape . Since sprites cover tiles, you will not see 
the stem at this point. Now move the sprite slowly upwards 8 units (the 
height o f a tile). As the sprite moves, more and more of the stem will be 
uncovered. Every time the STEM procedure is repeated, the tiles will be 
placed in a higher position and the fl ower will grow by an amount equal to 
one tile unit. Here is the procedure that accomplishes this: 

TO STEM 
PUTIILE :LEFTSTEM XCOLUMN YAOW + 1 
PUTIILE :AIGHTSTEM XCOLUMN + 1 YROW + 1 
REPEAT B(FORWARD 1 ( 

END 

The procedures for finding the row and column of a sprite (Section 7.4.1) 
come in handy here in positio ning the tiles. The extra unit added 10 the row 
coordinate is because sprites are 2 tile spaces high, and you should place the 
ti le under the lower half of the sprite. The right half of the stem also needs 
an extra unit added to its col umn coordi nate. 

To make the flower sprout leaves, you simply need to replace an ordinary 
stem shape by o ne of the stem shapes with leaves on it. Pick a height on the 
stem a little below the top. Here are procedures that sprout a leaf to the left: 

TO LEFTLEAF 

PUTIlLE ,LEFTSTEMl XCOLUMN YROW+2 

END 



114 1 T I LOGO 

and a leaf to the right : 

TO RIGHTLEAF 
PUTTllE :RIGHTSTEM1 XCOlUMN + 1 YROW + 3 
END 

The + 2 and + 3 added to the row determine how far below the current sprite 
position the leaf will sprout . 

Now you can grow a complete flower. Start with a sprite shaped like a 
BULB, grow some stem, change the sprite shape to a BUD, sprout a leaf, 
grow more stem, sprout another leaf, change the bud 's color, and change (he 
shape to a BLOOM. The procedure that does this takes as inputs the sprite 
number, (he number of stem segments to grow, and the flower's color: 

TO GROW :S :LENGTH :COLOR 
TEll SPRITE :$ 
REPEAT :LENGTH [STEM[ 
CARRY :BUD 
lEFTlEAF 
REPEAT :LENGTH [STEM[ 
RIGHTlEAF 
WAIT 30 
SETCOLOR :COLOR 
WAIT 30 
CARRY :BLOOM 
END 

By calling this procedure repeatedly, you can grow all the flowers: 

TO GROWFlOWERS 
MAKESTEM 
GROW 0 3 :WHITE 
GROW 4 4 :YEllOW 
GROW 5 3 :RUST 
GROW 14 :RED 
GROW 3 2 :ORANGE 
GROW 2 3 :PURPlE 
END 

The action of GROWFlOWER$ is illustrated in Figure 7.S. 

~ 

'-' 

'-' 

~ 

'-' 
'-' 

'-' 

'--' 

'-' 

'-' 

~ 

'-' 

'-' 

~ 

~ 

~ 

~ 

'-" 

..J V 

'--' 

-



~ 

~ 

/ 

~ 

~ 

... " ... 
~ 

~ 

~ 

~ 

~ 

~ 

~-~ 

~ 

./ 

,., 

'0' 
Figure 7.5: Illustrations of the 

GROWFlOWERS procedure. 
The " X" marks in each figure 
show Ihe coordinate locaUons 01 
each sprite as the movie 
develops. 

7.4.7. Combining Alllhc Pieces 

7.4.8. Elaborat ions 

MOle Logo Projects 1115 

1" 

'" 

Now it onl y remains to put everything together. Begin by clearing the 

screen and selli ng up a BLACK background. 

TO FLOWERMOVIE 
ClEARSCREENANDSPRITE$ 
COLORBACKGROUND:BLACK 
MAKEGAASS 
PLANTBULB$ 
SUNRISE 
WAIT 30 
GROWFLQWERS 

The CLEARSCREENANDSPAITES procedure, which clears Ihe screen 

and makes Ihe sprites invisible, is given on page 68. 

With this as a beginning, you can extend the movie in all sorts of ways. 

Make a belleT sunrise, in which the sky changes through all sons of beautiful 
colors al dawn. Add a nightfall, in which Ihe sun sets, the sky darkens, and 
Ihe flowers close . Add some clouds Ihal drift by overhead or a bee that flits 
from flower to flower. Movies like th is are good projects because you can 
add parts lillIe by little until you end up with somelhi ng quite elaborate . 



'-J '-' 

>J 

'J 

'-' 

'J 

V 

'-

'--' 



8.1. Controlli ng Screen Oulput 

-
-
- ~ 

-------

Writing InteractivlI Programs 1117 

CHAPTER 8 

Writing Interactive Programs 

We've already seen examples of Logo programs that use PRINT to print 
information on the display screen and programs that use READLINE to input 
in formation from the keyboard. This chapter reviews these commands and 
describes more elaborate ways of handling input and aUipul. As an example. 
we show how to create "instant response" Logo systems for very young 
children. We also show how a Logo-based "dynaturtle" can be used to 
introduce elementary school children to computer projects involving motion 
and simple physics. 

The Logo PRINT command, as used throughout the preceding chapters, is 
the main command for showing information on the display screen. PRINT 
takes a word or a list as an input , types it on the screen, and moves the 
cursor to the next line. Remember that lists are printed without the OUler 
brackets. 

The command TYPE is just like PRINT, except that it does not move the 
cursor to a new line after priming. Compare 

TOCOUNT:X 
PRINT :X 
COUNT:X + 1 
END 

COUNT 1 
1 
2 
3 

TO COUNT1 :X 
TYPE :X 
TYPE ", 
COUNT1 :X + 1 
END 

COUNT1 1 
1,2,3, ... 

The PRtNTCHAR (abbreviated PC) takes a number 0 through 255 as input 
and prints the character corresponding to that number. Recall (from Section 
4.3.3) that these 255 characters include Logo's printing characters plus any 
tiles you have defined. Here's a way to use PRINTCHAR to see all of the 
characters that arc currently defined: 

TO SHOWCHARS :N 

IF :N > 255 STOP 
PR INTCHAR :N 
SHOWCHARS :N + 1 
END 



118 1 T I LOGO 

8.2. Keyboa rd In pu t 

8.2.1. E~ample: Inslanl Response fo r 
Ver)' Voung Children 

SHOWCHAASO 

The AEADLINE com mand is used to read input from the keyboard, as 
shown in Section 6.4. READLINE causes the computer to wait fo r you to 
type in a line (terminated by ENTER) and then out puts that line as a list. 
Remember that what you type in will always be inrerpreted as a list. For 
example, if you type in a single word, REAOLINE returns a list containing 
that word : 

MAKE It ANS READLINE 
> 100 
IF :ANS = 100 PRINT "YES ELSE PR[NT " NO 
NO 
IF ,ANS = [100[ PAINT "YES ELSE PAINT " NO 
YES 

Using READLlNE, you can implement a useful procedure that returns a word 
typed at the keyboard, obtained as the first element of the list returned by 
READLlNE: 

TO AEADWOAD 
OUTPUT FIRST READLINE 
END 

Compare the use of READLINE in the READNUMBER procedure on 
page 98. 

[n addition to the "l ine at a time" input from READLlNE, Logo also 
provides "character at a ti me" input through the command READCHAR 
(abbreviated AG) , READCHAR causes the computer to pause and wait for 
you to type in a single character (without ENTER) and then out puts the 
character that was typed : 

MAKE " ANS READCHAR 
X 

IF :ANS = "X PRINT "YES ELSE PA[NT " NO 
YES 

The fo llowing program uses READCHAA to provide "instant response" 
control of the turtle for drawing: 

TO INSTANT 
COMMAND 
INSTANT 
END 

TO COMMAND 
MAKE "COM AEADCHAA 
IF :COM = " F FORWARD 10 
IF ,COM = " A AIGHT 30 
IF :COM = " L lEFT 30 
IF ,COM = "C CLEAASCAEEN 
END 

~ 

V 

V 

'-' 
'-./ 

'-" 

'-" 

~ 

V 

~ 

'--

v 

'-' 

'-' 

'--' 

'-' 

~ 

~ 

-.J '-' 

'--' 

V 

'-" 

V 

.J 

'-' 

~ 

'-' 

v 

v 

~ 

'-' 

v 

'-' 
~ 

v 

~ 

'-



J 

J 

J 

J 

J 

J 

J 

-..J 

J 

J 

J 

J 

/ 

J 

J 

Writing Inte,.cllve Program. I lIS 

This program causes the turtle to move in response to individual 
keystrokes: F for go forward, L for left, A for right, and C for clearing the 
screen and starting over. Ie can form a good loot for using computer graphics 
with very young children. Th is same instant-response mechan ism is also 
useful in designing languages for use by the physically handicapped, for 
which it is important to minimize the number of keyst rokes requ ired. 

II is easy to increase the repertoire of this INSTANT language by adding 
additional lines to the COMMAND procedure. For example, if you wan! the 
S key to make the turtle draw a small squa re, you define a procedure called 
SQUARE (say. that draws a square of side 20) and add to COMMAND the 
line 

IF ,COM . "S SQUARE 

Section 11.2.1 discusses more elaborate extensions to INSTANT. 

8.2 .2. Key board Control of an Ongoing Notice that READLINE and READCHAR both make the computer slOp 

Process and wail for somet hing to be typed. Logo also allows you to write programs 
in which the keyboard is used to control an ongoing process. That is, if a 
character is typed at the keyboard, the program is able to respond to the 
character; but if nothing is typed, the program is able to keep running 
anyway. Such programs are implemented in Logo usi ng the RC? command . 
RC? outpulS TRUE or FALSE depending on whether a character has been 
typed al the keyboard. When RC? is TRUE, the next READCHAR command 
returns the character that was typed, otherwise READCHAR has to wait until 
a character is typed. I For example, you can modify the INSTANT program so 
that it makes the turtle move forward cOl1linuully, turning right or left in 
response to the letters A and L typed at the keyboard. We'll call the result ing 
program DRIVE: 

TO DRIVE 
FORWARD 1 
COMMAND 
DAIVE 
END 

TO COMMAND 
MAKE " COM READKEY 
IF :COM := " A RIGHT 30 
IF :COM = " L LEFT 30 
END 

The difference between this program and INSTANT is that the turtle goes 
forwa rd each time, rather than when an F is typed. Whereas the COMMAND 
program used by INSTANT calls AEADCHAA, the COMMAND program used 
in DAIVE calls READKEY. AEADKEY is a procedu re that. if a character has 
been typed, outputs that character, and otherwise outputs the empty list. 
READKEY is implemented using RC?: 

lMor •• pedfically. charmers l~ped al lh. kt)·bD,ard are ..... N in I inpu1 buffer. READCHAR reads ,haneler. 

from lhe buffer one by on •. RC? OUlPUIi TRUE if lhe bOlff ... is nDl emply. If LOIO i. doinlI IDl of 
processin8 in beI..-«n characters. and;f onelypes charaClers ~ry fall. a ~1I.nc. of characlers may build up 
in lhe bufrer. and lhe prOVlm may s«n. 10 "fall behind" ;n;15 rospOnses 10 lhe lYped charac1~rs. 



120111 LOGO 

8.2 .3. Instant Response with Sprites 

8.3. Example: The Dynaturtle 
Program 

TO READKEY 
IF RC? OUTPUT READCHAR 

OUTPUT I J 
END 

READKEY is a good example of a useful " primitive" that can be supplied by 
the teacher to students working on interactive programming projects. 

You can make all sorts of computer programs for very young children by 
installing an INSTANT·style controller for the sprites. The possibilities here 
are virtually unlimited. One simple example is to begin with a cluster of balls 
that "explodes" from the center of the screen. To do this, put all the sprites 

at home, with their headings set at IO-degree intervals, and start them 
moving: 

TO BEG IN 
TELL :ALL 
SETSPEED 0 
HOME 
CARRY:BALL 
SETCOLOR :RED 

EACH [SETHEADING 10. YOU RNUMBE Rl 
SETSPEED 10 
END 

Now put the balls under keyboard control, using commands that make 
them move slowly or quickly, reverse direction, change color, or change 
shape. The following COMMAND select ion is only a sample: 

TO ACTION 
BEGIN 
LOOP 
END 

TO LOOP 

COMMAND 
LOOP 
END 

TO COMMAND 
MAKE "COM READCHAR 
IF :COM • "S SETSPEED 5 
IF :COM = "0 SETSPEED 100 
IF :COM • " A SETSPEED -SPEED 
IF :COM = "M EACH [SETCOLOR RANDOM] 

IF :COM = "4 CARRY 4 
IF :COM = "5 CARRY 5 
IF :COM = " B BEGIN 

END 

DYNATURTLE is an extension of the Logo turt le, developed by Andy 
deSessa as a computer-based physics environment for elementary school 
students. It has also been used as an experimental sett ing for investigat ing the 

role of intuition in learning physics. See A. diSessa [6J for details. Th is 

~ 

'0 

~ 

~ 

-..J 

'-' 

-.J 

'-' 

'-' 

-J 

'-

'-' 

'-' 

~ 

'-' 

~ 

~ 

~ 

~ '-' 

v 

~ 

~ 

'-' 

-.J 

'-' 

'-' 

'-' 

~ 

'-' 

'-' 

'-' 

'-' 

-..J 
-J 

'-' 

'-

'-



8.3.1. What is a Dynamic Turlle? 

~ 

~ 

~ '---' 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

Wrillng Int.,..cllve Program, I 121 

section, based on a paper by Dan Watt, is a description of OYNATURTLE 
thai can be used by Sl udcnlS and teachers. 

A dynamic turt le or dynaturtle behaves as though it were a rocket ship in 
outer space. To make it move you have to give it a kick by "fi ring a rocket." 
It then keeps moving in the same direction until you give it another kick. 
When you change its direction, it does not move in the new direction until 
you give it a new kick. Its new motion is a combination of the old mot ion 
and the mOl ion caused by the new kick. You may need to experiment with 
dynamic commands for a while before you understand how the dynaturtle 
works. 

To use the dynaturtle, you will need the procedures in this section. Here is 
the main proced ure: 

TODT 
MOVETURTLE 
COMMAND 
DT 
END 

The procedure DT moves the turtle (if you have given it a kick), checks to 
see if you've typed a command, and then starts doing OT all over again. It 
keeps running until you stop (he procedure by pressing BACK. 

In addition 10 (he SIN and COS procedures discussed in Section 8.3.4, and 
the READKEY procedure on page 11 9, here are three other procedures you 
will need.2 

TO MOVETURTLE 
SXY (XCOR + 'VX) (YCOR + ,VY) 
END 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = 
IF ,COM = 
IF :COM 
END 

TO KICK 

" R RIGHT 30 
" LLEFT 30 
"K KICK 

MAKE "VX :VX + SIN HEADING 
MAKE "VY :VY + COS HEADING 
END 

To start the dynaturtle, you need a procedure to initialize the dynaturtle's 
position and velocity: 

TO STARTUP 
TELL TURTLE 
CLEAR SCREEN 
MAKE "VXO 
MAKE " VY 0 
END 

2Th~ KICK proctdur( uses Ihe Irigonomelric funClions SIN and COS in order to change the tur!le~ velocity. 

which Ca n be IhoU8h( of as a ,'«{ar (I/X. I/Y). KICK '08clhcr wl,h the SIN and COS prooo:lu.es would 
normally bt usW by rI.m~!lry ~hool chIldren as a black box. 



1221TI LOGO 

8.3.2. Activities with a Dynaturlle 

8.3.3. Changing the Dynaturtle's 
Behavior 

To tryout the dynaturtle, type 

STARTUP 
DT 

At first the turtle will stay at the center of the screen. The COMMAND 
procedure allows three different commands at present. Later you can change 
them in any way you like. 

• If you type R the turlle will turn right 30 degrees. 

• If you type L the !urlle will turn left 30 degrees. 

• If you type K you will give the turtle a kick in the direction it is heading. 

The turtle will now keep moving in the direction it started until you give it 
another kick in some direction. 

Start the dynaturtle moving by typing 

STARTUP 
DT 

and then typing the K key for "kick." 

• Make the dynaturtle move in a different direction by typing the A or L key. 

• Make the dynaturtle move horizontally across the screen . 

• Make the dynaturlle go faster. 

• Make the dynaturtle go slower without changing direction. 

• Before you start the dynalUrtle, place a marker somewhere on the screen. 
(You can use a tile to form the marker.) Then start the dynaturtle and see if 
you can move the turtle to the marker. If the marker is easy for the 
dynaturtle to get to, move it over a linle and try again. 

• Start the dynaturtle from the center of the screen. Can you make it stop? 

• Draw a circular " racetrack" on the screen and see if you can "drive" the 
dynaturtle around a track. 

• Move the dynatunle to the marker, and make it stop there. 

When you Iry these activities you may find that some of them are harder 
than you thought. The problems you have making the dynaturtle do what 
you want it to do are si milar to the problems astronauts would have moving 
around in outer space or maneuvering a rocket to connect up with a space 
platform or land on the moon. 

After some experimentation with the dynaturtle. you may want to make 
changes in the dynaturtle procedures. Since changes in the dynaturtle's 
behavior are controlled by the COMMAND procedure, you can start by 
changing that procedure as follows: 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = " R RIGHT 30 
IF :COM " L LEFT 30 
IF :COM = "K KICK 
END 

~ 

'-' 

'-' 

'-' 
'--' 

'-' 

'-' 

'-' 

'-' 

~ 

>J 

'-' 

~ 

'-' 

'-' 

>J 

>J 

~ 

'-' 
'--' 

v 

'-' 

'-/ 

v 

'-' 

'-' 

'-' 

v 

v 

'-' 

>J 

'-" 

'-' >J 

'-' 

-
'-' 



~ 

Writing Interaclly. Program. J 123 

If you like, you can change the angle the dynacurtle rotales when you type 
A or l by changing the 30 in COMMAND to another number. 

'-
~ 

Your COMMAND procedure would now look like this: 

TO COMMAND 
~ 

MAKE "COM AEADKEY 
IF :COM so " R RIGHT 30 
IF :COM - " L LEFT 30 

~ IF :COM E " K KICK 
IF :COM - " U PENUP 

~ IF :COM - " D PENDOWN 
END 

~ 

~ 

Of course, you can change the key names for carrying out the commands 
by changing the [etlers on the keyboard . Some peopie like to have the right 

~ 
and left keys next to each other on the keyboard. If you choose S for " left" 
and 0 for "right," then the COMMAND procedure becomes: 

TO COMMAND 

~ MAKE "COM REAOKEY 
IF :COM _ " D RIGHT 30 

-' IF :COM - " S LEFT 30 
IF :COM _ "K KICK 

~ '- IF :COM _ " U PENUP 

IF :COM = " 0 PENDOWN 
~ 

END 

~ 

Another possible change is to make thejorce of the kick a variable. If you 

-' 
did this, you would have to change the KICK procedure and the STARTUP 
procedure as well as COMMAND. 

-' 
TO KICK :FORCE 

-' MAKE "VX :VX + :FORCE • ( SIN HEADING ) 
MAKE "VY:VY + :FORCE. ( COS HEADING) - END 

~ 

You would also have to add a line to STARTUP to set the starting value for 
the force: -

-' 
TO STARTUP 
TELL TURTLE 

- CLEARSCREEN 

MAKE "VX 0 

- MAKE "VY 0 
MAKE" FORCE 1 

-' END 

- You can choose any value you wan! for the starting force. 

'--' -



124/TI LOGO 

8.3.4. Sines and Cosines 

You would now have to change the KICK line in the COMMAND procedure 
to read 

IF :COM = "K KICK :FORCE 

Also, you could add two more commands (say. Hand S for "harder" and 
"softer") that increased and decreased the force. The COMMAND procedure 
would now be 

TO COMMAND 
MAKE " COM READ KEY 
IF:COM = " R RT30 
IF:COM = " L LT 30 
IF:COM = " K KICK :FORCE 
IF:COM = " U PEN UP 
IF:COM = " DPENDOWN 
IF:COM = " H MAKE " FORCE :FORCE + 1 
IF :COM ItS MAKE " FORCE :FORCE - 1 

END 

Now try out the dynaturtle with some of these changes, and see what can 

happen . 
Some other possible changes: 

• Add a "reverse kick" command that makes the dynaturtle move more 
slowly. 

• Add commands that make the turtle print its speed, heading, and kick 

force. 

The clynaturtle program makes use of procedures SIN and COS that 

output the sine and cosine of a given angle. Since numbers in TI Logo must 
be integers, sines and cosines cannot be computed in any straightforward 
way. 

The SIN and COS procedures used by the dynaturtle program take an 
angle as input and return integer approximations to 3 times the sine pf the 
angle and 3 times the cosine of the angle. The scale factor 3 was chosen to 

allow for enough different values for kicks: - 3, - 2, - 1,0, I, 2, 3, and at 
the same time be a good scale for working with the dynaturtle. 

The implementation of these procedures is based on a clever trick. 3 Choose 

a sprite. say, sprite 0, and move it invisibly on the screen. If the sprite is 
moving with speed S at heading H, then the x component of its velocity will 
be S times the sine of H, and the y component of its velocity will be S times 
the cosine of H. Since Logo includes built-in operations for retrieving the x 
and y components of a sprite 's velocity, you can use this "i nvisible sprite" 
technique to compute si nes and cosines: 

lTricks such as IhoK arc somC1'mn referred [0 al com puler "hacks" because lbey lab ad.anlage of Ipt('ial 
po-<>perl;CS of. par1icular impl~nl.[ ion and usua lly do ..... B~n ... alize in any meanin,ful .... y. Thi s hack i. 
due [0 ROler Kirchner of C.rl. ,oo CoU~ ••. 

~ 

'-' 

V 

'-' 
'-../ 

'-' 

'--' 

'-' 

~ 

'-' 

'-' 

'--' 

~ 

'-' 

'-' 

'-' 

'-' 

J 

~ '-' 

'--' 

'-' 

'--' 

'-' 

~ 

'--' 

'-' 

~ 

'-/ 

'-' 

V 

'-/ 

'--' 

'--' '--' 

'-' 

-
'--' 



'-
~ 

-
~ 

-
~ 

~ 

~ 

-
~ 

-

-' 

- '-

-
-
-' 

~ 

~ 

--
-
~ 

-
~ 

/ 

TOSIN oH 
MAKE " ACTIVE WHO 
TELL SPRITE 0 
SETS PEED 3 
SETHEADING oH 
MAKE N ANS XVEL 
TELL :ACTIVE 
OUTPUT:ANS 
END 

TaCOS :H 
MAKE N ACTIVE WHO 
TELL SPRITE 0 
SETSPEED 3 
SETHEADING oH 
MAKE" ANS YVEL 

TELL :ACTIVE 

OUTPUT oANS 
END 

Writing rnteracUVII PlOgrams 11 25 

The use of ACTIVE here is to allow the procedures to be used without 
fou ling up any TELLs that are used outside the procedure. We use WHO to 
find the current active graphics object and then restore this with TELL before 
leaving the SIN and COS procedures. This is really more generallhan you 
need for dynaturtle, because ACTIVE will always be the turtle. It is also not 
necessary to set sprite D's speed to 3 each time. The procedures are shown 
here in general form so that you can use them in ot her applications as well. 



v 

v 

V 

J 

v 

v 

\J v 



9.1. Playing Melodies 

LOOO Music / 127 

CHAPTER 9 

Logo Music 

In addition to working with numbers, words, and lists and creating animated 
graphics, you can use TI Logo II 10 generate music from notes over a range 
of three octaves. You can play one, two, or three voices simullaneously and 
also make sound effects with a noise generator and a drum. You can execute 
other Logo commands while music is playing, thus providing musical 
accompaniment for programs. You can also synchronize music playing 
with ot her Logo commands. 1 

The Logo music system has the following basic organization: you first sel 
up the entire piece to be played, usi ng commands that store information in 
an area of computer memory called the music buffer. Afterwards, you play 
the music that has been stored in the buffer. Thus, there are two kinds of 
commands in the music system: commands that enter music information in 
the buffer and commands that play the music. When you are entering music 
(using the first kind of command) you will not hear any notes being played. 

The MUSIC com mand is used to enter notes in Ihe music buffer. MUSIC 
takes as inputs two lists: a list of pitches and a list of durations. The pitches 
are numbered chromatically, with 0 as middle C. For example, in the 
command 

MUSIC [0 2 4 0] [4 4 4 4[ 

the first list of four numbers enters pitches for the four notes C, D, E, C. 
The second lists gives each note a duration of 4 time units. This is the first 
measure of the tune Frere Jacques. 

To actually hear the music played. give the command PLAYMUSIC 
(abbreviated PM). PLAY MUSIC plays the notes that have been entered in the 
buffer. Every time you execute PLAYMUSIC, the notes in Ihe music buffer 
will be played again. 

Each lime you use the MUSIC command , additional notes are appended to 
the end of the buffer. So if you again execute 

MUSIC [0240] [4 4 4 4[ 

and then PM, you will hear the set of four notes played twice-the first two 
measures of Frere Jacques. 

When you enter notes using the MUSIC command, the nOies are 
designated to be played in one of four voices. The voice designation is 
controlled by the SETVOICE command. If you do not speci fy any voice, 
music will go to voice I . SETVOICE 0 clears the music buffer. Section 9.2 
below shows how to use SETVOICE to play nOtes in harmon y. You may also 
want to make use of the following eM procedure (abbreviation for 
"clearmusic") thai clears out the music and sets the voice to voice I: 

lMusie commandJ arc nOi a part urIbe (irst rC'kasc of TI Logo. 



128 1f t LOGO 

9. Ll. A Simple Tu ne 

TOCM 
SETVOICE 0 
SETVOICE 1 
END 

Logo has a range of sl ightly over 3 octaves. Pitch 0 is middle C. The 

highest defined pitch is 24 (C two OCtaves above midd le C). The lowest 
defined pitch is - 15 (the pitch A one octave plus one third below middle 
C).2 Figure 9. 1 shows the correspondence between Logo pitch numbers and 
convent ional music notation: 

A A# B 

-15 - 14 - 13 

C# D D# E F F# G G# A A# B 

-11 - 10 -9 -8 -7 - 6 -5 - 4 - 3 -2 - 1 

C# D D# E F F# G G# A A# B 

1 2 3 4 5 6 7 8 9 10 11 

C# D D# E F F# G G# A A# B 

13 14 15 16 17 18 19 20 21 22 23 

Figure 9. 1: Correspondence between Logo chromatic pitch numbers and conventional 

music notation. Middle C is assigned to pitch number O. 

C 

-12 

C 

0 

C 

12 

C 

24 

Now you can complete Frere Jacques, writing separate procedures for the 
diffe rent phrases : 

TO F1 
MUSIC [0240[ [444 4[ 
END 

TO F2 

MUSIC [457) [4 4 8) 
END 

TO F3 
MUSIC [79 7 5 4 0) [31224 4[ 

END 

TOF4 
MUSIC [0 -5 0) [4 4 8) 
END 

2The v,tid pilcb range is diffe,em when usi<\i the MAJOR mode. ~ Sec1ion II. t.3 betow. 

~ 

'--' 

'-' 

'-' 
'--' 

~ 

'J 

'-' 

'--

~ 

~ 

'-' 

'-' 

~ 

'--' 

'-' 

~ 

~ 

-..J ~ 

0.../ 

~ 

~ 

'-' 

'-' 

'-' 

'-' 

'-' 

'--' 

~ 

'-' 

0.../ 



~ 

~ 

~ 

'--
~ 

~ 

~ 

-
~ 

-
~ 

-
~ 

~ 

~ 

~ 

~ 

J 
~ 

J 

~ 9.1.2. Tuneblocks 

~ 

~ 

~ 

-
-
~ 

-
-

Logo hilu. 'e 1129 

Figure 9.2: The music lor Ff9r8 JacqueS. 

Observe how the duration numbers specify time units, so that in Ihis piece 
a duration of 4 corresponds to a quarter note, 8 10 a half note, 2 to an eighth 
note, I to a sixteenth note, and 3 to a dolted eighth note. 

The complete tune is formed by playing each phrase twice: 

TO FRERE 
F1 
F1 
F2 
F2 
F3 
F3 
F4 
F4 
END 

To ptay the piece. you use the eM procedure and type: 

CM 
FRERE 
PM 

The technique of writing each phrase as a separate procedure leads to 
tuneblocks, a musical game invented at MIT by Jeanne Bamberger. 

One way to play tuneblocks is to create new tunes by rearranging the paris 
of a given tune. Here is a new tune assembled from the same blocks used in 
Frere Jacques: 

F1 F4 F1 F4 F3 F2 F3 F2 F4 F4 

To experiment with forming new tunes from a given set of blocks. you clear 
the buffer with CM, execute the sequence of procedures for the blocks you 
want to play, then follow with PM. Since each tuneblock is a separate Logo 
procedure, you can break the sequence of procedures into as many Logo 
command lines as you wish. For instance. the commands 

CM F1 F4 F1 F4 F3 F2 F3 F2 F4 F4 PM 

CM 
F1 F4 F1 F4 
F3 F2 F3 F2 
F4 F4 
PM 

both play the same tune. 



, 

'--' 
130 IT I LOGO 

~ 

Another way to use tuneblocks is as a musical jigsaw puzzle- you supply 
someone with the blocks for a tune, presented in some arbitrary order, and v 
ask him (0 reconstruct the tune. Here, for instance. is a set of blocks: \.../ 

'-" 
TO B1 
MUSIC 12 7J 1441 v 
END 

v 
TO 82 
MUSIC 12 4 5J 12 2 4J '--' 
END 

v 
TO 83 
MUSIC 17 9 7 5113 1 22J '-" 

END 
'--' 

TO 84 '-" 
MUSIC 14 5 7] (2 2 4J 
END '-' 

TO 85 v 
MUSIC 14 OJ 12 6J 
END >oJ 

See if you can guess (and reconstruct) the tune from which these blocks were ~ 

taken. Remember that a given block may be used in the tune more than once. 
Here is a sel o f blocks for a much more difficult tuneblocks puzzle. See if '-' 

you can construct a tune using these: 

'-" 
~ 

TOG1 
MUSIC 15 4 2J 122 4J 

V 

END 
'-" 

TOC2 
~ 

MUSIC 10 -2J 14 4) 
END '-" 

TOC3 V 
MUSICI-2 -3 -511224J 
END '-" 

TOC4 '-' 

MUSIC 15 2J (44J 
END '-" 

TOC5 '-" 
MUSIC )- 2 02112 2 4J 
END ~ 

TOC6 '-" 

MUSIC 1-3 -2011224) 
END 

'-" 

TOC7 
v 

MUSIC 12 53 2J 12 22 2J '-' '-" 
END 

v 

~ 

v 



--
/ 

'--
-
J 

~ 

9.1.3. Spetifying NOles -
-
./ 

~ 

J 

-
J 

~ 

./ 

~ 

'----
./ 

-
./ 

-
./ 

-
~ 

-
./ 

~ 

./ 

./ 

~ 

'----./ 

TOca 
MUSIC (76 79J (22 2 2J 
END 

Logo MusIc I 131 

Answers to the two tuneblocks puzzles appear at the end of this chapter. 
In her work al MIT, Bamberger has used tuneblocks and ot her Logo-based 

music programs to teach music as well as to study people's intuitive notions 
about music and tonalit y and to track the development of musical 
intelligence. See her papers 12, 3, 41 for details. 

The MUSIC command allows you to create simple melodies by specifying 
lists of pitches and duratio ns. You can also control the loudness, art iculation, 
and tempo of the notes with additional commands included in the Logo 
system . 

REST 
The REST command is used to insert rests (silences) into the music. REST 

takes a single number as input and inserts a rest of that duration into the 
music buffer. 

STACCATO YS. LEGATO 
STACCATO and LEGATO are used to control the amount of "dead time" 

that Logo inserts between successive nOles. Logo normally plays notes with a 
legato articulation, that is, with only a small separation between successive 
notes. To change this. give the STACCATO command . This will cause all 
subsequent notes to be played detached. The LEGATO command restores the 
slurred a rticulation.l 

Controlling Volume 
The SETVOLUME command takes a numeric input that controls the 

vol ume of subsequent notes entered with the MUSIC command. Volume 0 is 
the softest and 15 is the loudest. Each unit from 0 to 15 represents a 2-decibel 
increase in volume . 

Controlling Tempo 
The SETIEMPO command controls the tempo at which music is played. 

$ETIEMPO takes as input a number that determines the actual durations o f 
subsequent notes as specified in the MUSIC command. When the tempo is set 
10 T, a note of duration D will last fo r (60 1 T) x D seconds. When you 
execute the command 

SETIEMPO 100 

each subsequent duration lasts 60/ 100 o r 6/ 10 seeond . 

SETIEMP0300 

reduces the duration to 60/ 300 or 2/ 10 seeond . When Logo is started. the 
default tempo setti ng is 300 . 

lMore precisely ..... Mn nOles arC played Staccato. th.-y oound ror '160 or a second. with the remainder or the 

note'l duration as dead time. When notes arc played lelatO, (hey sound for all but the final "60 of a KCond. 



132 I T I LOGO 

Here is an example o f tem po change using SETIEMPO to produce an 
accelerating tri ll : 

TO TRILL :TEMPO 
IF :TEMPO > 3000 STOP 
SETIEMPO :TEMPO 
MUSIC [0 2][1 1 [ 
TRILL :TEMPO + 20 
END 

CM 
TRILL 10 
PM 

MAJOR vs. CHROMATIC 
These two commands (which take no inputs) control the meaning of 

the pitch numbers used with the MUSIC command . When you specify 
CHROMATIC, pitch numbers designate half steps : 0 is C, I is C-sharp, 2 is 
D, a nd so on . With MAJOR, successive numbers designate notes on the C 
major scale: 0 is C, 1 is D, 2 is E, and so o n. For example, here are the 
MUSIC commands fo r the fi rst phrase o f Frere Jacques using 
CHROMATIC: 

MUSIC [024 O[ [44 4 4[ 

and usi ng MAJOR: 

MUSIC [0 1 201 [4 4 4 41 

With CHROMATIC, the range o f defined pitch numbers is - 15 through 
24. With MAJOR, the range is - 9 thro ugh 14. When Logo is started , 
CHROMATIC is the default. Figure 9.3 shows the correspo ndence between 
Logo pitch numbers and conventional music notatio n fo r the MAJOR mode: 

A B C 

- 9 - 8 - 7 

D E F G A B C 

- 6 - 5 - 4 - 3 - 2 -1 0 

D E F G A B C 

1 2 3 4 5 6 7 

D E F G A B C 

8 9 10 11 12 13 14 

Figure 9.3: Correspondence between Logo pilch numbers and conventional music notat ion 

lor the MAJOR mode. Middle C is again assigned to pitch number O. 

MAJOR is useful fo r playing simple tunes in the key o f C that require no 
sharps o r fl ats. CHROMATIC is required for mo re complicated tunes or for 
tunes in other keys . 

'--' 

'-' 

'--' 
'-./ 

'-' 

'-' 

'--' 

'--' 

'--' 

'--' 

'-' 

'--' 

'-' 

'-' 

'-' 

"--' 

'-' 

'-' '-' 

'--' 

'--' 

'--' 

'-' 

v 

'--' 

'-' 

~ 

~ 

~ 

'-' 

'-' 

"--' 

'--" 
'-' 

'--' 



~ 

~ 

~ 

'--' 
-' 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

'--' 

~ 

~ 

9.2. Mult iple Voices 
~ 

~ 

~ 

~ 

~ 

~ 

~ 

.-' 

~ 

~ 

-
- '--' 

~ 

-
/ 

Logo Music /133 

The NOTE Command 

You can use NOTE as a n alternat ive to MUS IC to enter notes in the music 
buffer. NOTE takes three numbers as inputs: a duration, a pilch. and a 
volume. For example. 

NOTE 5 410 

enters into the music buffer a notc with duration 5, pitch 4, a nd volume 10. 

Unlike MUSIC , NOTE is used to enter a si ngle note at a ti me rat her than a 
list of nOles. Also, thc volume is speci fied explicitly for each nOte rather than 
taken from the default vol ume (as determined by SETVOLUME). 

Comments on Specifying NOles 
The commands listed in this section, such as SETTEMPO, S ETVOLUME, 

and so on, have no effect on notes that arc already in thc music buffer. For 
instance, suppose you creale some nOles using MUSIC or NOTE, play the 
music with PM, then change the tempo usi ng SETTEMPO and do PM again. 
The second PM will sound the same as the first, because SETTEMPO 
changes the tempo only for nOles that wi ll be added to the music buffer after 
the SETTEMPO command. 

The music buffer can hold only a fixed number of notes. If you try to add 
notes when the bu ffer is fu ll, Logo signals the error 

OUT OF NOTES 

After issui ng the PM command, you ca n execute other com mands while 
thc music is playing. Note that pressi ng the BACK key does nOI stop the 
music. To SlOp music while it is playing you can reset the bu ffer with 
SETVOICE 0 or use the CM (clear music) procedure on page 128. Entering 
the editor by defining or editing a procedure (or a shape or ti le) will also stop 
playing and clear the music buffer. 

So far, we have been generating music for a single voice only. Logo allows 
you to play music using up to three voices plus a noise gencrator. To do th is, 
si mply use SETVOICE to designate the voice for subsequent notes specified 
with MUSIC or NOTE. 

For example, you can make a three-part round of Frere Jacques using 

the basic procedure from page 129. A good tempo selli ng for this is 400. 

TO FRERE 
F1 F1 
F2 F2 
F3 F3 
F4 F4 
END 

Voice I should do FRERE: 

SETTEMPO 400 
SETVOICE 1 
FRERE 

Voice 2 should rest for two repealS of F1 (a 10la l of 32 duration un its) and 
then do FRERE: 

SETVOICE 2 

REST 32 



134ITl lOGO 

9.3. Musical Accompanimenl 
10 Logo Procedures 

FRERE 

Voice 3 should rest for 64 units and then do FRERE: 

SETVOICE 3 
REST 64 
FRERE 

Now when you type PM you will hear all three voices playing together. 

Rhythm Accompaniment 
In the Logo music system, voices I, 2, and 3 play tones. Voice 4 is a noise 

genera/or that can be used to suppl y rhythm accompaniment. One easy way 
to do this is with the DRUM command. DRUM takes a list of durations 
(similar to MUSIC) and plays a corresponding "drumbeat." For example, 

TO BOOMCHACHA 
DRUM [4 2 2[ 
END 

will playa "quarter-eighth-eighl h" drum beat. 
You can add this to the Frere Jacques round by usi ng voice 4 for the 

drum. Then the entire round is 

TO FRERE.JACQUES.ROUND 
SETIEMP04DO 
CM 
SETVOICE 1 
FRERE 
SETVOICE 2 
REST 32 
FRERE 
SETVOICE 3 
REST 64 
FRERE 
SETVOICE 4 
REPEAT 24 (BOOMCHACHAJ 
END 

PM 

You need not use DRUM only with voice 4. When set to one of the other 
voices, DRUM uses a short, low tone to make the beal. Conversely, you can 
specify "pitches" fo r voice 4 using MUSIC or NOTE. Depending on which 
"pitch" you choose, voice 4 will generate one of four different sounds. 

We already mentioned that you can continue to execute Logo commands 
while music is playi ng. In this way you can provide musical accompaniment 
to ot her Logo proccdures. Simply generate some music, start it playing 
with PM , and then start up your other procedures. You can also use the 
LOOPMUSIC command in place of PM. LOOPMUSIC is almost like PM 
except that it plays the music in the music buffer over and over. If you start 
music playing with LOOPMUSIC, the only way to stop it is by reselling the 
buffer with SETVOICE 0 or by entering edit mode. 

'-' 

J 

'-' 
'-./ 

'-' 

'-' 

~ 

J 

'-' 

V 

V 

V 

~ 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

'--' 

-.J 

'--' 

V 

'--' 

~ 

'-' 

'--' 

'-' 

'-' 

'--' 

v 

'-' 

--J -.J 

'-' 

'-' 

'-' 



~ 

~ 

'-' 
~ 

~ 

~ 

j 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

'--' 

~ 

~ 

-
-
-
-
-
-
-
-
/ 

Logo Music / 135 

Syncbronizing Music to Logo Procedures 

In addition to playi ng music and executing procedures at the same time, 
you can also synchronize music to Logo procedures; for exam ple, you can 
synchronize music to the motion o f sprites on the screen. This is done using 
the PLAYNOTE command. When you issue a PLAY NOTE command , Logo 
will play the next note from the music buffe r, and then wait for Ihe duration 
of the note. 

To illustrate how to use PLAYNOTE for synchronizing music and graphics, 
let's return to the birds movie developed in Section 4.4. Recall thatlhis was 
a movie in which a flock of birds moved across the screen, flapping their 
wings. The flapping was accomplished by changing the shapes of the sprites 
that represented the birds: 

TO FLAP 
CARRY :UPWING 
WAIT 30 
CARRY :DOWNWING 
WAIT 30 
FLAP 
END 

To synchronize the fla pping to music, the only change you need make is to 

the FLAP procedure, replaci ng WAIT by PLAYNOTE: 

TO FLAP 
CARRY :UPWING 
PLAYNOTE 
CARRY:DOWNW1NG 
PLAYNOTE 
FLAP 
END 

Now enter some music in the buffer and run the entire movie as before. The 
result is that the birds beat their wings with each new note. 

PLAYNOTE works with only one voice at a lime. If there is more than one 
voice entered in the music buffer, PLAYNOTE will use the current voice 
specified by SETV01CE. 

Answers to the Tuneblocks Puzzles 
The flrSI set of blocks can be assembled to for m London Bridge is Falling 

Down. To play the tune, type 

CM 
93949294 
83848185 
PM 

The second set of blocks is taken from a piece by Bela Bartok, based on a 
Slovakian folk tune (Bartok's For Children, Sz. 42): 

CM 
C3C5 C8 C8 
C3C5 C8 C8 
C2C7C6 C4 
C2 C7C6C8 
PM 



136/ T I lOGO 

This puzzle is morc difficult than the preceding one not only because there 
are more blocks and the tune is less familiar. but also because the harmonic 
structu re is not typical of the modalities found in western music. For this 
reason it is correspondingly more difficult for peoplc accustomed to western 
music to assemble the blocks into patterns that "make sense." In solving 
either puzzle. you may be able to create a tune that is as interesting to you as 
the original. Either solving the puzzle or inventing your own tune opens the 
door to exciti ng musical explorations. 

'-../ 

'--' 

'-' 

',- ., 

'-' 

'-J 

'-' 

-./ 

V 

'-J 

'-' 

'-' 

oJ 

'-' 

'-J 

~ 

'-' 

'-' 

'-J 

~ 

'-' 

'-' 

'-' 

J 

~ 

'-' 

-./ 

'-' 

'-' 

~ 

'-' 

'-' 

'-J 

~ 

~ 

~ 

'-J 



.-

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

'-" 
./ 

~ 

~ 

./ 

-
~ 

Inpul S, OutpulS, and Recufslon 1137 

CHAPTER 10 

Inputs, Outputs, and Recursion 

O ne important diffClcnce between Logo and other common programming 

languages is that, in Logo, words and lists can be used as in puts and outputs 
to procedures. Therefore. when you program in Logo, you can work in terms 
of operations that aCI on entire words and lisls, rather than only on 
individual numbers and characters. Consider the DOUBLE. LIST procedure 
that was introduced on page 84: 

TO DOUBLE. LIST :X 
OUTPUT SENTENCE :X :X 
END 

PRINT DOUBLE.LlST [DO RE Mil 
DO RE MI DO HE Mf 

The importance of maki ng this procedure OUTP UT its result is no! merely so 
that you can PRINT the result , but so thaI you can use the result as an input 
10 anot her procedure that can perform furthe r operat ions. For instance, if 
you have an operation REVERSE that reverses a list (as we shall discuss in 
Section 10.1 below). then you can produce the reverse of the double of a list 
X by 

REVERSE DOU BLE. LlST :X 

More generally, you can construct complex operations on words and lists as 
successions of procedures, each of which performs a simple operation and 
passes the result to the next procedure. To obtain an operation that removes 
the last word from a lis t . reverses what is le ft, and doubles the result , you ca n 
write: 

DOUBLE. LIST (REVERSE (BUTLAST :X)) 

as in the command 

PRINT DOUBLE. LI ST (REVERSE (BUTLAST [A B C OJ)) 
CBA CBA 

which produces the chain of operations shown in Figure 10.1. Building up 
com plex operations by combining simpler operations is common 
programming practice in working with numbers. For example, it is nat ural to 
thi nk of computi ng (x - 1)2 + I in terms of the si mpler operations of 
subt racti ng I from a number, squaring the result, and adding I. Logo enables 
you to use the same kind of strategy in dea ling with words and lists. 

The ability 10 const ruct complex operations as combinations of simpler 
ones is particularly powerfu l when combi ned wi th another problem-solving 
strategy: One can often solve a problem by fi rst solvi ng a simpler problem of 
{he same sort and then making a simple modification to the answer. For 
exampie, suppose you want to write a procedure that counts the num ber of 

words in a list. Imagi ne thai you al ready know how many words are in the 
BUTFIRST of the list. Then you could solve your original problem by simply 



136/ T I lOGO 

10. 1. REVERSE 

00IJ9LE . LIST REVEI!SE 9lJnAsr 

/\/\/\ 
[CaACaA) [CaA] [AIH) [ABCD] 

FlglJre 10.1: Chain 01 inplJls and OlJlputs in a sequence 01 list operations. 

taking the number of words in the BUTFIRST and adding 1. 
Recursive procedures, in general, are the computational analogues of 

st rategies that auack problems by reducing them to simpler problems of the 
same SOrl . Given the ability of Logo procedures to manipulate words and 
lists, this implies that many useful word and list operations can be 
implemented as surprisingly simple recursive procedures. Th is chapler 
examines a few of them. We consider first a number of procedures involved 
wilh reversi ng words and lists. Then we discuss operations that select words 
from lists and test whether a word is a member of a list. Finally, we show 
how the problem of converting numbers from one base to another can be 
solved by a simple recursive strategy. 

TI Logo II includes a built-in operation called REVERSE that reverses 
words or lists. I If the input to REVERSE is a word, then REVERSE ret urns 
the word with the characters reversed: 

PRINT REVERSE "STRESSED 
DESSERTS 

PRINT REVERSE " RUMPLESTILT$KIN 
NIKSTL/TSELPMUR 

PRINT REVERSE REVERSE " RUMPLESTILTSKIN 
RUMPLESTIL TSKIN 

If the input to REVERSE is a list, then REVERSE returns a list of the 
elements in reverse order: 

PRINT REVERSE [I AM WHAT I AM[ 
AM I WHATAM I 

PRINT REVERSE [HELLO[ 
HELLO 

Even though REVERSE is included as a primitive operation in TI Logo II , 
we'll show how you can write such a procedure, since reversing is a good 
illustration of recursive programming. In order not to conflict with the 
built-in REVERSE, we'll write separate procedures for reversing words and 
lists, called REVWORD and REVLlST. 

1 For Ih. fi,S! ,.loaK of Tl l oso, u'" on. of'he procrd~rc;" REVlISTor REVWORO, Ji~.n in ~,ionl 10. 1.1 
and 10.1.2. inslead of REVERSE. 

~ 

~ 

V 

'-' 
~ 

'-' 

'--' 

'-./ 

--.J 

V 

~ 

'-./ 

--.J 

~ 

~ 

~ 

'-.J 
'-./ 

'-./ 

'-' 

'-' 

~' 

V 

'-' 

~ 

'-' 

~ 

v 

~ 

~ 

'--' 

'-' ~ 

oJ 

~ 

~ 



10.1.1. Reversing Words 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

'--' 

/ 

/ 

/ 

~ 

J 

-' 

J 

J 

~ 

J 

/ 

~ 

--
~ 

Inputa, Outputs, and Recur$lon 1139 

Consider the problem of writing a procedure REVWORD that reverses a 
word: 

PAINT AEVWOAD " HELLO 
OLLEH 

Logo's LAST and BUTLAST operations, which encourage think ing about a 
word in terms o f its last character and the rest of the word, suggest a 
recursive strategy for implementing the REVWORD procedure. It is based on 
the followi ng idea: suppose you are given a word, say BIRO. and you are 
asked to reverse it. Now imagine that you have somehow managed to 
generate the reverse of all but the last character o f the word-RIB . Then all 
you have to do to reverse the original word is to take the last character, D, 
and place it at the from of what yOll already have-DRIB. This reduces the 
problem of reversing a word to the problem of reversi ng a shoner word, 
namely, the BUTLAST of the word . That problem reduces in turn to reversing 
a still shaner word, namely, the BUTLAST of the BUTLAST, and so on, with 
shorter and shorter words. You can diagram this process as follows: 

REVWORo " BIRo is 0 .......... RIB 

or the last character of BIRD added in fro nt of RIB . But 

RIB is REVWORo "BIR which is R .......... IB 

or the last character of BIR added in front of lB . But 

IB is REVWOAD " BI which is I .......... B 

or the last character of BI added in front of B. Now put all these together: 

AEVWOAD " BIAD • D - (AEVWOAD " BIA ) 
0 .......... R .......... (REVWORD "BI ) 

• D - A - I - (AEVWOAD " B ) 
0 .......... R .......... 1 .......... B 

This strategy, reducing the problem of reversing a word to the problem of 
reversing BUTLAST of the word, leads to the following recursive procedure: 

TO REVWORD :X 
OUTPUT WOAD (LAST :X) (AEVWOAD BUTLAST :X) 
END 

However, if you execute this procedure, it will not work . Instead Logo runs 
out of space. The problem is that there is no stop rule. Nothing tells 
REVWORD to stop taking LASTs and BUTLASTs of its input, and the 
procedure runs until Logo runs out of storage. At some paint , REVWOAD 
should simply output an answer directly without reducing the problem to one 
of reversing a still shorter word. For example, if the word to be reversed is a 
single character, then REVWORD of the word is the word itself, so you can 
add to REVWORD the stop rule: 

IF FIRST :X = :X THEN OUTPUT :X 



l.o l TI l OGO 

10.1.2. Reytrsing Lists 

10. 1.3. Designing R« ursive Procedures 

where FIRST :X bei ng eq ual to :X signals that :X consislS of a single 
character. So here is the complete procedure: 

TO REVWORD :X 
IF FIRST :X = :X OUTPUT:X 
OUTPUT WOAD (LAST :X) (AEVWOAD BUTLAST :X) 
END 

Similar reasoning can be appl ied to produce a proced ure REVUST that 
takes a list as input and returns the list of words in reverse order, as in 

PAINT AEVLlST [OH SAY CAN YOU SEE) 
SEE YOU CAN SAY OH 

As before, the problem reduces to combining the LAST of the inpul list with 
REVUST of the BUTLAST; however, since you will be combining lists rather 
than words, you should use SENTENCE rather than WORD 10 form the 
combi nation. The stop rule checks for the list bei ng red uced to the empty list. 
in which case the procedure retu rns the empty lis!. 

TO REVUST :X 
IF :X = [ ) THEN OUTPUT [ [ 
OUTPUT SENTENCE (LAST :X) (AEVLlST BUTLAST :X) 
END 

You can combine REVWORD and REVLlST to obtain a procedure 
REVALlthal takes a list as input and ret urns a list of the words in reverse 
order, with each word reversed, as well: 

PAINT AEVALL [OH SAY CAN YOU SEE) 
EES UOY NAG YAS HO 

All you need to do to implement REVALL is to modify REVLlST so that it 
REVWORDs the LAST word of its input before combining thai with the 
result of reversing the BUTLAST: 

TO REVALl:X 
IF :X = [) THEN OUTPUT [ ) 
OUTPUT SENTENCE (AEVWOAD LAST :X) (AEVALL BUTLAST :X) 
END 

The reasoning Ihat led to these procedures is typical of most recursive 
procedures that involve words and lislS: 

• There is a reduction step that reduces the problem to a si milar problem on 
a shorter word or list (usually the BUTFIRST or BUTLAST of the inpul) . 

• There is a stop rule that checks for some simple case (usually the input 
being reduced 10 a single element, or 10 the empty word or the empty Iist).2 

2NOIi" Ihal in Ihe a~!Ual procedure . the JlOp ruk is wriutll befort lbe reduction Sitp. SUI when you 
formulaic a recursive solulion. you mOlllikdy discover Ihe reduction Slep firJl and Ihen design In 

apprOprialt JlOp rule. 

~ 

~ 

'-/ 

'-.../ 

'-' 

'-/ 

~ 

'-' 

'-' 

~ 

~ 

-
~ 

'-/ 

'-.../ 

'--' 

'-' 

'-' 

'-/ 

'-' 

'-' 

~ 

'-' 

V 

V 

V 

V 

'J 

'-.../ V 

'-' 

~ 

V 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

-
~ 

~ 

10.2. Recursive Procedures that 
Manipulate Lists 

10.2. J. The PICK Procedure 

Illputl, Outputs , and Recursion 1141 

IF fiRST l! ' }( THEil OUTPlJT : X l"-' I· I"" 1 
.------------, 

OUTPUT WORD LAS'@.X LIIE~~!!~T':~~..:....J 
...... t. 01118 

REVWORO I }( laIR I 
If FIRST X. }( 'liE N OUTPUT ,j' 

OUTPUT ,"OoRO LAST }( [R-;~~~~~=~ 
... ,,. .. RtB 

REVWOIIO ~ 
If fi llS T : ." : . THEN QUTPUT : . r----------, 
OUTPUT WORD LAST :x I "E"'WORD BUTLUT , . 1 '- _________ ...J 

",,'.v" 18 

11["'110110 ~ 
If FIRS T oX. , x THEN OUTPUT , x 

.... "''' 8 

Figure 10.2: Procedure calls in executing REVWOAO - BIRO. 

Note the usc of recursion and the fact Ihat each procedure must explicitly 
OUTPUT its result 10 the procedure that calls iI, as noted on page 79. Figure 
10.2 shows the pattern of inputs and oulputs that results from execut ing 

REVWORD HSIAO 

Logo's list operations FIRST, LAST, BUTFIRST, and BUTLAST are the 
basic ways to red uce lists to simpler lists. List operations can often be 
implemented by means o f recursive strategies that reduce the problem of 
performing some operation on a list to the problem of performing a similar 
operat ion on the BUTFIRST (or BUTLAST) of the list. This section presents 
two operations thaI can be implemented in this way. 

One of the mOSt useful operat ions to have in working with list s is the 
abili ty to select an item from a list. Consider the problem of writing a 
procedure PICK that tak es a number and a list as inputs and outputs the 
designated item fro m the list: if the number is I , PICK outputs the first 
item in the list; if the number is 2, PICK outputs the second item in the list: 
and so on. 

There is a recursive strategy for computing PICK in terms of the operations 

FIRST and BUTFIRST. You can reduce the problem of picki ng an item from 
a list to the problem of picking an item from the BUTFIRST o f the list: the 
nth item of a list is the same at the (n - I)st item of the BUTFIRST of the 
list. The recursive plan is: 



• Reducrion Srep: to PICK the nt h item from a list , PIC K the (n - l)st item 
from the BUTF1RST of the list. 

• SlOp Rule: if II = 1, then output the FIRST item in the list. 

This strategy can be expressed as the following Logo procedure: 

TO PICK :N :X 
IF :N = 1 OUTPUT FIRST :X 
OUTPUT PICK (:N - 1)(BUTFIRST :X) 
END 

Figure 10.3 shows the chain of procedure calls and the inputs and outputs in 
executing: 

PICK 3 1A B C OJ 

where pic king the 3rd item of [A 8 C OJ reduces to the picking the 2nd item 
of [8 C O[ which reduces to picking the 1st item of [C 01 , which is C .l 

By combining PICK with RAND (page 80) you get a useful operation that 
selects an item at random fro m a list of possibili ties. 

TO PICKRANOOM :X 
OUTPUT PICK (1 + RAND (LENGTH :X» :X 
END 

This proced ure uses the LENGTH operation that is included in TI Logo II. 
LENGTH takes a list as input and returns the number of items in the lis\. 4 

P ICK I : I ~ A 8 C OJ I 

IF :N. I OUTPUT FIRST : X 
r - - - - - -------, 

'"""' l".'" '!~-,C' ","'''''~'~lJ 
'- OY lp ~ l . c 

PICK 
X [8 C oJ 

IF :N. l OUTPUT F IRST : X ,------------, 
OUTPUT I PI CK ( : N- 111 8 UTF IRST : X) I 

.. " ... ~-'''~I]~-~I-" 
IF :H.l OUTPUT FI RST : X 

OU' pull C 

FIgure 10.3: PrOCedure calls in 

executing PICK 3 
IABCD]. 

l )r you call PIC K ,,'j,h N lar~r 'hn Ih. IolIJI.h of 'he liS!. 'hen Ih. [>racedur. will r<lurn Ih • ..,.,~y tis,. For 
eumpl •• Iryin,to pick tilt 31h item of I" B C 01 reduces 10 Ih. 4l h i,em of IB C O). th. lrd iIOm of IC 01 . 
lilt 2nd i,em of 10J. and finall y PICK is called wi,h N rqualm I and X rqual '0 ,lit emp'y lis" A, Ihis palm 

PICK Irks 10 rompu'. FIRST of X. In lhe first rdease of TI Logo FIRST of Ihe empty lill relurns 'he em~y 

liSi. 

4LENGTH can also 11k. a word as inpul, in which case il rel urnllhe number o r charact ers in lhe word. 

LENGTH is 001 included in the fim release ofTI Loso. bu ' ;t can be imple .... med.,. reeursi , ( LOlo 
pracedur. (.I<'< _c in S«Iion 1.2). 

'--' 

V 

V 

'--' 
'--' 

"--' 

'-' 

'-' 

'-' 

'--' 

'--' 

'--' 

V 

'--' 

'-' 

'--' 

'-J '-' 

'--' 

'--' 

'--' 

~ 

'--' 

'--' 

'--' 

'--' 

'-

'--' 

'--' 

'--' 

\J 

'-J '--' 

'--' 

'-' 

'--' 



10.2.2. The MEMBER? Predicate 

-
--
-
-
~ 

-
'-' 

~ 

~ 

-
./ 

~ 

~ 

~ 

~ '-' 

~ 

~ 

./ 

Input., Outputs, and Recursion I 143 

Observe the inputs 10 PICK and RAND : if the length of the list is n, then 
RAND (LENGTH :L) returns a number selected at random between 0 and 

n - I . Yo u sho uld add I to this to prod uce a random number between I and 
n, which becomes the input to PICK. 

The MEMBER? pred icate ta kes a word a nd a lis t as inputs and checks 
whether the word is a member of the list, outpull ing TRUE or FALS E 
accordingly. T he recursive st rategy here is that it is easy to check if the 
desired word is the FIRST item in the list. If it is, then MEMBER ? sho uld 
output TRUE. I f nOI, you check to see if the word is in the BUTFIRST o f the 
list, and so o n. If the list ever becomes empty, you have run out of elements 
to check the word against, so ME MBER? should o utput FALSE. The 
resulti ng procedure is 

TO MEMBER ? W ORD :Ll ST 
IF :Ll ST = [] OUTPUT " FALS E 
IF WORD = (FIRST :LlS T) OUTPUT "TRUE 
OUTPUT MEMBER? :WORD (BUTFIRST :L1ST) 

END 

Converting to Pig Latin 
As an example of using MEMBER? and recu rsio n, you can write a 

program that converts a sentence to pig lat in . For each word in the sentence, 
you must move the leading consonants to the end of the word and add "ay" 
as in 

isthay entencesay isay inay igpay ati nlay. 

Since you need to st rip off consonants, it is useful to have a predicate that 
checks whether a word begins with a vowel. That'S easily done : 

TO BEGINS.WITH .VOWEL?:W 
O UTPUT MEMBER? (FIRST W) [A E I 0 Ul 
END 

Notice that this outputs TRUE or FALS E because MEMBER? outputs TRUE 
or FALS E. 

Here's a program that converts a si ngle word to pig latin: 

TO PIG:W 
TEST BEGIN S.WITH .VOWEL? W 
1FT OUTPUT WORD W "AY 
IFF OUTPUT PIG WORD (BUTFIRST :WI (FIRST :W) 

END 

The cleverness in PIG is the recursive call that ensures that PIG will keep 
strippi ng leiters off the front of the word unti l it reaches a vowel. To better 
understand this point. you should d raw a diagram that gives the sequence of 
recursive calls in computing 

PR INT PIG "STRING 
fNGSTRAY 



1«/TI lOGO 

10.3. Radix Conversion 

Now, if you work word by word , you can convert an enti re sentence. The 
trick is to think recu rsively again: 

TOPIGL :S 
IF :S ~ II OUTPUT II 
OUTPUT SENTENCE (PIG FIRST :S) (PIGL BUTFIRST :S) 
END 

PRINT PIGL (THI S IS ANOTHER RECURSIVE PROCEDURE] 
ISTHAY ISAY ANOTHERAY ECURSIVERAY OCEDUREPRAY 

The strategy used in PIGL is a standard way to "do something to every 

item in a list." The idea is to reason as follows. Suppose you have al ready 

converted thc words in the BUTFIRST of the list. Then you need only 
S ENTENCE Ihis with the result of converting the firsl word in the IiSI, and 
you are done. In this way, the problem of converting Ihe ent ire list reduces 10 
converting BUTFIRST of the list, which reduces 10 BUTFIRST o f that list, 
and so on, and so on. Finally the problem is reduced to thaI of converting 
the em pl y list, for which the a nswer is empty. 

As a final example of a problem that seems difficult but has a simple 
recursive solulion, we consider Ihe problem of converting an integer written 

in base 10 notat ion 10 some other base, say, base 8. For instance, we would 
like to find that 65 base 10 is written as 101 in base 8, 100 base 10 is \44 base 
8, 1000 base 10 is 1750 base 8, and so on. 

There is a clever recursive st rategy for solving this problem. Suppose that n 
is some integer a nd that you want to find the string o f digit s that represents n 
in base 8. Think about what such a representation means. For example, to 

say that 100 base 10 is written as 144 base 8 means that 

100 = I x 8 x 8 + 4 X 8 + 4 "" 144 base 8 

The key insight is that it is easy to find the last digit o f the si ring of d igits 
that represents n: this is just the remainder when n is di vided by 8: 

REMAINDER 1008 is 4 

Now suppose you take the string of digits that represents n and st rip off the 

last d igit. In terms of base 8 representation, that corresponds to shifting 
everyt hing one place to the right and dropping the last digit. B UI th is 
corresponds precisely to dividing thc number by 8 and dropping the 
remainder. ThaI is to say, if you take the str ing of digits that represents n in 
base 8 and leave off the last digit, what you are left with is the sIring of digits 
that represents the integer quotient of 1/ by 8, written in base 8: 

QUOTIENT 100 8 is 12, and 12 represented in base 8 is 14 

So now you have a si mple description of the string of digits that represent s 
ninbase8 

• T he LAST digit is the remainder of fI by 8 . 

• The BUTLAST of the string is the base 8 represent ation of int eger quolient 
of fI by 8. 

So the problem of representing n in base 8 red uces to representing the 

quotient of n by 8 in base 8, wh ich reduces further, and so on . T he 
reduct ions stOp when you reach a quot ient that is less than 8, which is 
represented in base 8 as a single digit. 

V 

>J 

V 

'--" 
V 

'--' 

'--' 

V 

'-' 

V 

'-' 

'-' 

v 

v 

>J 

~ 

V 
'-' 

V 

v 

v 

V 

v 

V 

V 

V 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

'-
~ 

-
~ 

j 

~ 

~ 

--
~ 

-
j 

-
~ 
~ 

~ 

-
j 

Inpull. Oulpuj ••• nd Aecu,.lon 1 1~ 

Here is how to generate n in base 8: 

• If n< 8, the result is the digit for n .s 

• Otherwise 

* Find the digits that represent the quot ient of n by 8, and 

* Append to these the remainder of n divided by 8. 

Using the Logo WORD operation to glue numbers toget her, this strategy 
translates into the procedure: 

TO BASES :N 
IF :N < 8 OUTPUT DIGIT :N 
OUTPUT WORD BASE8 (:NI 8) 

DIGIT REMAINDER :N 8 
END 

The DIGIT procedure is used to take a single·digit number and converl it to 
the corresponding character. If you start with a list of these characters:6 

MAKE ~ DIGITLIST (SE "0 ~ 1 ~ 2 ~ 3 ~ 4 

" 5 " 6 n 7 " 8 ~ 9) 

then you can implement DIGIT as: 

TO DIGIT :N 
OUTPUT PICK :N + 1 :DIGITLIST 
END 

(Note the I added to N: the first digit in the list, for example, is the digit 0.) 
Of course , there is nothing special about base 8. You can convert to any 

base less than 10 in the same way: 

TO BASE :N :B 
IF :N < :8 OUTPUT DIGIT :N 
OUTPUT WORD BASE (:N/:B) :B 

DIGIT REMAINDER :N :8 
END 

For example 

PRINT BASE 10002 
11 11 101000 

For bases larger than 10, you can use the same strategy, except that you 
will need "digits" representing the single·digit numbers larger than 10. For 
instance, in base 16 you can represent 10 by the letter A and II by the letter 
B, and so on. s All you need [Q do is add more items to DlGITLlST: 

SRcmemMr Ihal in TI logo. you mUll dislinguish ber .... een a numbc1'. say S. and a characrer. say ' S. For doing 

arilhmelic. you u,," numbo". and for doing .... ord operalions. you use characters. In this case .... e arc 

au<mbling 'he con"crled numbc1' using ",'ord optr.'io",. "" Ihe digi' used mus' be ,I\( c!r(HQcru"5 ra,I\(, 
Ihan II\( number 5. 

fr.rhis is ,he "hoxad"dmaI H nOla';on commonl~ us<d for ,,,.drying compulor momory addr .. oes. 



141 11 1 lOGO 

MAKE "OIGITLIST (SE "0 " 1 "2 "3 " 4 

PAINT BASE 20000 16 
4E20 

PRINT BASE 20000 12 
86A8 

"5 "6 "7 "8 "9 
"A "B "C "O "E "F) ~ 

'-/ 

'-' 

~ 

'-' 

~ 

'-' 

~ 

v 

'-' 

~ 

'-' 

-
V 

-
'-' 

-
'-' 

'-' 

~ 

~ 



J 

~ 

J 

'-
J 

J 

~ 

J 

~ 

~ 

~ 

J 

-
/ 

11 .1. Hierarchical Structures 
/ 

~ 

~ '--" 

J 

/ 

/ 

Advanced UM 01 Lists I 1'7 

CHAPTER 11 

Advanced Use of Lists 

We' ve seen how words can be grouped together into Logo lists. BUI lists in 
Logo can be used for morc than juSt collecti ng words. For exam ple , the 
random-sentence generator of Section 7.2 picked its nouns from a list: 

MAKE "NOUNS (DOGS CATS CHILDREN TIGERS] 

Suppose, however, you want to make sentences using " nouns" that aren't 
single words. For example, you may wan! 10 make sentences about dogs, 
cats, children, tigers. and pack rals. You can't do this by adding the two 
words PACK RATS 10 the above lisls as in 

MAKE " NOUNS (DOGS CATS CHILDREN TIGERS PACK RATS] 

because making a sentence whose nouns are words picked at random from 
this list of six items would give results including things like 

PACK LAUGH 
RATS RUN 

What you need to do is to take the twO words PACK RATS and group these 
together as a single item within the list of nouns. You can do this in Logo by 

MAKE "NOUNS (DOGS CATS CHILDREN TIGERS [PACK RATSII 

What you have now is a list of five items. The first four items in the list are 
words: DOGS, CATS, CHILDREN, TIGERS. The fifth item in the list is itself 
a list (PACK RATSI consisting of two words, PACK and RATS. When you 
pick items from the list NOUNS, you may get a single word like DOGS, or 
you may get the two·word list [PACK RATS). This new value of NOUNS 
gives the desired results in the sentence generating program of Section 7.2: 

DOGS BITE 
PACK RATS LAUGH 

The general point here is that in Logo Ihe ilems in a list can be, not only 
words, but also other lists. 

If you think of a list of words as a si mple list (or one·levellist), then the 
NOUNS list above can be considered to be a two·level list, that is, a list wit h 
an element that is itself a list. But there is no reason to Stop there. In general. 
you can have lists whose items are themselves lists whose items are lists, and 

so on. This general nOlion of a list in Logo provides lots of power and 
fl exibi lit y in dealing with complex st ruCt ures. For example , Figure 11.1 



1.aITI LOGO 

11. 1.1. List Op('nuio ns 

E~ECUTIVE LEGISL AT IVE JUOI CI AL 

/~ /\ PRESIOENT VICE-PRESIOE NT 

SENATE HOUSE COUIIT 

Figure 11 .1: Hierarchical Organization of U.S. Government. 

shows a free SfruClure (hat represents pari of the organizalion of the U.S. 
government. 

From our point of view, the important thing about this structure is that it 
is a hierarchy: that is, it consists of parts that themselves consist o f parts, 

and so on. Yo u can represent the tree struct ure in Figure 11 . 1 as the Logo list 

( (EXECUTIVE (PRESIDENT VICE-PRESIDENTJI 
(LEGISLATIVE (SENATE HOUSE]] 
(JUDICIAL (COURT]] I 

This is a list of three items. I The first item , wh ich is the list 

(EXECUTIVE (PRESIDENT VICE-PRESIDENT]] 

is itself a list o f two items, o f which the first is the word EXECUTIVE and 

the second is a list of two words, and so on. 
Logo's use of lists is adapted fro m the programming language Lisp, which 

was developed for research in artificial inlelligence. Lists have proved to be 
indispensable in programs that deal wit h symbol manipulation and complex 
data st ruclUres, and thei r presence in Logo and Lisp is largely responsible for 

the fact that programming in these languages is very different from working 
in languages like BASIC and Fortran. In those languages. complex data 

structures must be encoded in terms of numbers. character strings, and 
arrays . Lists, however, allow many kinds of complex hierarchical st ruct ures 
to be represented directly, and therefore lists playa major role in computer 
applications dealing wit h complex data st ructures. In particular, they are the 
workhorse of most programs that arc heavil y involved with symbolic 
expressions. rather than just numerical data . The projects in Section 11.3 
illust rate how lists are used in this way. However, (his hardl y scratches Ihe 
surface of what can be done. The book by Winston and Horn [191 provides 
many examples of the uses of lislS in symbol manipulation in the context o f 
the language Lisp. 

We've already seen how to use the Logo operations FIRST, LAST, 
BUTFIRST, BUTLAST, and SENTENCE for working with " simple" lisls of 
words. These same operations extend to work wilh complex list s, as well. For 

example, suppose you create a complicated lis!: 

MAKE "TRY ((A B C] D (E Fll 

INOIO how tho Ii" is ptimM. lining up il s Iht« .1.mrnlS in ord.r to make i15 $lructurt mort tudablo . 

~ 

'-' 

'-' 
'--/ 

-.J 

'-' 

~ 

-.J 

'--' 

~ 

'--' 

J 

V 

V 

V 

oJ 

'-' 

'--/ '--' 

<J 

V 

~ 

V 

'---' 

~ 

~ 

'-' 

'--' 

V 

'--' 

V 

V 

'--/ 
~ 

'-' 

'---' 

'--' 



~ 

J 

~ 

J 

~ 

J 

~ 

~ 

'---
~ 

~ 

~ 

./ 

~ 

~ 

AdvMCed Un 01 Lis ts 1 1of9 

T RY is a list of three items. the list IA B CJ. the word D, and the list IE Fl. 

PRINT ,TRY 
IAB C] D IEF] 

Note how TRY is printed. Logo always prints lis ts wit hout the outermost pair 
of brackelS. 

The operations FIRST and LAST out pu t. as usual, the first and last items 
in a list. In a complex list these items may themselves be lists: 

PRINT FIRST :TRY 
A B C 
PRINT LAST , TR Y 
E F 

BUTFIRST outputs the list consisting of all elements by the first, and 
BUTLAST outputs the list consisti ng of all elements but the last: 

PRINT BUTFIRST :TRY 
DIE F] 
PRINT BUTLAST :TRY 
IA B C] D 

Keep in mind that the operations output, in general, new lists, to which 
you can apply fun her operations. For example, 

FIRST FIRST :TRY 

is the first item of the first item of TR Y. which is the first item of IA B CJ, 
which is A. 

FIRST LAST :TRY 

is the first item of the last item of TRY, which is the first item of IE FI, which 
is E. 

FIRST BUTFIRST :TRY 

is the first item of the but first of TRY, which is the fi rst item of ID IE FII, 
which is D. (In general. FIRST of BUTFIRST of any list is the second item of 
the list.) 

FI RST BUTFIRST LAST :TR Y 

is the FIRST of the BUTFIRST of the LAST of TRY, which is the FIRST of 
the BUTFI RST of IE FI, which is F. 

The four operations FIRST, LAST, BUTFIRST, and BUTLAST are used for 
extracting pieces of lists. To combine lists into more complex lists, we have 
the Logo operation FP UT. FPUT takes two inputs, of which the second must 
be a list. It puts its first input at the beginning of its second input; that is, it 
outputs a list whose FIRST is the firs t input and whose BUTFIRST is the 
second inpue 



150 I T I LOGO 

PRINT FPUT "A [0 E F[ 
ADEF 
PRINT FPUT [AI [0 E FI 
{A}DEF 
PRINT FPUT [A 8 C[ [0 E FI 
{ABC}DEF 

LPUT is si milar to FPUT, except that it installs its first input as the las/ 

item in the list: 

PRINT LPUT .. A 10 E FJ 
DEFA 
PRINT LPUT [AI [0 E FJ 
DEF[A} 
PRINT LPUT [A 8 C[ [0 E FJ 
DEF[ABC} 

The Logo operation SENTENCE, which we previously used to combine 
words into lists, can also be used with more complex lists. if SENTENCE is 
given a number of lists as inputs, it combines all o f the elements o f the lists 
into a single list: 

PRINT SENTENCE [A [8 CII [0 E FJ 
A[BC}DEF 

This description of SENTENCE makes sense only when all of the inputs to 
SENTENCE are themselves lists. In order to make this consistent wit h our 
previous definition of SENTENCE for combining words into lists we extend 
the definition as fo llows: if one of the inputs 10 SENTENCE is a word, then 
you replace that word by the one-item list containing that word , and then 
apply the definit ion of SENTENCE given above. For example: 

(SENTENCE " A " 8 " C l 

gives the same resu lt as 

(SENTENCE [AI [81 [c[l 

which is the list [A B C]. 

SENTENCE " A 18 [C Oil 

gives the same result as 

SENTENCE [AI [8 [C Oil 

which is the list IA B IC OJ] . In general, SENTENCE :X :Y gives the same 
result as FPUT :X:Y if:X is a word and:Y is a lisl.2 

Usi ng FPUT, you can construct a useful operation called LIST that takes 
two inputs and combi nes them into a list of two items. LIST works by fir st 

21f you Ire ;nl< ... 'sl«1 only in combi"in, .... ords illlO lim 10 M prinled (as in mOSl ~lemenluy Lo,o programs). 
lhm SENTENCE is lhe only o"",,alion you .......:I for «on!!",,,,ins liJ ... . Io"·~'·~r • ..-h~n you ne in«rC$,cd;n 
us,nS lisu as hierarchical dala SlructurC$. you n«d Ihe (lner comrol pro~;ded by FPUT and LPUT. For 
example. ,I i. al,,'ayl lrUelhal :X if lhe firsl Mm of FPUT :X :Y. Bu, 'hil is no, 'he ca.., ,,·i,h SENTENCE. 

For inSlana, if :X il [A B C) and :Y is 10 El. then the (jUI ilem of SENTENCE :X :Y ;llhe v.'Ofd A. 

~ 

~ 

~ 

'-' 
'-" 

'-' 

'-' 

'-' 

'-' 

~ 

~ 

"-

'-" 

'-

V 

~ 

V 

'-' '--' 

'-" 

'-' 

'-' 

'--' 

'-I 

~ 

'-' 

'-' 

'-

V 

~ 

V 

V 

'-' '-' 

-.../ 

'--' 

'-



11.1.2. Example: Association Lists 

AdvancMI UN of U",115t 

combining its second input with the empty list using FPUT. This creates a one 
element list whose only element is the original second input. Next, the first 
input of LIST is combined with this one-element list to produce a 
two-element list. 

TO LlST :A:B 
OUTPUT FPUT :A (FPUT :B I)) 
END 

PRINT LIST IA BIIC DI 
fA BIIG OJ 

One particularly simple form of list is a list of pairs. which can be used to 
represent simple tables in which values are associated to things: 

MAKE " TABLE' ((COLOR PURPLE) 
ISIZE HUGE) 
IWEIGHT I' TON))) 

Such a list of pairs is called an association list. The first item in each pair is 
referred to as the key. and second item is the corresponding value. The most 
importanl function for operating on tables represented as association lists is 
LOOKUP. which outputs the value corresponding to a given key: 

PRINT LOOKUP "SIZE :TABLE' 
HUGE 

LOOKUP is implemented by means of an auxiliary function called ENTRY, 
which outputs the pair in which the key occurs, or outputs the empty list if 
there is no such pair in the table. LOOKUP then outputs the second item in 
the ENTRY, or signals an error if the key was not found. ENTRY is 
implemented by scanning down the list in the usual fashion:] 

TO ENTRY :KEY :TABLE 
IF :TABLE ~ I) OUTPUT I) 
IF :KEY ~ (FIRST FIRST :TABLE) OUTPUT (FIRST :TABLE) 
OUTPUT ENTRY :KEY (BUTFIRST :TABLE) 
END 

LOOKUP is implemented as 

TO LOOKUP XEY :TABLE 
MAKE " PAIR ENTRY :KEY :TABLE 
IF PAIR ~ I) PRINT IERROR KEY NOT IN TABLE) 
OUTPUT LAST :PAIR 
END 

Another use for association lists that arises in symbol manipulation is for 
substituting values from a table. The following SUBST procedure takes a list 
and a table as inputs. For each item in the list that is a key in the table, it 
replaces the key by the corresponding value. For example, with TABLE1 as 
above, you would have: 

]11Iil;1 Y~y l imilar 10 lh~ MEMBER? procalur~ on Pa&~ 141. 



1S21TI LOGO 

PRINT SUBST IHE IS COLOR AND WEIGHS WEIGHTI :TABLE' 
HE IS PURPLE AND WEIGHS {1 TON] 

To define SUBST, we'll begin by writing a procedure SUBST.ITEM that 
takes an item and a table as input . If the item is a key in the table, then 
SUBST.lTEM Outputs the associated value. Otherwise it outputs the o riginal 
item. Notice that this is almost the same as LOOKUP except that it returns 
the original item instead of signaling an error if the item is not in the table. 

TO SUBSl]TEM :ITEM :TABLE 
MAKE " SUBST.PAIR (ENTRY :ITEM :TABLE) 
IF :SUBST.PAIR ~ II OUTPUT :ITEM 
OUTPUT LAST :SUBST.PAIR 
END 

The SUBST procedure itself is implemented by performing SUBST.ITEM 
on each item in the list, and outputting the list of the results: 

TO SUBST :L1ST :TABLE 
IF :L1ST ~ II OUTPUT II 
OUTPUT FPUT (SUBST.ITEM (FIRST :L1ST) :TABLE) 

(SUBST (BUTFIRST :L1ST) :TABLE) 
END 

Properlies 
One way to think of an association list is as a collection o f the attributes. 

or "properties ," of some object: 

MAKE "SUPERGRAPE 
IICOLOR PURPLE) ISIZE HUGEIIWEIGHT I' TONIII 

These attributes can be recovered by using the LOOKUP procedure given 
above. More abstract ly, we can forget about the list o f pairs, and imagine 
that we have a procedure PUTPROp, which associates a given property value 
to a given symbol. For example, 

PUTPROP "SUPER .GRAPE "COLOR "PURPLE 

would associate to the symbol SUPER.G RAPE a COLOR property whose 
value is PURPLE . A corresponding procedure GETPROP would be used to 
retrieve a property value, so that, for example, 

GETPROP "SUPER.GRAPE "COLOR 

would ret urn PURPLE . A typical program that uses properties to manage 
information might contain a line such as 

PRINT (SENTENCE [THE COLOR OFI 
:ITEM 
[IS) 
(GETPROP :ITEM " COLOR II 

PUTPROP and GETPROP are readily implemented in terms o f 
association lists, but in some applications, it is better to use other methods 

'-" 

'-" 

'-' 
'-' 

'-" 

'-' 

'-' 

~ 

~ 

-
'-' 

'-' 

-...J 

'-' 

~ 

'-' 

'-../ '--' 

'-" 

v 

v 

'-' 

'J 

'-' 

'-/ 

'-/ 

'-/ 

'-/ 

'-' 

V 

'-' '-' 

'-' 

'-' 

'-' 



~ 

~ 

~ 

~ 

./ 

~ 

~ 

-' 

~ 

./ 

" 
J 

-' 
'--

-' 

-
-' 11 .2. Programs as Data 

./ 

-' 

11.2.1. The RUN Command 

-' 

AdVIlICed U .. 01 LI,,, 1153 

for representing properties. In particular, if there are many attributes in a 
table, performing a LOOKUP will be slow, due to the need to scan a long list. 
An alternative way to implement properties in Logo, which allows fast access 
to large tables, is as follows. To associate a property to a symbol, you 
combine the symbol, the property, and a separator character (e.g., II) to form 
a new word. Then assign to this word the designated property value. For 
example. to perform the association 

PUTPRQP "SUPER.GRAPE "COLOR "PURPLE 

you execute the MAKE command: 

MAKE "SUPER.GRAPE#COLOR "PURPLE 

In general, PUTPROP is implemented using this scheme as: 

TO PUTPRQP :SYMBOl :PROPERTY :VAlUE 
MAKE WORD :SYMBOL 

END 

(WORD "# :PROPERTY) 
:VALUE 

and the corresponding GETPROP procedure is: 

TO GETPROP :$YMBOL :PROPERTY 
OUTPUT THING WORD :SYMBOL 

WORD "II :PROPERTY 
END 

Note that these procedures rely on Logo's ability to assign a value to a 
symbol that is the result of some computation, rather than typed in literally 
as is almost always the case with MAKE. Compare the "tricky use of MAKE" 
shown on page 86. 

One important kind of hierarchical structure that arises in programming is 
the structure of a program itself. A Logo procedure can be thought of as a 
list of lines each of which is a list of words. Using Logo lists, you can write 
programs that manipulate other programs. The basic Logo primitives that 
enable you to do this are RUN, which executes a list as a Logo command 
line; DEFINE, which constructs a procedure from list data: and TEXT, which 
outputs the representation of a procedure. This sect ion explains how these 
operations work in the context of an extended example-increasing the 
capabilities of the simple INSTANT program that was introduced in Sect ion 
8.2 .1. 

The Logo command RUN takes a Logo list as input and executes the list as 
if the list were a command line typed at the keyboard. For example: 

RUN (PRINT (HELLO THERE( 
HELLO THERE 

RUN LIST " PRINT (HELLO THERE] 
HELLO THERE 
MAKE "COMMAN D " PRINT 
MAKE "INPUT (HELLO THERE] 
RUN LIST :COMMAND :INPUT 
HELLO THERE 



1MITIlOOO 

Example: Exlendlnglhe INSTANT Progl'llm 
Another situation in which RUN is useful is where you want to build up a 

list of commands to be executed later. As an example, consider the INSTANT 
program of Section 8.2.1: 

TO INSTANT 
COMMAND 
INSTANT 
END 

TO COMMAND 
MAKE "COM READCHAR 
IF ,COM _ " F FORWARD 10 

IF ,COM - " R RIGHT 30 
IF ,COM s " L LEFT 30 
IF ,COM s " C CLEARSCREEN 
END 

Suppose you want to add an " undo" feature to the system. That is, typing 
F, L, and R at the keyboard will cause the turtle to move forward, left, and 
right as before. (n ·addition, typing U will cause the turtle to undo its 
previous move. 

You can implement the undo operation as follows. As the user of the 
INSTANT system gives commands, the INSTANT program will not only move 
the turtle, but will also remember the turtle motions that were done by saving 
them in a list. Then, when the user wishes to undo the last command, 
INSTANT will clear the screen, remove the last command from the list, and 
reprocess the remaining commands.4 

To implement this strategy lei 's assume you store the turtle commands in a 
list called HISTORY. For example, if the user types F and then R, HISTORY 
will be 

([FORWARD 10llRIGHT 3011 

Notice thai HISTORY is a list of lists, in which each enl ry is the Logo 
command that should be run to cause the appropriate turtle motion. 

The main operation needed now is to take a turtle command and not only 
do it, but also add it to the HISTORY list. This can be accomplished by 

TO RUN.AND .RECORD :ACTION 
RUN :ACTION 
MAKE " HISTORY (LPUT,ACTION ,HISTORY) 
END 

LPUT is used to add the new command as the last item in HISTORY. 
Now change the COMMAND procedure to RUN .AND.RECORD the 

appropriate response to each key: 

4n.cre Ire. of course. ml ny Oi lier "'1)'1 10 implemonllhe undo ope1l1ion. OM IdVlnt.,e of 1M way chosen 
hero ;' thl! ,t u lond. nicely '0 . lIowin, lhe use, of ,he INSTANT Iyot .... 10 ddi ... ",o"am •. a. we . h. 1I ICC 
in Se<:lion 11 .2.2. 

~ 

'-' 

~ 

'-' 
'--' 

'-' 

'-' 

'-./ 

'-' 

'-' 

'-' 

'-' 

~ 

~ 

'-' 

'-' 

~ 

'--' '-' 

-.J 

~ 

'-' 

-J 

'--' 

'--' 

'--' 

'-' 

~ 

'--' 

'--' 

'-' 

'--' 

\.J '-' 

-J 

'-' 

'-



~ 

~ 

/ 

'---

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

-
/ 

-
/ 

/ 

~ 

-' 

TO COMMAND 
MAKE 'COM READCHAR 
IF :COM - 'F RUN.AND.RECORD (FORWARD 10( 
IF :COM - 'R RUN.AND.RECORD (RIGHT 301 
IF :COM - 'L RUN.AND.RECORD (LEF1301 

AdY,no.d U .. of LIlt:l11~ 

IF :COM - 'C RUN.AND.RECORD (CLEARSCREEN( 
END 

Now. to undo the last command. you remove the last item from HISTORY, 
clear the screen. and run the rest of the commands: 

TO UNDO 
IF :HISTORY - II STOP 
MAKE 'HISTORY BUTLAST :HISTORY 
CLEAR SCREEN 
RUN.ALL :HISTORY 
END 

Note the first line of UNDO. which says that if the HISTORY list is empty, 
there is nothing to undo. Also note that with this implementation, repeatedly 
executing UNDO keeps removing more and more items from HISTORY. 
starting with the last one, the one before that, and so on. 

The subprocedure RUN.ALL takes a list of commands as input and runs all 
the commands in the list in sequence. (Each command in the list must itself 
be a list.) RUN.ALL uses a recursive strategy. It RUNs the first command in 
the list and then processes the BUTFIRST of the list. 

TO RUN.ALL :COMMANDS 
IF :COMMANDS - (I STOP 
RUN FIRST :COMMANDS 
RUN.ALL (BUTFIRST :COMMANDS) 
END 

Now all you need to do is add a line to the COMMAND procedure so that 
pressing U causes an UNDO operation: 

TO COMMAND 
MAKE ' COM READCHAR 
IF :COM - ' F RUN.AND.RECORD (FORWARD 10( 
IF :COM - ' R RUN.AND.RECORD (RIGHT 301 
IF :COM • ' L RUN.AND.RECORD (LEF1301 
IF :COM _ 'C SETUP 

IF :COM • ' U UNDO 
END 

The complete INSTANT program now simply clears the screen and 
repeatedly calls COMMAND. You also need to initialize HISTORY to be 
empty: 

TO SETUP 

MAKE ' HISTORY II 
TELL TURTLE 
CLEARSCREEN 
INSTANT 
END 



156fT! lOGO 

11.2.2. The DEFINE Command 

TO INSTANT 
COMMAND 
INSTANT 
END 

SETUP has been added to COMMAN D in place of RUN .AND.RECORD 
(CLEARSCREEN]; now when you clear the screen by typing C, HISTORY is 
reinitialized as well. 

In addition to using Logo list operat ions to generate individual command 
lines that can be RUN , you can also write procedures that define other 
procedures. This is done with the DEFINE command. DEFINE (shorl form 
DE) takes two inputs. This first is the name of the procedure to be defined. 
The second input is a lisl of lists organized as follows. The first sublist gives 
the inputs to the new procedure , and there is one additional sublist for each 
procedure line. For example, 

DEFINE "TRY II'X ,YIIPRINT ,X][PRINT ,Y][ 
PO TRY 
TO TR Y:X:Y 
PRINT:X 
PRINT:Y 
END 

DEFINE " GREET IIllPRINT IHELLOlll 
PO GREET 

TO GREET 
PRINT (HELLO] 
END 

Observe that if the procedure is to have no inputs (as in GREET above), 
the DEFINE list must include an initial empty list for the input speci fication. 
Note also that there is no END included in the list of procedu re lines. 

Example: Another Extension to INSTANT 
Most of the time, of course, you use TO rather than DEFINE to create 

Logo procedures. DEFINE is reserved for those situations in which you want 
procedure definition to happen within a program. As an example of this, 
we'll consider anot her extension 10 the INSTANT system of Section 11 .2.1. 
This time, we' ll allow the user of INSTANT to name drawings and to recall 
them by name. For example, we may use the letter S for saving drawings. 
Typing S (for "save") will cause the program to ask the user for a name 
for the drawing. Later on, the user can ask for a previous drawing to be 
reshown, say by typing P for "picture." More than one drawing can be saved 
at once. each with its own name. 

You can implement this by having the INSTANT system save a drawing by 
defining the drawing as a procedure. using the name chosen by the user. The 
list of lines in the procedu re is precisely the HISTORY list that you have been 
using to keep track of what is on Ihe screen. Here is the procedure that 
implements this " learning" process: 

-.J 

'--" 

'-' 

~ 

~ 

'-' 

'-' 

'-/ 

'-./ 

~ 

'-./ 

'-' 

~ 

...., 

~ 

'-' 

'-' 

~ 

'-./ 

'-' 

J 

...., 

~ 

V 

'-./ 

'-./ 

'-./ 

-
~ 

~ 

'-' 

V 

~ 

-J 

~ 

~ 



--
~ 

-
~ 

/ 

~ 

~ 
~ 

~ 

TO LEARN 
PRINT [WHAT DO YOU WANT TO CALL) 
PRINT [THIS PICTURE?) 
MAKE " NAME (FIRST READLlNE) 
DEFINE ,NAME (FPUT [ ) ,HISTORY) 
END 

AdY&nelKl U .. of lI&I" 151 

The reason for tak ing the NAME of the procedure to be FIRST o f 
READLINE is that READ LINE always outputs the typed line as a list, and 
DEFINE needs the procedure name to be specified as a word. Also, note that 
the second input given to DEFINE is FPUT II :HISTORY, since you need to 
incl ude an empty input list for the procedure being defined. Also, you should 
make LEARN dear the screen and reinitialize HISTORY to prepare for a new 
drawing. 

The behavior of LEARN is now: 

WHAT DO YOU WANT TO CALL 
THIS PICTURE? 
> BOX 

There is now a procedure called BOX, which, when run , draws the picture 
thaI currently appears on the screen. 

Now you must add a command that as ks fo r an input line and runs it. This 
is accomplished by 

TO ASK 
PRINT [WHAT PICTURE DO YOU WANT) 
PRINT ITO SHOW?] 
RUN.AND.RECORD READLINE 
END 

Notice that the input READLINE line is both run and recorded. Note also 
that any Logo command could be input and executed, not just a call to a 
proced ure created by LEARN . 

Finally. you need only add the appropriate lines to the COMMAND 
procedure so that it will recognize the characters S (for save) and P (for 
picture) and run the appropriate procedures. 

The Complefe INSTANT System 
Here is a complete listing of the INSTANT system developed in the 

preceding sections: 

TO SETUP 
MAKE " HISTORY [J 
TELL TURTLE 
CLEAR SCREEN 
INSTANT 
END 

TO INSTANT 
COMMAND 
INSTANT 
END 



'-" 
158 / T I LOGO 

TO COMMAND 
--./ 

MAKE " COM READCHAR v 
IF :COM • " F RUN.AND.RECORD (FORWARD 10( '-.-/ 
IF :COM • " R RUN.AND.RECORD (RIGHT 30( '-' 
IF :COM • " L RUN.AND.RECORD (LEFT 30( 
IF :COM '" "C SETUP V 
IF :COM := "U UNDO 
IF :COM • " S LEARN '-' 
IF :COM • "PASK 
END ..... 

TO AUN.AND.RECORD :ACTION '-' 

RUN :ACTION 
MAKE " HISTORY (LPUT :ACTION :HISTORy) 

~ 

END 
'-' 

TO UNDO v 
IF :HISTORY • (( STOP 
MAKE " HISTORY BUTLAST :HISTORY ...., 
CLEARSCREEN 
RUN.ALL :HI$TORY '-' 

END 
'-' 

TO RUN.ALL :COMMANDS 
IF :COMMANDS • (I STOP -
RUN FIRST :COMMANDS 
RUN.ALL (BUTFIRST :COMMANDS) 
END 

~ 

'-' 
TO LEARN v 
PRINT (WHAT DO YOU WANT TO CALLI 
PRINT (THIS PICTURE?I '-' 
MAKE " NAME (FIRST READLlNE) 
DEFINE :NAME (FPUT ( I :HISTORY) '-' 
SETUP 
END v 

TO ASK --./ 

PRINT (WHAT PICTURE DO YOU WANT] 
PRINT (TO SHOW?I '-' 

RUN.AND.RECORD READLINE 
END '-' 

There are many possible modifications and improvements to this system. '-' 

For a good exercise in manipulating lists, consider the fo llo wing problem . A -typical HISTORY list to be assembled into a procedure might look like: 

'-' 
FORWARD 10 
RIGHT 30 ~ 

LEFT 30 
FORWARD 10 '-' 
RIGHT 30 

RIGHT 30 V 

RIGHT 30 '--' FORWARD 10 v 

FORWARD 10 ...., 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

./ 

~ 

~ 

~ 

~ 

~ 

./ 

~ 

11.2.3. The TEXT Command 

11.2.4. Adding New Programming 
Constructs 

"d~anced Use 01 LlSIS /159 

It would be nice if, before the HISTORY list is made into a procedure, it 
could be "compressed" so that the procedure that is defined would consist of 
the command sequence 

FORWARD 20 
RIGHT 90 
FORWAAD20 

Write a procedure COMPRESS that will perform this kind of transformation 
on a lisl of tunle commands. Once you have COMPRESS, the LEARN 
procedure can be rewritten as: 

TO LEARN 
PRINT [WHAT DO YOU WANT TO CALL) 
PRINT [THIS PICTURE?] 
MAKE "NAME (FIRST READLlNE) 
DEFINE :NAME (FPUT [ ) (COMPRESS :HISTORY)) 
SETUP 
END 

In some instances, it is useful 10 haye an "inverse operation" to DEFINE, 
that is. to be able to take a procedure that is already defined and to extract 
Ihe text o f the procedure so Ihat it can be manipulated as a list. This is done 
with the Logo command TEXT, which takes a procedure name as input and 
outputs the text of the procedure in the same format as is used in DEFINE. 

for example, assume that CORNER is defined as 

TO CORNER :A :B 
FORWARD :A 
RIGHT :B 
END 

Then TEXT "CORNER is the list 

II :A :B) [FORWARD :A) [RIGHT :B)[ 

Using TEXT. you can write procedures that examine and manipulate other 
procedures. 

The ability to use list operations to construct lists. and then to RUN these 
lists as commands, allows you to add new programming constructs to the 
basic Logo language. For instance, suppose you would like to have a WHILE 
command that can be used to keep repeating somethi ng over and over as long 
as some condition is true, as in: 

WHILE [XCOR < 20[ [FORWARD 1) 

Logo does not include WHILE as a primitive command. But you can use 
RUN to define your own WHILE command as a procedure that takes two 
lists as input s. The first list specifies a condition to be tested, and the second 
lisl specifies an action to be repeated over and over as long as the condition 
remains true. The WH ILE procedure fi rst tests jf the condition is true by 
RUNning the condition list. If the result is true, the WHILE procedure RUNs 
the action list. This sequence is repealed over and over: 



ltlO J T I LOGO 

TO WHILE :CONDITION :ACTION 
IF NOT (RUN :CONDITION) STOP 
AUN :ACTION 
WHILE :CONDITION :ACTION 
END 

As a more complex example , you can implement a FaA procedure that 
works as fo llows: 

FOR [COUNT 1 5) [PRINT :COUNT • :COUNT) 
1 
4 

9 
16 
25 

The FaA procedure takes two lists as inpulS. The first list is a " FaA list" 
that speci fies a loop variable together with its init ial and final values. The 
second input specifies an action that should be executed for all values of the 
loop variable between the initial and final values. To implement FaA, you 
extract fro m the FOR list the name of the variable and the init ial and fina l 
values, and pass these 011 to a subprocedure FaA. LOOP, which does the 
actual work of looping. It is convenient to wrile separate, shari procedures 
to exlract the parIS of the FOR list: 

TO VAR :FLlST 
OUTPUT FIRST :FLlST 
END 

TO INITIAL :FlIST 
OUTPUT FIRST BUTFIRST :FLlST 
END 

TO FINAL :FLlST 
OUTPUT LAST :FLlST 
END 

Then Ihe FOR procedure is written as: 

TO FOR :FlIST :ACTION 
FOR.LOOP (VAR :FLiST) 

(INITIAL :FlIST) 
(FINAL :FLlST) 
:ACTION 

END 

The FOR.LOOP procedure takes as inputs the variable, the initial and 
fi nal values, and the action to be RUN . It uses MAKE 10 set the variable to 
the initial value and RUNs the action. Then il repealS the sequence, with the 
initial value incremented by I. As a stop rule, FOR.LOOP tests to see 
whether the initial value has become greater than the fina l value. Here is the 
procedure: 

'-' 

,J 

-.J 

'-" 
'-' 

'-' 

'-' 

'-' 

~ 

~ 

~ 

'-' 

~ 

~ 

~ 

~ 

'-' '-

.J 

V 

~ 

'-' 

v 

~ 

-.J 

V 

'-' 

~ 

~. 

'-' 

'--' 

'-' -.J 

v 

'-

'-' 



11.3. More Projects Using Lists 

~ 

11.3.1, Example: The DOCTOR 

'- Program 

~ 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

./ 

J 

J 
'-..J 

J 

J 

./ 

TO FOR.lOOP :VAR :INITIAl :FINAl :ACTION 
IF :INITIAl > :FINAL STOP 
MAKE :VAR :INITIAl 
RUN :ACTION 
FOR.LOOP :VAR (:INITIAL + 1) :FINAL :ACTION 
END 

Advlnced Uee 01 lilts I 1111 

Note that in the second line of FOR.lOOP, you say MAKE :VAR, rather than 
MAKE "VAR, because the name of the variable being sct is the value 
associated with VAR, rather than the literal word VAR. For example, in 
executing the command 

FOR ]COUNT 1 51]PRINT :COUNT • :COUNT] 

the value of VAR is the word COUNT, and COUNT is the variable you want 
to set using the MAKE command. Compare the "tricky use of MAKE" shown 
on page 86. 

This section presents two open-ended projects that make use of Logo's 
capability to manipulate lists. The first project is a highly simplified version 
of a famous program called DOCTOR that was developed in the early 19605 
by Joseph Weizenbaum. The Logo implementation here uses the association 
list mechanism that was explained in Section 11.1.2. The second program is a 
Logo version of a well·known computer "learning" program called ANIMAL, 
which demonstrates how to use hierarchical list structures to keep track of 
information. 

The DOCTOR program engages in a "conversation" with the computer 
user, in which it mimics a nondirective style of psychotherapy. Here is a 
sample conversation: s 

DOCTOR 
WHAT SEEMS TO BE THE PROBLEM 

> EVERYONE HATES ME 
YOU SAY EVERYONE HATES YOU 

> WHEN I ENTER A ROOM NO ONE WILL LOOK ME IN THE EYE 
MANY PEOPLE HAVE THE SAME SORTS OF FEELINGS 

> THEY LAUGH AT ME BEHIND MY BACK 
YOU SEEM TO THINK THEY LAUGH AT YOU BEHIND YOUR BACK 

> EVEN MY MOTHER HATES ME 
YOU FEEL THAT EVEN YOUR MOTHER HATES YOU 

> EVEN WHEN I WAS A BABY SHE SAID I WAS ALWAYS BAD 
PLEASE CONTINUE 

51n orlkr to ~implify the program. all pUl>Cluation has b«n omiuN. AJ UJul.l, tht romputtr's typtOUt has 

b«n italkizt<l to distinguish it from the uw's fcsponSCII. 



162 I TI lOGO 

How the DOCTOR Progl"1lm Works 
Ailhough a t first glance, the DOCTOR program seems to understand and 

reply to the user 's remarks, in realit y it is doing nothing of the sort. In fact. 
the program has two simple methods for generating a response. The first 
method is to ignore what the user types and simply respond with some sort of 
hedge like PLEASE CONTINUE or MANY PEOPLE HAVE THE SAME 
SORTS OF FEELINGS. The second method involves taking the user's reply, 
changing some common words like " I," " me," and "am" to the 
corresponding second-person words and appending the transformed response 
to some qualifying phrase such as YOU SAY or YOU SEEM TO THINK. The 
program chooses one of these methods at random for each response. 

We' ll examine these two methods in turn . The first is very simple. What 
the program prints is just a phrase picked at random from a suitable list of 
hedges such as 

MAKE " HEDGES 
[ [PLEASE GO ON[ 

[PLEASE CONTlNUE[ 
[MANY PEOPLE HAVE THE SAME SORTS OF FEELlNGS[ [ 

The part of the program that imp[emenrs the first method is just6 

TO HEDGE 
PRINT PICKRANDOM :HEDGES 
END 

The second method is more complicated. You must take the user's typed-i n 
response, change the "I " words to the corresponding "you" words, and 
append this to a randoml y selected qualifier. To perform the " I-you" change, 
you can use the SUBST procedure in Section II.) .2, where the substitution 
TABLE of pairs is made up of first-person pronouns and their second-person 
counrerparts: 

MAKE " PRONOUNS III YOU[ [ME YOU[ [MY YOURI (AM AREII 

TO CHANGE-PERSON :PHRASE 
OUTPUT SUBST :PHRASE :PRONOUNS 
END 

$0 if the collection of qualifiers is given by 

MAKE " QUALIFY IIYOU SEEM TO THINKI 
(YOU FEEL THATI 
(YOU SAYII 

then the second type of response to the user's input is generated by 

TO RESPOND :USER.INPUT 
PRINT SE (PICKRANDOM :QUALlFY) 

(CHANGE. PERSON :USER.INPUT) 
END 

6Wt USOI' ho:rc lile P ICKRAN OOM proctdurc lPait 143). Notict [hat al[houah we deiliJled P IC KRAN OOM [0 

pick a random word from. lisc of words. the l ..... raJily of 1"" lolO lisc operalioni FIRST and BUTFIRST 
CII$Urc5 Ihalthe same proctdurc abo "" ark, [0 pkk . random dtmcnl from any lisc. 

~ 

~ 

~ 

~ 

'--" 
'-' 

'-' 

-./ 

'-./ 

~ 

~ 

'-' 

'-./ 

~ 

'-./ 

'-' 

~ 

...J 
~ 

'-' 

'-' 

oJ 

'--' 

-./ 

'--' 

oJ 

oJ 

'--' 

~ 

'-' 

..., 
'-' 

'--" '-' 

~ 

'-

~ 



~ 

~ 

~ 

'--./ 

~ 

~ 

~ 

J 

~ 

J 

J 

J 

~ 

J 

J 

J 

J 

J 

'-

J 

J 

-' 

~ 

J 

J 

J 

~ 

~ 

~ 

J 

.-
~ 

AdYlnced UM of Llst, ' le3 

Now you can put both methods together. You can select between the 
methods at random, using the test IF (RAND 2) ::: 010 generate TRUE or 
FALSE with equal chances. 7 You can also terminate the conversation if the 
user types GOODBYE: 

TO DOCTOR.LOOP 

MAKE · USER.INPUT READLINE 
IF :USER.INPUT ~ JGOODBYEj 

PRINT JCOME SEE ME AGAINj STOP 
IF (RAND 2) ~ 0 HEDGE ELSE RESPOND :USER.INPUT 
DOCTOR.LOOP 
END 

All that is missing now is a procedure DOCTOR to stan things going. This 
should initialize the lists QUALIFY, HEDGES, and PRONOUNS used above, 
print an opening remark, and call DOCTOR. LOOP: 

TO DOCTOR 
MAKE " QUALIFY IIYOU SEEM TO THINKj 

[YOU FEEL THAT) 
JYOU SAYII 

MAKE " HEDGES IIPLEASE GO ONj 
JPLEASE CONTINUEj 

JMANY PEOPLE HAVE THE SAME SORTS OF 
FEELINGSIJ 

MAKE " PRONOUNS III YOUjjME YOUjjMY YOURjjAM AREIJ 
PRINT JWHAT SEEMS TO BE THE PROBLEMj 
DOCTOR. LOOP 
END 

E"tending the Program 
The previo us program is only a simple sketch. One immediate extension 

you ' ll want to make is to increase its repertoire o f HEDGES and QUALIFY, 
so that the responses are more varied. Another idea is to upgrade the 
RESPOND procedure not only to change fir st person words to second 
person, but also second person to fi rst. For instance, if the user types 

YOU ARE NOT BEING VERY HELPFUL TO ME 

the program should respond with something like 

YOU FEEL THAT f AM NOT BEING VERY HELPFUL TO YOU 

Another idea is this. Every so o ften , the program should save away the user's 
response. Then, a few exchanges later, the program could say something like 
"Earlier you said that .. . " Still other ideas are to have the program select 
special responses, when the user mentions certain words, like "computer." 

By including more and more of these features, you can make the program's 
conversations quite elaborate. The responses of Weizenbaum's original 
DOCTOR program have been occasionally mistaken for those o f a real 
person, and this has led some people 10 advocate using such programs in the 

7UK Ih~ RAND prOCflluf~ from Sec:lion 6.2.2 . 



164ITI LOGO 

11.3.2. The ANIMAL Program 

treatment of psychiatric patients. Others, including Weizenbaum, maintain 
that this would be extremely unethical. For a further discussion of these 
points see Weizenbaurn's book (1 8). 

ANIMAL is a well-known computer program that asks the user to think of 
an animal and then tries to guess what animal it is by asking yes-or-no 
questions. Here is a sample session with the program: 

ANIMAL 
THINK OF AN ANIMAL. I WILL 
TRY TO GUESS II 
DOES IT HAVE LEGS? 
> YES 

IS ITA CAT? 
> YES 

LOOK HOW SMART I AM! 
LET'S TRY AGAIN . .. 
THINK OF AN ANIMAL. I WILL 
TRY TO GUESS II 
DOES IT HAVE LEGS? 
> NO 

DOES IT CRAWL? 
>YES 

IS IT A SNAKE? 

> YES 

LOOK HOW SMART I AM! 
LET'S TRYAGAIN. 

The cleverness of the program is that it learns from its mistakes. Here is 
what happens when it guesses incorrectly: 

DOES IT HAVE LEGS? 
> NO 

DOES IT CRAWL? 
>YES 

IS IT A SNAKE? 

> NO 

OH WELL, I WAS WRONG. 
WHAT WAS IT? 

> EARTHWORM 

-
~ 

..../ 

'-' 
......... 

'-' 

'-/ 

'-" 

'-' 

-
~ 

'-/ 

V 

'-' 

'-' 

'-' 

'-' 

'-' '-' 

'J 

'-' 

'--' 

'--' 

'-' 

'-' 

'--' 

'-./ 

v 

"-' 

'-' 

'-' 

'-' 

'-../ 

'-' 

~ 

v 



~ 

~ 

'-
~ 

~ 

J 

J 

J 

J 

J 

J 

J 

J 

J 

./ 

J 

J 

~ 

PLEASE TYPE IN A QUESTION 
WHOSE ANSWER 
IS YES FOR AN EARTHWORM AND 
NO FOR A SNAKE 
> DOES IT LIVE UNDERGROUND? 
LET'S TRY AGAIN . .. 

AdvallCed U .. 01 Uata l 165 

The next time the program runs across this silUation it will behave like this: 

DOES IT HAVE LEGS? 
> NO 

DOES IT CRAWL? 
> YES 

DOES IT LIVE UNDERGROUND? 

So the program becomes smarter and smarter as it is used more and more. 

How the ANIMAL Program Works 
The key to the program is its knowledge st ruct ure. This can be thought of 

as a tree, as shown in Figure 11.2. The Iree is made up of "nodes," where 
each node consists of a QUESTION to ask, a YES. BRANCH to follow if the 
answer to the question is yes, and a NO. BRANCH to fo llow if the answer is 
no. 

DOES IT HAVE LEGS? 

7~ COl ?C~ 

SNAKE FISH 

Figure tt.2: Knowledge tree for the ANIMAL program. 

The basic operation o f the program is to begin al the top node of the tree 
and work its way down, following the YES. BRANCH or the NO. BRANCH 
according to the answer to the QUESTION . If the program reaches a node 
that consists of only a single item, it guesses thai as the animal. 

When the program guesses incorrectly, it "gets smarter" by expanding the 
tree . It asks the user for the correct response and a question that 
distinguishes the correct response from the incorrect response. It then 
replaces the old single-item node by a new node made up of the user's 
question, the correct response as the YES. BRANCH and the old incorrect 



lef1l T I LOGO 

response as the NO. BRANCH. For example, to learn the difference between 
a snake and an earthworm, Ihe program expands the tree, replacing the 
SNAKE node by a node whose OUESTION is DOES IT LIVE 
UNDERGROUND?, whose YES. BRANCH is EARTHWORM, and whose 
NO.BRANCH is SNAKE.8 

ThaI's all there is to it. 

Using Lists 
The ANIMAL program can be conveniently written in Logo, because lists 

are just the right tool for representing Ihe knowledge tree. You can think of 
the tree as a list called KNOWLEGE that has three elements: a QUESTION, a 
YES. BRANCH, and a NO.BRANCH. Of course YES. BRANCH and 
NO.BRANCH may themselves be lists thaI have the same structure. And so 
you have su blislS and sublists, until you finally reach branches that are 
words, which give the ac!Ual animals to be guessed. 

Here is a Logo list that represents the tree shown in Figure 11.2: 

( IDOES IT HAVE LEGS?] 
CAT 
I lODES IT CRAWL?I 

SNAKE 
FISHII 

When snake is distinguished from earthworm, the list becomes 

I lODES IT HAVE LEGS?I 
CAT 
I lODES IT CRAWL?I 

I lODES IT LIVE UNDERGROUND?I 
EARTHWORM 
SNAKEI 

FISHII 

With the program 's knowledge st ructured in this way, you can extract the 
QUESTION. YES. BRANCH, and NO. BRANCH parts of a given node by 
using the following procedures: 

TO QUESTION:NODE 
OUTPUT FIRST ,NODE 
END 

TO YES. BRANCH :NODE 
OUTPUT FIRST (BUTFIRST ,NODE) 
END 

TO NO. BRANCH ,NODE 
OUTPUT LAST :NODE 
END 

To construct a node fro m the three constituent paris, we can usc the LIST 
procedure given in section 11.1.1 , as follows: 

Sor course. if'he user 'YP" ,n "',ong information. 'hen 'he 1»"000ram "'ill In Slupider ins,ead of Smarter. 
Also, 'h~ I>'osram ""~ shall d~"";t... below dMS nOl eh«~ for in"(msiste~t respOnses on ,he pari of 'h~ us<:<. 

E~lendinllhe prollram '0 do $(I is a good projrcl. 

~ 

v 

~ 

'-' 
-.J 

'oJ 

'-./ 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

~ 

'-' 

'-' 

~ 

'-../ 
'-' 

'-' 

'-' 

'-' 

'-' 

J 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

'--' 

V 

'-J ....., 

'-' 

....., 

V 



J 

J 

J 

-' 

J 

J 
~ 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J ~ 

J 

.... dY.need U .. 01 LlI '1 1167 

TO MAKE. NODE :QUESTION :YES.BRANCH :NO.BRANCH 
OUTPUT FPUT :QUESTION (LlST: YES.BRANCH :NO.BRANCH) 

The Main Procedure 
Here is the procedure that starts the program: 

TO ANIMAL 
PRINT [THINK OF AN ANIMAl. I WILLI 
PRINT [TRY TO GUESS IT) 
CHOOSE. BRANCH :KNOWLEDGE 
PRINT )LET'S TRY AGAIN ... ) 
ANIMAL 
END 

It prints the instructions. does the guessing, and continues this over and over. 
The real work is done by the CHOOSE.BRANCH procedure, which is meant 
to be called with a node as inpu!. It is in itially called with the node that is the 
entire KNOWLEDGE list of the program: 

TO CHOOSE.BRANCH :NODE 
IF (WORD? :NODE) GUESS :NODE STOP 
MAKE " RESPONSE ASK.YES.OR.NO (QUESTION :NODE) 
IF :RESPONSE : )YES) 

CHOOSE. BRANCH (YES. BRANCH :NODE) STOP 
CHOOSE.BRANCH (NO. BRANCH :NODE) 
END 

CHOOSE. BRANCH implements precisely the technique explained above. It 
asks the question associated with the node and then continues with the 
YES. BRANCH or the NO. BRANCH according to the result of the question. 
When it reaches a node that is a single word, it uses that as its guess. (The 
GUESS procedure, which actually makes the guess, is discussed below.) 
Notice how the "continues with ... " part of the strategy is implemented by a 
CHOOSE.BRANCH calling itself recursively using the appropriate branch as 
the new node. 

Asking Questions 
The followi ng procedure is used to ask a yes-or-no question. It takes the 

question as input and returns either (YESI or (NOI. 

TO ASK.YES.OR.NO :QUESTION 
PRINT :QUESTION 
MAKE" INPUT READLINE 
IF :INPUT : )YES) OUTPUT )YES) 
IF :INPUT : )NO) OUTPUT (NO) 
PRINT [PLEASE TYPE "YES" OR " NO" 1 
OUTPUT ASK.YES.OA.NO :QUESTION 
END 

If the user responds with something other than YES or NO, the procedure 
repeats the question, using the same "try agai n" method as with the 

READ NUMBER procedure on page 98. 



l&8 / TI LOGO 

"A" or "An" 
One nicety that the program must handle when making guesses is to 

distinguish between animal names that begin with vowels and those that do 
110t. If the guess if " snake," Ihe program should ask " Is it a snake?" while, if 
the guess is "ear th wo rm ," the program should ask " Is it an earthworm?" 
The following procedure helps to do this. It takes a wo rd as input and 
out puts a sentence consisting o f the wo rd preceded by "a" or " an " as 
appropriate: 

TO ADD.A.OR .AN :WORD 

TEST MEMBER? (FIRST :WORD) [A E IOU] 
1FT OUTPUT SENTENCE " AN WORD 
IFF OUTPUT SENTENCE " A WORD 

END 

The program uses the MEMBER? procedure described on page 143. 
Co mpare the BEGINS.WITH .VOWEL? procedure on page 143. 

Making a Guess 
When CHOOSE. BRANCH reaches a node with only a single animal, it 

calls the GUESS procedure with that animal as input. 

TO GUESS :ANIMAL 
MAKE " FINALQUESTION 

(SE [IS IT] (ADD.A.OR.AN :ANIMAL) I?]) 
MAKE " RESPONSE ASK.YES.OR.NO :FINAL.QUESTION 
IF :RESPONSE = [YES] 

PRINT [LOOK HOW SMART I AM!) STOP 
GE1:SMARTER :ANIMAL 
END 

GUESS first fo rmulates the appropriate " Is it (a or an) . . . ?" question and 
gelS the response. If the guess is correct , Ihe program brags about how smart 
it is and stops, returning eventua ll y to the ANIMAL procedure, which starts 
the next round . If the guess is wrong , the program must grow smarter. 

Gelling Smarter 
GeHing smarter consists, first of a ll , o f ask ing the user for the right animal 

and for a question that disti nguishes the right animal from the wrong one. 
Observe how the "a or an " choice is needed to construct the request fo r a 
question . 

TO GE1:SMARTER :WRONG.ANSWER 
PRINT [OH WELL, I WAS WRONG .] 
PRINT [WHAT WAS IT? J 
MAKE " RIGHTANSWER (LAST READLlNE) 
PRINT (PLEASE TYPE IN A QUESTION] 
PRINT [WHOSE ANSWER] 
PRINT (SENTENCE [IS YES FOR] 

(ADDAOR.AN :RIGHT.ANSWEB) [AND] ) 
PRINT (SENTENCE [NO FOR] 

(ADDAOR.AN :WRONG.ANSWER)) 
MAKE "QUESTION READLINE 

EXTEND.KNOWLEDGE :QUESTION 

END 

:RIGHT.ANSWER 
:WRONG.ANSWER 

~ 

'-" 

'-" 

V 
'-../ 

~ 

v 

~ 

'-' 

v 

~ 

'-' 

'-' 

'-' 

v 

'-' 

~ 

./ 

'-../ 
V 

V 

V 

'-' 

V 

J 

'--' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'--' J 

V 

~ 

'-' 



J 

J 

J 

~ 

J 

J 

J 

J 

J 

J 

J 

-' 
./ 

J 

J 

J 

J 

J 

'-
J 

J 

J 

J 

J 

J 

J 

J 

J 

-
J 

J 

J 

J '-' 

J 

J 

J 

Ad'v.ne.d UM 01 Llete / 188 

Once the new question and the two answers are in hand, the program 
proceeds to extend its knowledge. The KNOWLEDGE list is extended by 
replaci ng the old node-consist ing of just the old answer-by a branching 
node consisting of a new Question with the new animal as the YES. BRANCH 
and the o ld question as the NO . BRANCH. 

TO EXTEND.KNOWLEDGE :NEW.QUESTIQN :YES.ANSWER :NO.ANSWER 
MAKE " KNOWLEDGE 

END 

REPLACE :KNOWLEDGE 
:NO.ANSWER 
(MAKE.NODE :NEw.aUESTION 

:YES.ANSWER 
:NO.ANSWER) 

Finally, there is the procedure thai does the actual replacement . This takes 
as inputs: 

• A list that represents a tree of 
QUESTION-YES. BRANCH- NO. BRANCH nodes 

• A node to be replaced 

• The thing to replace it with 

The output of REPLACE is a copy of the tree with the old node replaced by 
the designated replacemenl . 

TO REPLACE :TREE :NODE :AEPLACEMENT 
IF :TAEE '" :NODE OUTPUT :REPLACEMENT 
IF WORD? :TAEE OUTPUT :TREE 
OUTPUT (MAKE. NODE QUESTION :TREE 

END 

REPLACE (YES.BRANCH :TREE) 
:NODE 
:REPLACEMENT 

REPLACE (NO.BRANCH :TREE) 
:NODE 
:AEPLACEMENT) 

REPLACE is the most difficult procedure in the ANIMAL program. It uses a 
recursive strategy somewhat as in the SUBST procedure (Section 11. 1.2), but 
more complicated. The idea is that if the tree itsel f is the node to replace, you 
output the replacement. Otherwise, the new tree should be for med fro m the 
original tree's QUESTIO N, toget her wit h the resul t of perfor ming the 
replacement recursively in the YES. BRANCH and the NO.BRANC H. This 
red uces the substitution to operations on smaller and smaller subtrees of the 
origi nal. Finally, when you reduce to nodes that a re individual words, you 
should output the words themselves. 

Running the Program 
Figure t 1.3 shows the structu re of procedure calls for the entire ANIMAL 

program. 



t70IT! LOGO 

ANIMAL 

1 
CHOOSE ,BRANCH 

1 ____ 
GUESS QUESTION 

~I 
YES . BRANCH 
NO . BRANCH 

'" .,.,,'" 
ASI( . YES . OR~ ----,-----=:::: 

EXTEND . KNOWLEDGE ADD . A . OR.AN 

j 
REPLACE 

Figure 11.3: Structure of procedure caliS in the ANIMAL program. 

To run the program , you initialize the KNOWLEDGE list to any animal 
you like , and run the AN IMAL procedure. For example, 

MAKE " KNOWLEDGE " FISH 
ANIMAL 

When you are done with your session, you can save your workspace, which 
will include the final value of the KNOWLEDGE tree. Thus when you read in 
the program to play with it the next time, the wisdom gained during previous 
sessions will not be lost. 

Modifications 
ANIMAL is a lot of fun to use as it is, especially as you begin to input 

funny animals and outrageous questions. There are also many good projects 
that arise from extending the program's capabilities. One idea is to vary the 
responses that the program gives. Another is to have the program request not 
a literal yes-or-no question, but rather a fact that disti nguishes between the 
two animals. Then the program can use this fact to generate its own 
question. This requires that you build in some knowledge about grammar, 
somewhat like the capabili ties in the DOCTOR program . Finally-and this is 
really open-eoded-you can try to make the program smart enough to 
distinguish legitimate responses fro m wisecracks. Here is a sample dialogue 
with a more sophisticated animal program:9 

DOES IT HAVE HORNS? 
YES 

IS IT A BUFFALO? 
NO 

WELL, I'M NOT TOO SHARP TODAY. I GIVE UP. 
JUST WHAT KIND OF BEAST DID YOU HAVE IN MIND? 
A GAZELLE 

TELL ME SOMETHING ABOUT A GAZELLE THAT IS NOT TRUE ABOUT A 
BUFFALO 
A GAZELLE IS GRACEFU L 

9rh~ d;al08~e giv~n heT~ is with a program by B. Gr~nb<-rl [II) . 

~ 

'-' 

~ 

v 
'--' 

'J 

'-' 

'-' 

'-' 

'-' 

'-' 

v 

'--' 

~ 

'-' 

'-' 

>../ 

>../ 

'--' '-' 

'J 

'-' 

'--' 

'-' 

~ 

'-' 

'-' 

'-' 

V 

'J 

'-' 

'-' 

'J 

'--' V 

'-' 

~ 

'--' 



~ 

Advanced UN 01 Lllta l Hl 

~ 

THAT WAS FUN. WANT TO TRY AGAIN? 
MAYBE 

'-' HEY, CAN YOU GIVE ME A YES OR NO ANSWER 
~ YES 

~ DOES IT HAVE HORNS? 
NO 

~ 

IS IT A BUTTERFLY? 
~ NO 

~ WELL, I'M NOT TOO SHARP TODAY. J GIVE UP JUST WHAT KIND OF 
BEAST DID YOU HAVE IN MIND? 

~ 

A PIG 

~ TELL ME SOMETHING ABOUT A PIG THAT IS NOT TRUE ABOUT A 
BUTTERFLY 
A PIG IS SLOVENLY 

-' THAT WAS FUN. WANT TO TRYAGAIN? 

~ YES 

~ 
ODES IT HAVE HORNS? 
NO 

IS THIS ANIMAL SLOVENLY? 
YES 

IS ITA PIG? 
~ 

'-' YES 

~ HEY, HEY, I SURE AM CLEVER, HUH? 
THAT WAS FUN. WANT TO TRYAGAfN? 

~ 

YES 

-' DOES IT HAVE HORNS 
YES 

~ 

IS THIS ANIMAL GRACEFUL? 
-' YOU ARE NOT GRACEFUL 

HEY CAN YOU GIVE ME A YES OR NO ANSWER? 
~ 

NO 

~ 

IS IT A BUFFALO? 
NO 

~ 

~ 
WELL, I'M NOT TOO SHAAP TODAY. I GIVE UP. 
JUST WHAT KIND OF BEAST DID YOU HAVE IN MIND? 

~ 
BULL 

~ 
TELL ME SOMETHING ABOUT A BULL THAT IS NOT TRUE ABOUT A 
BUFFALO 

~ WHY DON'T YOU TELL ME SOMETHING, YOU ELECTRONIC MORON? 
AW, BE SERIOUS. f ASKED YOU A REAL OUESTION 

~ IT WOULD MARRY A COW 

~ '-' 

-' 

~ 

-' 



'--' 

v 

v 

.~ 

v 

'--' 

v 

v 

~. 

v 

v 

'--' 

v 

'-.J v 

v 

v 



~ 

~ 

~ 

~ 

~ 

"" 
~ 

~ 

"" 
J 

~ 

'-

~ 

~ 

"" 
~ 

"" 
~ 

~ 

~ 

~ 

~ 

~ 

~ 

-
~ 
~ 

~ 

~ 

"" 

12.1. Graphics Commands 

Glo,,,1Y 01 Logo Primitive Commands /113 

CHAPTER 12 

Glossary of Logo Primitive Commands 

This chapter lists the primitive commands incl uded in the TI Logo system 
together with their abbreviations and examples of how many of them are 
used. As in the rest of this book, when we wish to emphasize the distinction 
between what the user types and what the computer responds, we have 
primed the latter in italics. 

These a rc Logo's com mands for controlling the graphics screen using the 
turtle, sprites, and tiles. 

BACK Abbreviated BK 
Example: 

BACK 100 
{turtle moves backward 100 units} 

Takes one number as input and moves the active turtle or sprite thai many 
units in the opposite d irection from which it is faci ng. 

BACKGROUND Abbreviated BG 
Example: 

TELL BACKGROUND 
SETCOLOR :RED 
{screen background will now be red} 

Used wit h TELL to di rect graphics commands to the background . 

BIG Takes no input. Changes all sprite 32 X 32 units on a side, rather than their 
usual 16 x 16 size. See SMALL and S IZE. (Not included in the first release 
of T! Logo.) 

CARRY Example: 

CARRY:TRUCK 

{active sprite now has the TR UCK shape (number 2)} 

Takes one numeric input in the range 0 through 25. (Numbers outside this 
range will be red uced modulo 26, that is, red uced to the remainder after 
dividing by 26.) Tells the active sprite to "carry" the corresponding shape. 

CLEARSCREEN Abbreviated CS 
Takes no inputs. Clears the screen. 

COLO R Takes no inputs. O utputs the color number of the active sprite or ti le. If the 
turtle is active, outputs the turtle's pen color. 

COLO R BACKGRO UND Abbreviated CB 

Example: 

COLORBACKGROU NO :B LUE 
is equivalent to 

TELL BACKGROU ND SETCOLOR :BLUE 

except that it does not alter the active sprite, as does using TELL. 
COLORBACKGROUND takes one numeric input in the range 0 through 15. 



1741TI LOGO 

(Numbers outside this range will be reduced modulo 16, that is, reduced to 
the remainder after dividing by 16. ) It sets the screen background to the 
corresponding color. 

DOT Example: 

DOT 3030 

Takes two numeric inputs, x and y coordi nat es, and places a dot at the 
designated point on the turt le screen. 

EACH Example: 

TELL :ALL 
EACH [SETHEADING 10 • YOURNUMBERI 

Takes a list of commands as inpulS, and runs the list for each active sprite. 

The operation YOURNUMBER when used within the lisl returns the number 
of the sprite. 

FORWARD Abbreviated FD 
Example: 

FORWARD 50 
{turtle or sprite moves forwa rd 50 units} 

Takes one numeric input. Moves the cu rrentl y active turtle or sprite the 
designated number of units in the direction in which it is facing. Draws a line 
if the turtle's pen is down. 

FREEZE Takes no inputs. Slaps mot ion of all sprites on the screen. Malian is resumed 
wilhTHAW. 

HEADING Example: 

SETHEADING HEADING + 10 
{rotates Ihe turtle \0 degrees clockwise} 

Takes no inputs. Outputs heading of the currently active turtle or sprite as a 
number between 0 and 360. 

HIDETURTLE Abbreviated HT 
Takes no inputs. Makes the turtle pointer disappear. 

HOME Takes no inputs. Moves Ihe turtle to the center of the screen, pointing 
straight up. Moves the active sprite to the center of the screen without 
changing the headi ng. 

LEFT Abbreviated LT 
Example: 

LEFT 90 
{turtle rotates 90 degrees counterclockwise} 

Takes one numeric inpuL Rotates the currently act ive turtle or sprite that 
many degrees counterclockwise. 

LOOKLIKE Takes one numeric input. Synonym for CARRY. 

MAKECHAR Abbreviated MC 
Takes one numeric input in the range 0 through 255. (Numbers outside this 
range will be reduced modulo 256, that is, reduced to the remainder after 

'-' 

'-' 

'-' 
'--' 

J 

'-' 

V 

J 

V 

J 

V 

'-' 

V 

V 

'-' 

V 

v 

~ 

'-' 
V 

'-' 

v 

v 

'-' 

V 

'-' 

V 

V 

'-' 

'-' 

v 

V 

'--' '-' 

V 

~ 

v 



~ 

Glon. ry 01 l ogo Primitive Command. 11 75 

~ 

dividing by 256.) Enables you to defi ne or edit the correspondi ng character 
sha pe. See Section 4.3. 

~ 

> MAKE$HAPE Abbreviated MS 

Takes o ne numeric input in the range 0 through 25 . (Numbers outside this 
range will be reduced modulo 26, that is, reduced by the remainder a fter 
dividing by 26.) Enables you to define or edit the corresponding sprite shape. 
See Section 4.2. 

NOTURTLE Takes no inputs. Exits turtle mode. 

NUMBEROF Example: 

~ PRINT NUMBEROF WHO 

Takes onc input. Usually used in conjunct ion with WHO to re!Urn Ihe 
number of the active sprite. 

~ 
PENDOWN Abbreviated PO 

Takes no inputs. Causes the turt le 10 leave a trail when it moves. 

~ 
PEN ERASE Abbreviated PE 

Takes no inputs. Causes the turtle to erase (t hat is, change to the background 
color) any points that it passes over. 

~ P ENAEVERS E Abbreviated P A 
Ta kes no inputs. Causes the turt le to reverse any point it passes over. The 

~ effect is that the turtle will draw, unless it is retracing a line, in which case the 
line will be erased. 

~ 

PENUP Abbreviated PU 
~ Takes no inputs. Causes the turtle to move withoulleaving a trail. 

PUTIlLE Abbreviated PT 
Example: 

~ 

PUTIILE 100 16 12 
~ (tile number 100 appears at the center o f the screen ) 

Takes a ti le number a nd row and column nu mbers as inputs. Places the tile at 
the designated row and column. 

~ 

RIGHT Abbreviated AT 
Example: 

RIGHT 45 
~ {turtle rotates 45 degrees clockwise} 

Takes one numeric input. Rotates the active IUrile or sprite that many degrees 
clockwise. 

~ 

SETCOLOR Abbreviated SC 
Example: 

TELL SPRITE 5 
S ETCOLOA :AED 

~ 
{sprite 5 is now red} 
TELL TILE 100 

'--' SETCOLOR 16 151 



176/TI LOGO 

~tile 100 now has foregrou nd color red 
and background color white} 

For sprites, takes as input a number in the range 0 through 15. (Numbers 
outside this range will be reduced modulo 16. that is, reduced to the 
remainder after dividing by 16.) Changes the active sprite to that color. The 
COLOR of the turt le is the color in which it draws. With ti les or the turtle 
SETCOlOR can also take as input a lisl of two color numbers, which specify 
the foregrou nd and background colors. 

SETHEADING Abbreviated SH 
Example: 

SETHEADING 180 
ltuft le now faces straight down} 

Takes one numeric input. Rotates the active sprite or turtle to point in the 
direction specified. The input is interpreted as a number in degrees. Zero is 
straight up, with heading increasing clockwise. 

SETSPEED Abbreviated SS 
Example: 

TELL SPRITE 10 
SETSPEED 100 

Takes as input a number in the range - 127 through 127. Sets the speed of 
the active sprite. 

SHAPE Takes no input. Ret urns the shape number of the active sprite. 

SHOWTURTlE Abbreviated ST 
Takes no inpulS. Makes the turtle pointer appear. 

SIZE Takes no inputs. Outputs 16 if sprites are currently SMAl l and 32 if they are 
BIG. (Not included in the fir st release of T I Logo.) 

SMALL Takes no inputs. Makes sprites 16 x 16 units in size . See BIG. (Not included 
in the first release of TI Logo.) 

SPEED Takes no inputs. Outputs the speed of the current ly active sprite. 

SPRITE Example: 

TEll SPRITE 5 
SETSPEED 100 

Takes one numeric input in the range 0 through 31. Used with TEll in order 
to direct graphics commands to a sprite. 

SV Example: 

TEll SPRITE 5 
SV 30 30 

Takes two numeric inputs, which are used to set the x and y velocity 
components of the active sprite. 

SX Takes one numeric input. Moves the currently active sprite or turt le 
horizontally to the speci fi ed coordi nate . 

'--' 

'-" 

'--' 
'---' 

~ 

U 

'-

J 

J 

'-' 

'-' 

'--' 

~ 

'--' 

~ 

'-' 

-../ '--' 

'--" 

~ 

'-' 

~" 

'--' 

'--' 

~ 

'--' 

~ 

'-' 

'-' 

-' 
'-' 

-../ -' 

'-./ 

~ 

'-' 



-' 

Qlouary 01 L.ooo Prlmlltv. COfnrn.ndI/1T1 

SXV Takes one numeric input. Sets the x velocity component of the active spri te. 

SXY Example: 

SXY 80 50 
{turtle moves to position (SO,SO)} 

Takes two numeric inputs. Moves the currently active sprite or turtle to the 
specified point, where (0,0) is center of screen. 

SY Takes one numeric input and moves the currently active sprite or turtle 
vertically to the specified coordinate. 

SVV Takes one numeric input. Sets the y velocity component of the active sprite. 

TELL Examples: 
TELL SPRITE 1 
TELL TILE 50 
TELL TURTLE 
TELL BACKGROUND 
TELL {1 58{ 
TElL 10 

Used to direct subsequent graphics commands to an object, which becomes 
the "active object." If used with a list of numbers, commands are directed to 
all sprites in the list. TELL used with a number (as in the final example 
above) designates a sprite. 

THAW Takes no inputs. Restores motion that was stopped by FREEZE. 

TILE Example: 

TELL TILE 100 
SETCOLOR :RED 

Used with TELL in order to designate an active tile. 

TURTLE Takes no inputs. Used with tell in order to specify the turtle. 

WHERE Takes no inputs. If the turtle is the currently active object, outputs a list of 
three numbers: the x-(:oordinate, y-coordinate, and heading. 

WHO Takes no inputs. Outputs the currently active graphics object (as specified by 
the previous TELL). 

XCOR Example: 

SETX XCOA + 10 
{moves the turtle 10 units to the right} 

Takes no inputs. Outputs the x coordinate of the turtle or currently active 
sprite. 

XVEL Takes no inputs. Outputs the x velocity component of the currentl y active 
sprite. 

YCOR Takes no inputs. Outputs the y coordinate of the turtle or currently active 
sprite. 



1181TI LOGO 

YOUR NUMBER Abbreviated YN 

Takes no inputs. Outputs the number of the currently active sprite. Normally 
used inside a command list with EACH. 

YVEL Takes no inputs. Outputs the y velocity component of the cu rrently active 
sprite. 

12.2. Numeric Openlions These a re Logo's built-in facilities for performi ng operations with 
numbers. Numbers handled by Logo must be integers in the range - 32767 
through 32767. 

+ Example: 

PRINT 5 + 2 
7 

Takes two numbers as inputs, and outputs their sum. 

Example: 

PRINT 5-2 
3 
PRINT 1 +(-2) 
-1 

With two numeric inputs, outputs their diffe rence. With one numeric input . 
outputs its negative. 

• Example: 

PRINT 5.2 
10 

Takes two numeric inputs, and outputs their product. 

1 Example: 

PRINTS /2 
2 
PRINT 6/2 
3 

Outputs its first input divided by its second. Truncates any fractional part. 

DIFFERENCE Example : 

PRINT DIFFERENCE 106 
4 

Takes two numeric inputs. A prefix operation equivalent to - . 

PRODUCT Takes two inputs. A prefix operation equivalent to • . 

QUOTIENT Takes two inputs. A prefix operation equivalent to I. 

RANDOM Takes no input. Outputs a random number in the range 0 through 9. 

SUM Takes two inputs. A prefix operation equivalent to +. 

'-' 

'-' 

'-' 
'-./ 

~ 

·V 

", 
~ 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

~ 

'-' 

'-' 
~ 

v 

~ 

'-' 

'-" 

v 

'-" 

'-' 

'-' 

~ 

'-' 

'-' 

~ 

v 

'-./ '-' 

'-" 

~ 

'-' 



~ 

~ 

~ 

~ 

~ 

, 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

GIo.ory 01 Logo Primltlvi Command. / 179 

12.3. Word and List Operations In addition to numbers, Logo also includes operations for dealing with 
words (strings of characters) and lists (structured collections of data). 

BUTFIR$T Abbreviated BF 
Example: 

PRINT BUTFIRST [THIS IS A LIST] 
ISA LIST 
PRINT BUTFIRST n ABRACADABRA 
BAACADABAA 

If input is a list, outputs a list containing all but the fi rst element. If input is 
a word, outputs a word containing all but the first character. BUTFIRST of 
the emply list returns the empty list. BUTFIRST of a single-character word 
returns the empty list. 

BUTLAST Abbreviated BL 
Example: 

PRINT BUTLAST [THIS IS A LlSn 
THIS IS A 
PRINT BUTLAST • ABRACADABRA 
ABAACADABA 

If input is a list. outputs a list containing all but the lasl element. If input is a 
word. outputs a word containing all but the last character. BUTLAST of the 
empty list returns the empty list. BUTFIRST of a single--character word 
returns the empty list. 

FIRST Abbreviated F 
Example: 

PRINT FIRST [THIS IS A LlSn 
THIS 
PRINT FIRST " ABRACADABRA 
A 

If input is a list, outputs the first element. If input is a word, outputs the 
fi rst character. FIRST of the empty list returns the empty list . 

FPUT Example: 

PRINT FPUT [A BJ [C OJ 
fABICD 

The Se(ond input must be a list. Outputs a list consisting or the first input 
fo llowed by the elements of the second input . 

LAST Example: 

PRINT LAST [THIS IS A LIST] 
LIST 
PRINT LAST " ABRACADABRAX 
X 

If input is a list, outputs the last element. If input is a word, outputs the last 
character. LAST of the empty list returns the empty list. 



-
'-' 

180/TI LOGO 

>oJ 

LENGTH Example: 

PRINT LENGTH " ELEPHANT >oJ 

8 '-" 
PRINT LENGTH [ALPHA BETA GAMMA[ 

~ 

3 
>oJ 

PRINT LENGTH [A [B C D[ [E FII 
3 >oJ 

I f input is a word, outputs the number of characters in the word. If input is a 
v list, outputs the number o f items in the list. (Not included in the first release 

ofTI Logo.) 
'-' LPUT Example: 

PRINT LPUT "Z [W X Y[ '-' 
WXYZ 
PRINT LPUT [A B) [C D) >oJ 

C O[AB! 
'-' 

Second input must be a list. Outputs a list consisting of the elements o f the 
second input follo wed by the firs t input. >.J 

REVERSE Example: '-' 

PRINT REVERSE " APPLESAUCE 
ECUASELPPA '-' 

PRINT REVERSE [ALPHA BETA GAMMA) 
>.J 

GAMMA BETA ALPHA 
PRINT REVERSE [A [B C) [0 Ell 
[0 EllB C! A 

If input is a word, outputs the characters of the word in reverse order. If >J 
~ 

input is a list, o utputs a list of the items in reverse order. (Not included in the 
'-' 

first release of TI Logo.) 

~ 

ROTATE Example: 

PRINT ROTATE " APPLESAUCE >oJ 

PPLESAUCEA 
PRINT ROTATE [ALPHA BETA GAMMA] '-' 

BETA GAMMA ALPHA 
PRINT ROTATE [A [B C) [0 Ell '-' 

[B CllO E! A 
'-' 

If input is a word. outputs the word with the first character moved to the 
end ; that is, outputs >.J 

WORD (BUTFIRST 'X) (FIRST 'X) '--' 
If input is a list, outputs the list with the first item moved to the end; that is. 
o utputs ~ 

LPUT (FIRST 'X) (BUTFIRST 'X) ~ 

(Not included in the first release of TI Logo.) ~ 

~ 

'-' 

'-../ '--' 

J 

~ 

• '-' 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

-
~ 

Glo ... ry of Logo Primitive Command,l 181 

SENTENCE Abbreviated SE 
Example: 

12.4. Defining and Editing 
Procedures 

WORD 

DEFINE 

PRINT SENTENCE ~ HEllO ~THERE 
HELLO THERE 
PRINT SENTENCE (THIS ISIIA LIST] 
THIS IS A LIST 
PRINT (SENTENCE " THIS IISIIA LIST() 
THIS IS A LIST 
PRINT SENTENCE ((HERE lSI AIINESTED LIST( 
{HERE lSI A NESTED UST 

Takes a variable number of inputs. (The default is two.) If inputs are alilisls, 
combines all their elements into a single list. If any inpu ts aTC words, they arc 
regarded as one-word lists in performing operation. 

Example: 

PRINTWQRD "MISH " MASH 
MISHMASH 

Takes two inputs. Outputs a word that is the concatenation of the characters 
of its inputs (which mUSt be words). 

TO and EDIT aTC the mOSt commonly used operations for creating and 
changing procedures. But Logo includes some other operations that allow 
more advanced manipulation of procedure definitions. 

Abbreviated DE 
Example: 

DEFINE " PTSUM ((:X :YI IPRINT :XIIPRINT :X + :YII 

defines the procedure 

TO PTSUM :X :Y 
PR1NT :X 
PRINT :X + :Y 
END 

Takes twO inputs. First is a name, and second is a list whose elements are a 
list of inputs and a list fo r each line, and defines a procedure accordi ngly. 
Note that you normally use TO rather than DEFINE in order to de fine 
proced ures. DEFINE is useful for writing procedures that defi ne other 
procedures. as in the extended INSTANT system described in Sect ion 11.2. 1. 

EDIT Example: 

EDIT SQUARE 
{setS up procedure SQUARE fo r editing} 

Enters the procedure editor with a given procedure. If no input is specified, 
enters the editor with a blank screen. 

END Terminates a procedure definition that is typed into the editor. It is not 
necessary to type END at the end of the final definition, but if you are 
defining more than one procedure at a time, the separate procedure 
definitions must be separated by END statements. 



1821TI LOGO 

TEXT Example: 

TO PTSUM :X :Y 
PRINT :X 
PRINT :X + :Y 
END 

PRINTTEXT " PTSUM 
{eX .YJ[PRINLXJ[PRINLX + :YI 

Takes a procedure name as input and outputS procedure text as a list, whose 
format is as described under DEFINE. 

TO Begins procedure definition. Enters edit mode. 

I2.S. Conditio nal Expressions Logo incl udes two basic facilities for allowing the user to write programs 
thai perform tests and do different things depending on the outcomes. One is 
the IF ... THEN ... ELSE construct that is common to many com puter 
languages. The other, TEST ... 1FT ... IFF, is less common but often 
simpler to use. 

BOTH Example: 

PRINT BOTH (1 + 1 ~ 2)(5 ~ 4) 
FALSE 

Takes two inputs. Each input should be either TRUE or FALSE. OutputS 
TRUE if both are TRUE; otherwise outputs FALSE. 

EITHER Exam ple: 

PRINT EITHER (1 + 1 ~ 2)(5 ~ 4) 
TRUE 

Takes two inputs and outputs TRUE if at least one is TRUE; otherwise 
outputs FALSE. 

ELSE Used in IF ... THEN ... ELSE. 

IF Example: 

IF :X~5 THEN STOP ELSE PRINT " HELLO 

Used in the basic conditional rorm IF {condition } THEN {act ion I } ELSE 
{aclion2}. The {condition} is tested. If it is true, {action I } is performed. If 
it is false, {action2} is performed. The word THEN is optional. The ELSE 
{action2} part need not be present. 

IFF Executes reSI of line only if resul t of preceding TEST was false. See TEST. 

1FT Executes rest of line only if result of preceding TEST was truc. See TEST. 

NOT Example: 

IF NOT (1 ~ 2) PRINT " HELP 
HELP 

Outputs TRUE if its input is FALSE, FALSE if its input is TRUE. 

'-' 

'-./ 

'-J 

'-./ 

'--' 

-J 

'-' 

V 

'-' 

~ 

'-' 

'-./ 

~ 

~ 

~ 

~ 

'-' 
'-' 

'-' 

'-' 

'-' 

v 

v 

'-' 

'-' 

'-' 

v 

'-' 

'-' 

'-' 

V 

'--' '-' 

'-' 

'--' 

'-' 



~ 

~ 

/ 

~ 

./ 

~ 

/ 

J 

~ 

~ 

J 

~ 

~ 

J 

~ 

J 

~ 

~ 

~ 

J 

~ 

~ 

J 

~ 

J 

~ 

~ 

/ 

/ 

, 

-
/ 

/ '--' 

-

TEST Example: 

TEST " AB = WORD " A " B 
IFF PAINT "NO 

1FT PRINT "YES 
YES 

GI08SaIY 01 Logo Prlmlllve Commaoosl 183 

Tests a condition to be used in conjunction with 1FT and IFF. 

THEN Used with IF ... THEN ... ELSE ... 

12.6. Predicates Used with The conditional expressions of the previous section make use of predicates. 
Conditional Expressions or operations thai output either TRUE or FALSE. A predicate can be any 

procedure that outputs the word TRUE or thc word FALS E. Here are Ihe 
predicates that are built into Logo. 

> Example; 

IF :X > :Y STOP 

OutputS TRUE if its first input is grealer Ihan its second, FALSE otherwise. 

< Outputs TRUE if its first input is less than its second , FALSE ot herwise. 

Example: 

PRINT 20 = 10 + 10 
TRUE 

PRINT " A = IAI 
FALSE 
PRINT IA B] = SENTENCE" A " B 
TRUE 

If both inputs are numbers, compares them to see if they are numerically 
equal. If both inputs are words, compares them to see if they are identical 
character st rings. If both inputs are lists. compares them to see if their 
corresponding elements are equal. Outputs TRUE or FALSE accordingly. 

FALSE Outputs the word "FALSE. (Not included in the fi rst release of TI Logo.) 

GREATER Prefix fo rm of >. 

IS Example: 

IF IS 7 3+4 PRINT [YES) 

Takes two inputs. A prefix operation equivalent to '" . 

LESS Prefix fo rm of <. 

NUMBER? Outputs TRUE if its input is a number, FALSE otherwise. 

THING ? Outputs TRUE if its input has a value associated with it. 

TRUE Outputs the word "TRUE. (Not included in the first release of TI Logo.) 

WORD? Outputs TRUE if its input is a word, FALSE otherwise. 



1s..ITI LOGO 

12.1. Controlling Procedure 
Execu tio n GO Example: 

12.8. Inpu t and Ou tput 

TO TRIANGLE ,STRING 
IF FIRST :$TRING = :STRING THEN STOP 
lOOP: PRINT :STRING 
MAKE "STRING BUTFIRST :STRING 
GO " LOOP 
END 

Compare {his example with the TRIANGLE procedure of Section 6.3. GO 
takes a word as input and transfers to the line with that label. You can only 
GO to a label within the same procedure. labels are defined by typing them 
at the beginning of the indicated line followed by a colon. GO is very rarely 
used in Logo programming. I 

OUTPUT Abbreviated OP 
Takes one input. Causes the current procedure {o stop and output the result 
to the calling procedure. 

REPEAT Example: 

REPEAT 3 [PRINT " HELLO [ 
HELLO 

HELLO 
HELLO 

Takes a number and a list as input. RUNs the list the designated number of 
times. 

RUN Example: 

MAKE "X [PRINT] 
RUN SENTENCE :X 5 
5 

Takes a lisl as input. Executes the list as if it were a typed·in command line. 
The number of characters in the list (i.e., the number of characters you 
would get if you printed it) given 10 RUN must not exceed the maximum 
number of characters allowed in a top·level com mand line , which is 255 
characters in the current implementation. 

STOP Causes the current proced ure to stop and reCUrn cont rol to the calli ng 
procedure. 

BEEP Takes no input. Starts the computer playing a tone. (Turn the tone off with 
NOBEEP.) 

CHARNUM Abbreviated eN 
Takes a character as input and outputs the code number of that character, as 
defined in {he table in Seclion 4.3.3. 

IGO i. ocrasionally useful. but i, easily abustd and can I •• d '0 o~,~ PfOJ''''''. In LOlo. YOU .an a!m(t$' 
a)"'ay •• "Gid the need 10 u ... GO by lakinl ad"amage of REPEATandlor procedure calli. iteration 

ron.uuClI WHILE, FOR, and so on, can also be implcmenltd by using RUN ... illusualtd in ~lion 11.2.4. 

As Ihe TRIANGLE pr~ure above showi. One can, in (11<:1, use lOlO 10 pro&ram in a 51)'le ,hal '1IYpicai of 

mOj;I BASIC J'lfosrams. thai would be like pour;", krlchup OVrl caviar. 

~ 

~ 

~ 

'-" 
'-' 

'-" 

~ 

'-' 

'-' 

'-' 

~ 

'-' 

'--' 

~ 

'-' 

'-' 

'--' 

'--
~ 

'--' 

'-' 

>.J 

'.J 

~ 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

'-' 

'-' 

'-' '-' 

'-' 

~ 

'-' 



JOY Example: 

PRINT JOY 1 
9 

GlosSIlY 01 Logo Prlmilive Commands 1 185 

Takes one input number, specifying joystick I or 2. Outputs a number which 
depends on the joystick position as shown: 

• 

, . 

• 

If the joystick's button is pressed when the command JOY 1 or JOY 2 is 

executed, the number output will be the indicated number plus 16. You can 
use this to create Ihe effect of an on-off button with the joystick. For 
example, 

IF (JOY 1 > 10) CLEARSCREEN 

will clear the screen whenever this command is given wilh joystick I's button 

pressed down. (The bulton effect is not incl uded in the original T I Logo.) 

Warn ing: JOY 1 and JOY 2 will output incorrect values if the ALPHA LOCK 
key is down. 

NOBEEP Takes no inputs. Stops the tone stan ed by BEEP. 

PRINT Example: 

PRINT " HI 
HI 
PRINT [HELLO OUT THERE[ 
HELLO OUT THERE 

Prints its input and moves cursor 10 the next screen line. When PRINT print s 
lists, the outermost pai r of brackets is not printed. 

PRINTCHAR Abbreviated PC 
.... Takes a tile number as input, and prints the corresponding tile (character) al 

the current cursor position. 

RC? Takes no inputs. Outputs TRUE if a keyboard character is pendi ng (Le., the 
character input buffer is nOt empty); ot herwise outputs FALSE. 

READCHAR Abbreviated RC 
.........., Takes no inputs. OutputS the least recent character in the character buffer, or 

if empty, waits for an input character. 



186 I T! LOGO 

READLINE Abbreviated RL 

12.9. Na ming 

12.10. Filing and Managing 
Workspace 

Takes no inputs. Waits for an input line to be typed, terminated with ENTER. 
Outputs the line (as a list). 

TYPE Like PRINT, but does not move cursor to the next line after printing. 

WAIT Takes one numeric input and pauses the computer fo r that many sixtieths of 
a second . 

CALL Example: 

CALL 7 " LUCKYNUMBER 
CALL [ALPHA BETA GAMMA) " TESTWORDS 

Equivalent to MAKE with the order of the input s reversed. 

MAKE Example: 

MAKE " APPLE 50 
PRINT :APPLE 
50 

Takes two inputs, the first of which must be a word. Assigns the second input 
to be the value associated with the first input. 

THING Example: 

MAKE " APPLE 50 
PRINT THING " APPLE 

50 

Outputs the value of its input (which must be a word). THING " XXX can be 
abbreviated as :XXx. 

Workspace consists of all currently defined procedures and all names and 
their associated values. Workspaces can be stored in files on disk or on 
cassette tape. 

ERASE Example: 

ERASE SQUARE or ERASE " SQUARE 
{gets rid of the procedure named SQUARE} 
ERASE :X or ERASE " X 
{gets rid of the variable named Xl 
Warning: ERASE "X erases both a variable and a proced ure named X. 

PA Prints all procedures and names. 

PN PrintS all currently defined names . 

PO Example: 

PO SQUARE 
TOSOUARE 
REPEAT 4 [FORWARD 50 RIGHT 90} 
END 

Takes a procedure name as input and prints the definition of the procedure. 

PP Prints the tile lines of aU currently defined procedu res. 

'-' 

'-' 

'-' 
'-" 

'-../ 

V 

'-' 

'-' 

'-../ 

~ 

'-' 

'-../ 

V 

'-' 

'-' 

'-' 

~ 

'-" '-' 

'-' 

'-' 

'-' 

'-' 

-..' 

'-' 

'-" 

'-' 

'-' 

'-' 

~ 

~ 

'-' 

'--/ '-' 

'-' 

~ 

'-' 



J 

J 

J 

/ 

J 

J 

J 

J 
'--' 

J 

J 

J 

J 

~ 

J 

-

12.11. Music Primitives 

Gionary 01 Logo Primit ive Commands I 181 

PRINTOUT Takes no inputs. Prints all your procedu res on a thermal primer or RS232 
printer. See Section 5. 2. (Not included in the first release of TI Logo.) 

RECALL Takes no inputs. Reads in fo rmation from the cassette tape o r the disk. See 
Section 5. 2. 

SAVE Takes no inputs. Transmits info rmation to cassette lape or disk. See 
Section 5.2. 

TI Logo II incl udes the ability to generate music in up \0 three-voice 
harmony. You construct music by usi ng commands, such as NOTE, and place 
the notes in a music buffer. Afterwards, you usc the command PLAYMUSIC 
to play the notes that have been placed in the buffer. 

CHROMATIC Changes meaning of pilch designations. See MAJOR. 

DRUM Example: 

DRUM 13 46 BI 
Takes a list of numbers as input , and signals a "drum beat " with the 
designated durat ions between beats. "Beats" are placed in the music buffer 
to be played by PLAYM USIC. 

LEGATO Cont rols " dead time" inserled between notes. See STACCATO . 

LOOPMUSIC Plays the music in the buffer repeatedly. You can continue to execute Logo 
commands while music is playing. To stop music, use S ETVOICE O. 

MAJOR As opposed to CHROMATIC. Changes the meanings of the pitch 
designations. In MAJOR mode, 0 is middle C and each unit is a note on the 
C scale. In CHROMATIC mode, each uni t is a half-st ep . CHROMATIC is the 

default. 

MUSIC Example: 

NOTE 

MUSIC 10 35 71 14 2 2 BI 
0 ' 
MUSIC 10 3 5 7] 4 

Takes as input two lists: a list of pitches and a list of du rations, and places 
these in the music bu ffer. If the lisls a re not of the same lengt h, the longer 
one is truncated. If a single number is specified as the du ration, that duration 
is used fo r each of the pitches. Volume is taken as the value specified by the 
previous SETVOLUM E command. 

Example: 

NOTE 387 

Takes three numbers as inputs, specifying the duration, pitch, and volume 
for a note, and places that nOle in the music buffer. 

PLAYNOTE This is equivalent to playing a note from the music buffer, and then WAITing 
fo r the duration of the note. Consecutive PLAYNOTE commands will play 
consecutive notes. This command can function with only one voice at a time. 

If the music buffer contains notes fo r more than one voice, PLAY NOTE will 
use the notes for the current voice as designated by SETVO ICE. PLAYNOTE 
can be used to synchronize music playi ng with other Logo commands, as is 

illustrated in Section 9.3 . 



188ITI LOGO 

PLAYMUSIC Abbreviated PM 

Plays the music in the buffer. Logo music plays simultaneously while 
commands are executed, so that after giving the PLAYMU$IC command , you 
can proceed to execute other Logo commands while the music is playing. 

REST Takes a number as input and inserts a rest of that duration in the music 
buffer. 

SETTEMPO Takes a number as input and sets the tempo in cou nts per minute. With a 

tempo of T, a nOle of duration D wi ll last (60fT) .0 seconds. The default 
value of Tis 300. 

SETVOICE Takes a number 0 through 4 as input. I, 2, or 3 select one of the three voices. 
Subseq uent note commands will be directed to that voice. An input of 4 
selects the noise generator. An input of 0 clears the music buffer. 

SETVOLUME Takes a number 0 through 15 as input and sets the volume. 0, the default 
volume, is the softest, 15 the loudest. 

STACCATO In contrast to LEGATO, the default condition. Contro ls "dead lime" inserted 
between notes. For LEGATO, a dead time of 5/ 60 second will be used. For 
STACCATO, the nOle will sound for 5/ 60 second and the remainder will be 
dead time. For notes of duration less than 6/ 60 second, (n - 1) / 60 will be 
used in place of 5160. 

12.12. Debugging Aids 
CONTINUE Takes no inputs. Can sometimes be used to resume execution from a paused 

state (en!ered via AID or DEBUG). 

DEBUG Takes no inputs. Controls an option whereby errors will enter a pause state, 
ra ther than return to top com mand level. See Section 5.3. 

TRACEBACK Takes no inpuls. When called within a procedure, prints the chain of 
procedure calls from the current procedure back to lOp level. 

l2.B. Editing Commands This section describes the special keys that are used with the procedure 
editor. Each key is used while simultaneously pressing the FeTN key. 

arrow keys Move the cursor one space up, down, right, or left. 

BACK Exits the editor and processes definitions. 

BEGIN Moves the cursor to the beginning of the current line. 

CLEAR Deletes all characters on the curren! line, from the cursor rightwards. 

DEL Deletes the character at the current cursor position. 

ERASE Deletes the character to the left of the cursor, and moves the cursor one space 
to the left. 

PROC'D Moves the cursor to the right end of the current line. 

12.14. Other Special Keys This section describes special keys used in Logo other than for editing. 

AIO Stops procedure execution and enlers a pause break. See Section 5.3. 

~ 

'--' 

'-' 

'-' 
'.J 

-J 

~ 

V 

'-' 

'-' 

...., 

...., 

'-' 

...., 

~ 

...., 

'-' 

v 

'--' 
~ 

'--' 

'-' 

'-' 

"-' 

'-' 

'-' 

"-' 

'--' 

"-' 

'-' 

'-' 

...., 

'--' 

'--' '-' 

"-' 

'-' 

'--' 



-
--

~ --
-------
-
-

---
-
-
-
--
-
-
-
- ~ 

-

Glonll)' 01 Logo PrlmlllvlI commands / 189 

BACK Stops execution and ret urns control to tOp level. Also used to exit shape 
editors. 

QUIT Resets the computer, destroying all programs and data in memory. Don 't 
press OUIT unless you are finished using Logo. 

ERASE Deletes the character to the left of the cursor and moves the cursor one space 
to the left. 

12.15. Miscellaneous Co mma nds 

12. 16. Error Messages 

BYE Leaves TJ Logo. 

CONTENTS OutpulS a list of all words currently being used in the workspace. (Not 
included in the fi rst release of TI Logo.) 

.HELP Prints a list o f all the keywords in Tl Logo. (Not included in the first release 
ofTI Logo.) 

.GC Forces a garbage collection , reclai ming unused storage. (Not included in the 
first release of TI Logo.) 

.NODES Outputs the number of currentl y free nodes. This is a measure of how much 
storage is available in workspace . (Not included in the first release of Tl 
Logo.) 
Causes the rest of the line nOi to be evaluat ed. (Can be used to incl ude 

comments in procedures.) 

When Logo encounters an error, it signals that fact by halting program 
execution and printing a message of the form: 

{message} 
AT LEVEL {level}LlNE {line} of {procedure} 

For example: 

TELL ME HOW TO FORWAXD 

AT LEVEL 1 LINE 2 OF BOX 

In general, {message} is a descript ion of the error, {line} is the line number 
at which the erro r occurred, {procedure} is the name of the procedure 
containing that line, and {level} tells "how many levels away fro m top level" 

Logo was running when the error occurred. That is to say, level 0 means that 
Logo was executing a line directly typed in, level I means executing a line in a 
proced ure that was called at level 0, level 2 means executi ng a line in a 

procedure that was called at level I, and so on. 

• TELL ME HOW TO {somet hing} Th is happens when Logo does not recognize the name of the procedure you 
are trying 10 run. Common causes are that you forgot to define the 
procedure in question, o r that you used the wrong name. Typing errors also 
commonl y cause this. For example, if you type FOAWAXD 100 inst ead of 

FORWARD 100, you will get the error TELL ME HOW TO FORWAXD. 

• {someth ing) HAS NO VALUE This happens when you refer to the value of a name, but there is no such 
name in the environment. The causes are similar to those for the " no 
procedure" error message . Another cause is confusion between the local 

variables in a procedUre and the global variables. For example, defining and 
running the procedure 

TO INC :X 

OUTPUT:X + 1 
END 



190ITI LOGO 

creales a variable X that is local to INC , bUI th is does not mean Ihat there is a 

global variable named X. 

• TELL ME MORE A proced ure was called with too few inputs. 

• NOTHING BEFORE THE 
{infix-operaIOT} This happens when an infix operator is called with nothing before il. For 

example, 

PRINT .3 

will give the error NOTHING BEFORE THE t . 

• {primiti ve} DOESN'T LIKE {data} 
AS INPUT This happens when you try to use an operation with a kind of data that it 

cannot handle. For example, 

• TELL ME WHAT TO DO WITH 
{data} 

PRINT 1 + "X 

results in + DOESN'T LIKE X AS INPUT. 

This occurs in proccdures when you generate some data and thcn don't say 
what to do with il. (In most cases, you probably mealllto OUTPUT it.) For 

example: 

TO SQUARE oX 
:X. :X 
END 

SQUARE 5 
TELL ME WHAT TO DO WITH 25 
AT LEVEL 1 LINE 1 OF SQUARE 

People often make this error in writing recursive procedures: 

TO FACTORIAL oN 
IF oN • 0 OUTPUT 1 
oN. (FACTORIAL oN - 1) 

END 

PRINT FACTORIAL 1 
TELL ME WHAT TO DO WITH 1 
AT LEVEL 2 LINE 1 OF FACTORIAL 

The problem here is that FACTORIAL should have an OUTPUT al the 
beginning of its second line. 

• {procedure} DIDN'T OUTPUT This happens when you try to use the value returned by a procedure, but the 
procedure didn 't output anyth ing. For example, 

TO PRINT.$QUARE :X 

PRI NT :X. :X 
END 

FORWARD PRINT. SQUARE 4 
16 
PRINrSQUARE DIDN'T OUTPUT 

• OUT OF SPACE This happens when you have used up all available storage. 

• YOU TRIED TO DIVfDE BY ZERO Th is happens when the QUOTIENT or / operation is called with zero as the 

divisor. 

~ 

'--' 

'-' 
'-" 

~ 

'--' 

'--' 

'-' 

'-' 

'-' 

J 

~ 

'-' 

'-' 

J 

~ 

J 

V '-' 

v 

'-' 

~ 

'-' 

'-' 

'-' 

~ 

'--' 

'--' 

'J 

'-' 

'-' 

'J 

'-' ~ 

~ 

~ 

'-' 



-J -
--
J 

J 

J 

J 

J 

J 

-
J 

J 

J 

- ~ 

J 

-
J 

-
J 

-
J 

J 

J 

J 

-
J 

J 

J '-' 

J 

J 

J 

Glossary allogo PrlmlllYII Comm.nda I 191 

• {object} CAN'T {something} This happens when you try to perform a graphic operation when the current 
object is not of the type that can do that operation. For example, 

TELL TURTLE 
SETSPEED 100 
TURTLE CAN'T SETSPEED 

• OUT OF INK The turtle has used up all available tiles for drawing. To continue drawing, 
you must first clear the screen. 

• STOPPED Occurs when you have pressed the BACK key 10 stop a procedure. 

• PAUSED Occurs when you have pressed the AID key to temporarily halt a procedure. 

• A LABEL IS OUT OF PLACE 

• THEN IS OUT OF PLACE 

• ELSE IS OUT OF PLACE These three messages all mean Ihat you used the indicated primitive in a 
context in which it doesn't make sense. (A label is signaled by the :.) Some 
lines that would generate such messages are 

PRINT 5 + X: 
FORWARD 100 THEN PRINT 5 

• (somet hing) WAS GIVEN 
INSTEAD OF TRUE OR FALSE A com mand which needs TRUE or FALSE as input was given another val ue 

instead. This can occur if you forget to include an = in the input to IF or 
TEST as in this example: 

IF HEADING 0 STOP 

• {primitive} MUST BE IN A 
PROCEDURE This happens, for example, if you use the OUTPUT. STOP, or GO commands 

directly at top level rather than in a procedure. 

• PROCEDURE NOT BEING 
DEF/NED This means you tried to use END as a command in a procedure line. (You 

most likely meant!O use STOP instead.) Another way 10 get this eTror is to 
explicitly include an END com mand in the list of lines given to DEFINE. 

• WHERE /S THE LABEL This happens if you try to GO to a label that was not defined in the 
procedure. 

• UNEXPECTED")" Logo has run across a close parentheses for which there was no 
correspondi ng open parentheses. 

MISMATCHED BRACKETS Logo has run across a close bracket for which there was no correspondi ng 
open bracket. 

TOO MANY SUBLISTS You tried 10 type in a list that was too deep (I.e., too many levels of open 
brackets). In the current implementation, the maximum is 14. 

OUT OF NOTES The music buffer is full. You must reset it (using SETVOICE 0) before 
adding more nOtes. 

• SENTENCE IS TOO LONG Occurs when the output of a SENTENCE com mand results in a lisl that has 
100 many elements. 



'--' 

v 

v 

v 

v 

V 

v 

'-' 

'-' 

v 

'-' 

v 

'-' 

v 

v 

'--' 

V 

\J 



~ 

-
~ 

~ 

~ 

~ References 

~ 

./ 

~ 

~ 

~ 

~ 

-
-
~ 

-- '-' 

J 

ReferenclI! I 193 

1. Abelson, H. and diSessa, A. Turtle Geometry: The Computer as a 
Medium for Exploring Mathematics. MIT Press, Cambridge, MA , 1981 . 

2. Bamberger, J . "The Development of Musical lntclligence I: Strategies for 
Represent ing Simple Rhythms." Memo 342, MIT Arlifidal Intelligence 
Laboratory, 1975. 

3. Bamberger, J . "The Development of Musical Intelligence II: Children 's 
Representation of Pitch Relations." Memo 401, MIT Artificial Intelligence 
Laboratory, 1976. 

4. Bamberger, J. "Logo Music ProjeclS: Experiments in Musical Perception 
and Design." Memo 523. MIT Artificial Intelligence Laboratory, 1979. 

5. Bowles, K. Problem Solving Using Pascal. Springer-Verlag, New York, 
1977. 

6. diSessa, A. "U nlearni ng Aristotelian Physics: A Study of 
Knowledge-Based Learning." Cognitive Science (in press). 

7. Feurzeig, w., Papert, 5., Bloom, M., Grant, R., and Solomon, C. 
" Programming Languages as a Conceptual Framework for Teaching 
Mathematics." Repon 1889, Bolt. Beranek and Newman, Inc., November. 
1969. 

8. Feurzeig, W., Goldenberg, E. P. , Lukas, G., Manis, V .• Rubenstein, R. , 
and Stachel, R. "The Logo-S Language and the Ponable Logo Syslem." 
Boll. Beranek and Newman, Inc., 1980. 

9. Goldberg, A., Robson, D., and Ingalls. D.H.H. Smallralk-80: The 
Language and lis Implementation . Addison-Wesley, Reading, MA, 1982. 

10. Goldenberg, P. Special Technology for Special Children . University Park 
Press, Baltimore, 1979. 

11. Greenberg, B. "Notes on the Program ming Language Lisp." MIT 
Student Informat ion Processing Board , 1978. 

12. Howe, J .A.M., O'Shea, T., and Lane, F. "Teaching Mathematics 
through Logo Programming: An Evaluation SlUdy." Department of 
Artificial Intelligence, University of Ed inburgh, 1977. 

13. Kay, A. "Microelectronics and the Personal Computer." Scienlijic 
American (September 1977). 

14. Papert, S. and C. Solomon. "NIM: A Game-Playing Program." Memo 
254, MIT Artificial Intelligence Laboratory, 1970. 

IS. Papen, S. Minds/orms: Chifdren, Computers, and Powerful Ideas. Basic 
Books, New York, 1980. 



li4/Tt lOGO 

16. Papert, S., diSessa, A., Wau, D., and Weir, S. "Final Technical Report 
to the National Science Foundation: Documentation and Assessment of a 
Children's Computer Laboratory." Memos 52, 53, MIT Logo Project, 1980. 

17. Weir, S. "Logo and the Exceptional Child." Kilobaud Microcomputing 5, 
9 (September 1981). 

18. Weizenbaum, J. Computer Power and Human Reason. W. A. Freeman & 
Co., San Francisco, 1976. 

19. Winston, P. and Horn, B. Lisp. Addison.Wesley, Reading, MA, 1981. 

'--' 

'-" 

'--' 

'-J 

V 

'-' 

-
'-' 

'-' 

'-' 

~ 

~ 

~ 

'-J 

'-' 

'-' 

V 

'-' 

~ 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 



J 

J 

J 

~ 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

J 

'--' 

J 

J 

J 

J 

J 

J 

J 

J 

J '-' 

J 

J 

J 

Carll'lg lor til, Module I 195 

This Solid-Slate SO/lware™ Command Module is designed to be used with 
the Texas Instruments computer. Its preprogrammed solid-state memory ex
pands the power, versatility. and capability of your computer. 

Copyright e 1981 Texas Instruments Incorporated 
Commend Module program and data base contents copyright " 19S1 Texas In
struments Incorporated. 
See important warranty information in next section. 

CARING FOR THE MODULE 
These modules are durable devices, but they should be handled with the 
same care you would give any other piece of eleclronic equipment. Keep the 
module clean and dry. and don't touch the recessed contacts. 

CAUTION: 
The contents of a Command Module can be damaged by static electricity 
discharges . 

Static electricity build-ups are more likely to occur when the natural 
humidity of the air is low (during wimer or in areas with dry climates). To 
avoid damaging the module. just touch any metal object (a doorknob, a 
desklamp, etc.) before handling the module. 

If static electricity is a problem where you live, you may want to buy a 
spe(:ial carpet treatment thai reduces static build-up. These commercial 
preparations are usually available from local hardware and office supply 
stores. 

IN CASE OF DIFFICULTY 
If the module activities do not appear to be operating properly, return to 
the master title screen by pressing QUIT. Withdraw the module, align it 
with the module opening, and reinsert it carefully. Then press any key to 
make the master selection list appear. Repeat the selection process. (Note: 
In some instances, it may be necessary to turn the computer off. wait 
several seconds, and then turn it on again.) 

If the module is accidemally removed from the slot while the module con
tents are being used. the computer may behave erratically. To restore the 
computer to normal operation, turn the computer console off, and wait a 
few seconds. Then, reinsert the module, and turn the computer on again. 

If you have any difficulty with your computer or the TI LOGO II module. 
please contact the dealer from whom you purchased the unit and/or module 
for service directions. 

Additional information concerni ng use and service can be found in your 
User's Reference Guide. 



,96/TI LOGO 

THREE-MONTH LIMITED WARRANTY 
HOME COMPUTER SOFTWARE MODULE 

Texas inslrumenls Incorporated extends this consumer warranty only to the 
original consumer purchaser. 

WARRANTY COVERAGE 
This warranty covers the electronic and case components of the software 
module and diskette. These components include all semiconductor chips and 
devices, plastics, boards, wiring and a ll other hardware contained in this 
module and diskette ("the Hardware"). This limited warranty does not ex
tend to the programs contained in the software module, the diskette, and 
the accompanying book materials ("the Programs"). 

The Hardware is warranted against malfunction due to defective materials 
or construction. THIS WARRANTY IS VOID IF THE HARDWARE HAS 
BEEN DAMAGED BY ACCIDENT, UNREASONABLE USE, 
NEGLECT, IMPROPER SERVICE OR OTHER CAUSES NOT ARISING 
OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP. 

W ARRANTY DURATION 
The Hardware is warranted for a period of three months from the dale of 
the original purchase by the consumer. 

WARRANTY DISCLAIMERS 
ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, IN
CLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR
POSE, ARE LIMITED IN DURATION TO THE ABOVE THREE
MONTH PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE 
FOR LOSS OF USE OF THE HARDWARE OR OTHER INCIDENTAL 
OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES IN
CURRED BY THE CONSUMER OR ANY OTHER USER. 

Some states do not allow the exclusion or limitation of implied warranties 
or consequential damages, so the above limitations or exclusions may not 
apply to you in those states. 

LEGAL REMEDIES 
This warranty gives you specific legal rights, and you may also have other 
rights that vary fro m state 10 state. 

PERFORMANCE BY TI UNDER WARRANTY 
During the above three-mont h warranty period, defective Hardware will be 
replaced when it is returned postage prepaid to a Texas Instruments Service 
Facility listed below. The replacement Hardware will be warranted for three 
months from date of replacement. Other than the postage requiremene!, no 
charge will be made for replacement . 

TI strongly recommends that you insure the Hardware for value prior to 
mailing . 

'-./ 

'J 

'J 

'-' 
'-" 

'J 

'-./ 

~ 

'-" 

'J 

'-" 

'-' 

'J 

'-' 

'J 

'-" 

'J 

'-../ 
~ 

'-' 

'J 

~ 

'J 

J 

'J 

'J 

'J 

'J 

'J 

'J 

'J 

'-./ 

'-' '-' 

'J 

~ 

'-./ 



-
~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

J 

~ 

J 

-
J 

~ 

~ 

-
J 

- '--

-

TEXAS INSTRUMENTS CONSUMER SERVICE F ACILITIFS 
Texas Instruments Service Facility 
P.O. Box 2500 
Lubbock. Texas 79408 

Geophysical Services Incorporated 
41 Shelley Road 
Richmond Hill. Omario. Canada 
L4C5G4 

Consumers in California and Oregon may contact the following Texas In
struments offices for additional assistance or information. 

Texas Instruments Consumer Service 
831 South Douglas Street 
EI Segundo, California 90245 
(21]) 973-1803 

Texas Instruments Consumer Service 
6700 Southwest 105th 
Kristin Square, Suite 110 
Beaverton , Oregon 97005 
(103)643-6718 

IMPORT ANT NOTICE OF DISCLAIMER REGARDING THE 
PROGRAMS 
The following should be read and understood before purchasing and/ or us
ing the software module and diskette. 

Tl does not warrant that the Programs will be free from error or will meet 
the specific requirements of the consumer. The consumer assumes complete 
responsibility for any decision made or actions taken based on information 
obtained using the Programs. Any statements made concerning the utility of 
the Programs are not to be construed as express or implied warranties. 

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EX
PRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE, REGARDING THE PROGRAMS 
AND MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN "AS 
IS" BASIS. 

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO 
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSE· 
QUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT 
OF THE PURCHASE OR USE OF THE PROGRAMS AND THE SOLE 
AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, 
REGARDLESS OF THE FORM OF ACTION , SHALL NOT EXCEED 
THE PURCHASE PRICE OF THE SOFTWARE MODULE AND 
DISKEITE. MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE 
LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER BY ANY 
OTHER PARTY AGAINST THE USER OF THE PROGRAMS. 
Some states do not allow the exclusion or limitation of implied warranties 
or consequential damages. so the above limitations or exclusions may not 
apply to you in those states. 



1118 I T I LOGO 

KEYBOARD REFERENCE GUIDE 
Note that the key sequences required to access special functions depend on the type of computer console you ha\le. 
TI·99/ 4 TJ·99/ 4A 

AID 
(SHIFT A) 

BACK 
(SHIFT Z) 

BEGIN 
(SHIFT W) 

CLEAR 
(SHIFT C) 

DELETE 
(SHIFT F) 

ERASE 
(SHIFT T) 

PROC 'D 
(SHIFT V) 

1 
(SHIFT E) 

(SHIFT S) 

(SHIFT 0) 

j 

(SHIFT X) 

SPACE 

( 
(SHIFT 4) 

( 
(SHIFT 5) 

QUIT 

(SHIFT Q) 

AID 
(FCTN 7) 

BACK 
(FCTN 9) 

BEGIN 
(FCTN 5) 

CLEAR 
(FCTN 4) 

DELETE 
(FCTN 1) 

ERASE 
(FCTN 3) 

PROC 'D 

(FeTN 6) 
1 

(FeTN E) 

(FCTN S) 

(FeTN 0) 

j 

(FCTN X) 

SPACE 

(FCTN R 
OR SHIFT 4) 

(FCTN T 
OR SHIFT 5) 

QUIT 
(FeTN :::) 

Causes the computer to pause. 

• Leaves the Save and Recall Modes and returns (he compuler to the mode it was in. 
• Stops a procedure. 
• Lea\les the Edit Mode, MAKESHAPE and MAKECHAR. 

MO\les the cursor to the beginning of the line in the Edit Mode. 

• Clears the MAKESHAPE and MAKECHAR grids. 
• Erases what is abo\le and to Ihe right of the cursor in the Edit Mode. 

• Erases what is abo\le the cursor. 
• MO\les a line up one line if the cursor is at the end of the line in the Ed it Mode. 

• Erases what is one space to the left of the cursor. 
• MO\les a line up one line if the cursor is under the first character of a line in the 

Edit Mode. 

MO\les the cursor to the end of the line in the Ed it Mode. 

• Moves the cursor up one line in the Edit Mode. 
• Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

mO\les up one square. 

• Moves the cursor left one space in the Edit Mode. 
• Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

mO\les left one square. 

• MO\les the cursor right one space in the Edit Modc. 
• Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

mO\les right one square. 

• Moves the cursor down one line in the Edit Mode. 
• Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

mO\les down one square. 

• Leaves a blank space in the Iype in the Sprite and Thrtle Modes. 
• Re\liews fi le names in the Save and Recall Modes. 

Types a lcft bracket. 

Types a right bracket. 

SlOPS TJ LOGO and returns to the master title screen. 

'--' 

'-' 

~ 

'-' 
'-' 

~ 

'-' 

~ 

~ 

'-' 

'-' 

'-' 

'--' 

~ 

~ 

~ 

~ 

...-' 
'--' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

'-' 

~ 

'-' 

'-./ 

'--./ / 

'J 

'-' 

'-' 



'-' 

~ 

~ 

~ 

'-' 

'-' 

~ 

~ 

~ 

v 

'-' 

'-' 

'--

'--

'--

~ 

~ 

'--

'--

~ 

'-' 

~ 

~ 

~ 

~ 

'-' 

'-' 

'-' 

'--' 

'-' 

'-' -
~ 

~ 

~ 

INDEX 

AID key 1,14 , 188 
BA CK key 1,7,9, IS, 22, 58, 75, 

188, 189 
BEG I N key 1, 10,188 
CLEAR key 1, 10, 188 
C LEA R key in shape edito r S9 
Del key 1,9, 188 
ENTeR key 1, 2 
EN T e R key, in file system 71 
eRASE key I , S, 9, 188, 189 
FCTN key I ,SS 
PRDe' 0 key 1,10, J88 
QUIT key 1, 189 
SHIFT key I 
• 71,178 
+ 71, 178 
- 77, 178 
• GC 189 
. HElP 189 
• NODES 189 
/ 77 ,178 

86,186 
; 189 
< 25, 183 
= 25, 183 
) 25, 183 
H L S4 
AHIJUl program 164 
BAC KGROUND 17] 
BACK 4, 173 
BEEP 184 
BF 81, 179 
BG 173 
BIG 54, 173 , 176 
SIC 173 
BL 81,179 
BOTH 91 ,182 
BUTFIRST 81,83, 137 ,179 
BUTlAST 81,83,137 ,1 79 
BYE 189 
CAll 186 
CARR Y 51, 173, 174 
CB 14,113 
CHARNUM 184 
CHROMATI C 132, 187 
ClEARSCREENANDSPRITES 

68 
ClEARSCREEN 4,54,1 73 
eM 121 
eN 184 
COLORBACICGROUND 14, 173 
COLOR 14,54,1 73 
CONTENTS 189 
CONTINUE 188 
COS 124 
C S 173 
DEBUG 75, 188 
DEFINE 156, 181 
01 FfERENCE 178 
DOCTOR program 161 
DOT 174 

DRUM 134, 187 
EACH 55, 174 
EDIT 10, 181 
EITHER 9 1, 182 
EL SE 89, 182 
END 8,11, 181 
ERASE 69, 186 
FAl S E 91, 183 
F 0 174 
FIR S T 81,83, 141, 179 
FORWARD 4, 174 
FOR 160 
F PUT 149, 179 
fREEZE 54, 174, 177 
F 81 
GO 184 
GREATER 183 
HEADING 13 ,54,1 74 
HIDETURTLE 4, 174 
HOME 13.53. 174 
IFF 89, 182 
1FT 89, 182 
If 25,89, 182 
INSTANT 154, 156 
IS 183 
JOY 185 
LAST 81,83 ,1 39, 179 
LEFT 4, 174 
L EFT, for spri tes 53 
LEGATO l3I,187, 188 
LENGTH 142, 180 
LESS 183 
LIS T operation ISO 
LOOI(lUE 174 
LOOKUP 151 
LOOPMUS I C 134, 187 
LPUT 150, 180 
L T 174 
MAJ OR 128, l32, 187 
MAKE 55,85, 186 
MAKE CHAR 59,174 
MAKEROW S 65, 11 2 
MAKE S HAPE 51,57, 175 
MC 59, 174 
MEMBER ? 143 
MS 175 
MUS I C 127, 187 
NOBEEP 185 
NOTE 133, 187 
NOTURTLE 4,15 ,1 75 
NOT 91, 182 
NUMBER ? 183 
NUMBEROF 175 
OP 184 
OUTPUT 78, 184 
PA 69, 186 
PC 11 7, 185 
PO 175 
PENDOWN 4, 175 
PENERASE 13, 175 
PENREVERSE l3, 175 

PENUP 6,175 
PE 13, J75 
P IC KRANDOM 142 
PI CK 14 1 
PLA YMU S I C 127, 188 
PLA YNOTE 135, 187 
PM 127, 188 
PN 69, 186 
POLY 23,57 
PO 11 ,69, 186 
PP 11 ,69, 186 
PRINT 2, 117, 185 
PR I NTCHAR 117 , 185 
PRINTOUT 187 
PRODUCT 178 
PR 13, 175 
PT 60,175 
PUTSPRITE 109 
PUTT I LE 60, I7S 
PU I7S 
QU OT lENT 178 
RANDOM 80,178 
RAND 80 
RC ? 119, 185 
RC 11 8, 185 
READCHAR 11 8, 185 
READLINE 84, 11 8,186 
READNUMBER 98 
RECALL 70, 187 
REMAINDER 80 
REPEAT 184 

'" 

REPEAT command 7 
REST 131, 188 
REVERSE l38, 180 
RIGHT 6, 175 
RIG H T, for sprites 53 
RL 84, 185 
ROTATE 180 
RT 175 
RUN 153, 184 
SAVE 70, 187 
SC 13, 51, 175 
SENTEN CE 61,85,94, 140, 150, 

181 
SETCOLOR l3,5 1,60,175 
SETCOLOR , for tiles 61 
SETHEADIN G 14 ,174,176 
SETSPEED 52, 176 
S ETTEMPO 131,188 
SET VOICE 127, l33, 188 
SETVOLUME l31 , 188 
SE 85, 181 
S E 85, 181 
SHAPE 54, 176 
SHOWTURTLE 4,176 
SH 176 
SIN 124 
S IZE 173, 176 
SMAlL 54,1 73, 176 
SPEED 176 
S PRITE comrnand 176 



2OO IT.l. l OGO 

SS 52,116 
STACCATO 131,188 
STOP 24,184 
S T 176 
SU8ST 151 
SUM 118 
SV 54,116 
SXV 177 
SXY 13,54,171 
SX 176 
SY 177 
SYV 111 
TELL 3,14,5 1,54,60, 173,177 
TE S T 89,183 
TEXT 159,182 
THAW 54,174,177 
THEN 25,183 
THING ? 87, 183 
THING 86, 186 
TI lE 177 
TO 8, 182 
TRACEBA CK 75, 188 
TRUE 91, 183 
t urtle mode 4 
TURT lE primitive 177 
TYPE J 17, 186 
WAIT 59, 186 
WHERE 177 
WH IlE 159 
WHO 51,175, 171 
WORD ? 83, 183 
WORD SO, 81, 181 
XCOLU MN 109 
XCOR 13 , 54,171 
XV El 177 
YeOR 13,54, 171 
YN 56 
YOURNUMBER 55,174, 178 
YROW 109 
YV El 178 

Abbreviations 6 
Absolute value 79 
Activation 27, 28 
Addition 77 
Arcs 2 1 
Arithmetic 77 
Arrow keys 10, 188 
Arrow keys, in shape editor 57 
Association Jist 151 

Background color 61 
Bamberger, Jeanne 129 
Binary tree 28 
Bod, 8 
Bowles, K. viii 
Brackets j 

Cartesian coordinates 13 
Cassette tape 69 
Character input 11 8 
Characters, as tiles 62 
Circles 21 
Color 13 
Color groups for tiles 6 1 
Colors, for ti les 61 

Conditional 24, 89 
Coordinates, for tiles and 

sprites 109 
Cursor 2 

Debugging 73, 188 
DiSessa, Andy viii , ix, 120 
Disk files 70 
Diskettes, initializing 70 
Division 77 
Dots 18 
Drescher, Gary viii 
Dynaturtle 120 

Edit mode 15 
Editing commands, summary J 88 
Empty list 83 
Error messages 5, 12, 189 
Errors 189 
Errors, typing 5 

Feurzeig, W. viii 
Filing 186 
Foreground color 61 
Free variables 88 

Gargarian, Greg ix 
Global variables 87 
Goldberg, A. viii 
Graphical objects 14,5 1 
Graphics commands 173 
Gross, Mark viii 

Hard copy 72 
Hardebeck, Edward VIII 

Hierarchical structure 141 
How, J. vii i 

Infix operators 93 
Input 4, 17 
Integers 77 

Kay, A . viii 
Keyboard I 

Level 12,74 
List operations 119 
Lists vii, " 83, 147 
Local variables 87 

Modes IS 
Multiplication 77 
Music 127 
Music buffer 127 

Names 19,85 
Nim 101 
Noturtle mode 15 
Number 77 
Numbers, are not words 82 
Numeric Operations 178 

Papen, Seymour viii , ix, 20, 100, 
101 

Parentheses 92 
Pause 14 
Pause break 75 
Physics 120 
Pig Latin 143 
Playnote 181 
Predicate 25, 90, 183 
Prefix operators 94 
Primitive vii, 1 
Printer 72 
Private library 19,26 
Procedure " 18 
Procedure editor 9 
Procedure, body 8 
Procedure, title 8 
Prompt 2, 74, 85 

Quiz program 91 

Radix conversion 144 
Random numbers 80 
Recursion 22,26,28, 140 
Recursive desi8ns 30 
Reduction step 140 

Sentence generator 98 
Shape editor 57 
Shapes, prederined 5 I 
Solomon, Cynthia ix, 10 1 
Spaces in Logo lines 92 
Sprite 51 
Stop rule 29, 140 
Subprocedure 9 
SublTaction 11 
Syntax 92 

Tail recursion 26 
Thermal printer 72 
Tile 51,59 
Tit le 8 
Title line 8 
Tree 28 
Tree structure 148 
Thneblocks 129 
Thrtle viii, 3, 4 
Thrtle mode 15 

Watt. Dan ix, 121 
Weizenbaum, J . 161 
Word operations 179 
Workspace 69, 186 
Wraparound 6 

-..../ 

'--' 

'-' 

~ 

'-' 

~ 

~ 

~ 

~ 

'-' 

~ 

~ 

'-" 

'-./ 

'-' 

'-' 

~ 

~ 

~ 

~ 

-
'-" 

'-" 

~ 

'-" 

~ 

~ 

~ 

'-" 

~ 

-
'-/ 

'-' 

'-/ 

V 







TI LOGO SAMPLER Overview 

To demonstrate the wide range of programming capabilities available 
with the TI LOGO language, nine entertaining procedures and seven 
educational activities for children are included on the TI LOGO 
SAMPLER diskette and cassette tape. 

The nine entertaining procedures are designed to provide the entire 
family with exciting Turtle graphics and colorful sprite 
procedures. Simply load them into the computer and enjoy the 
animated and colorful display. 

The educational activity, COLORS, lets children experience the fun 
and excitement of mixing colors. The LINE, PAINT, TARGET, PEOPLE, 
GRID , and LISTEN activities are designed for children between the 
ages-of 3 ana 8. They were written by Coleta L. Lewis, a preschool 
teacher at Lamplighter School in Dallas, Texas, and are currently 
being useo in the classroom. 

Entertaining Procedures Eaucational Activities 

BEAR 
SQUARES 
PICTURE 
PATTERNS 

ELEPHANT 
FISH 
FROG 
HORSE 
SPRING 

Turtle Mode 

Sprite Mode 

Page 1 

LINE 
PAINT 
TARGET 

COLORS 
PEOPLE 
GRID 
LISTEN 

Texas Instruments 



TI LOGO SAMPLER User Instructions 

STEP 1: Be sure that the Memory Expansion unit is connected to 
the computer and that the TI LOGO Command Module is 
inserted into the console. Also, be sure that the Disk 
Memory System or a cassette recorder is attached to the 
computer ana turned on. (See the owner's manuals or the 
User's Reference Guide for product details.) 

STEP 2: Press any key to pass the master title screen. Then 
press the number corresponding to TI LOGO. When the 
question mark and cursor (a flashing black underline) 
appear, load the program by typing 

RECALL 

and pressing ENTER. 

when the Recall selection list is displayed, press 1 for 
PROCEDuRES to load FUNSAMP (entertaining procedures) or 
EDSAMP (educational activities). To load ELEPHANT, 
FISH, FROG, HORSE, and SPRING (entertaining procedures) 
or COLORS, PEOPLE, and DESIGN (educational activities), 
press 3 for 80TH 1 AND 2 when the Recall selection list 
is displayed. 

~ext, the Device selection list appears on the display. 
To load the program from a cassette tape, insert the 
tape into the recorder. Next, refer to the "Loading 
Cassettes" section in this 'manual for instructions on 
aetermining the program's position on the cassette 
tape. When you have properly positioned the tape 
counter on your recorder, press 1. The computer then 
displays directions for loading the program. 

To load the program from diskette, insert the diskette 
into Disk Drive 1 and press 2. Then press the SPACE BAR 
to review the file names of the programs. 

When you reach the procedure or activity you want, press 
ENTER. (See the TI LOGO User's Manual for additional 
information.) ---

STEP 3: When the question mark and cursor reappear, the computer 
is reaay for you to type the name of the procedure or 
activity and press ENTER. 

STEP 4: After an entertaining procedure or educational activity 
has been loaded into the computer, type HELP and press 
ENTER to display intructions for starting the procedure 
or activity. 

Page 2 
Texas Instruments 



TI LOGO SAMPLER Entertaining Procedures 

Four of the nine entertaining procedures illustrate Turtle graphics, 
while the remaining five procedures demonstrate some of the colorful 
and dynamic capabilities of the sprites. 

In the Turtle mode, SQUARES and PATTERNS are recursive procedure~. 
In the sprite mode, ELEPHANT, FISH, FROG, and HORSE are recursive 
procedures. To stop one of these procedures, press BACK (SHIFT Z on 
the TI-99/4 console or FCTN 4 on the TI-99/4A console). For more 
information about recursive procedures, see the TI LOGO User's 
Manual. ---

Since many of the entertaining procedures in the sprite mode use the 
same shape numbers, it is suggested that you only load one procedure 
at a time. Then, turn the system off and follow the instructions 
for loading another procedure. 

The following entertaining procedures are available in the Turtle 
mode if you selected PROCEDURES from the Recall selection list. 

FUNSAMP -- BEAR 
-- SQUARES 
-- PICTURE 
-- PATTERNS 

The following entertaining procedures are available in the sprite 
mode if you selected BOTH 1 AND 2 from the Recall selection list. 

ELEPHANT 
FISH 
FRCC 
HORSE 
SPRING 

To run a procedure that has been loaded into the computer, type the 
name and press ENTER. 

Page 3 
Texas Instruments 



TI LOGO SAMPLER Entertaining Procedures 

Turtle Procedures 

In the BEAR procedure, the Turtle draws a bear using different sized 
circles. In the SQUARES procedure, the Turtle demonstates the four 
states of the ~ (PENUP, PENDOwN, PENREVERSE, and PENERASE) while 
drawing a repeating square pattern. PICTURE tells the Turtle to 
draw a picture of a house and then draw a frame around it. The 
Turtle draws patterns by combining random lengths and random angles 
in the PATTERNS procedure. Two numbers appear in the lower 
left-hand corner of the display. The top number is the number of 
lines in one segment of the pattern, and the bottom number indicates 
the number of times the line segment is repeated to form the pattern. 

Sprite Proceaures 

In the ELEPHANT procedure, the Turtle draws an elephant on tiles. 
The elephant then spouts water on its back. A fish blows bubbles as 
it swims in the ocean in the FISH procedure. The FROG procedure 
displays a frog sitting on a pond and snatching a passing fly. A 
horse goes around on a carousel in the HORSE procedure. The sprites 
demonstrate how "April showers bring four May flowers" in the SPRING 
procedure. 

Page 4 
Texas Instruments 



TI LOGO SAMPLER Educational Activities 

Three of the seven educational activities illustrate Turtle 
graphics, while the remaining four activities let your child 
experience some of the capabilities of the sprites. 

The following eaucational activities are available in the Turtle 
mode if you selectea PROCEDURES from the Recall selection list. 

EDSAMP -- LINE 
-- PAINT 
-- TARGET 

The following educational activities are available in the sprite 
mode if you selected BOTH I AND 2 from the Recall selection list. 

CULGRS 
PEOPLE 
DESIGN -- GRID 

-- LISTEN 

Turtle Activities 

The activities available in the Turtle mode are LINE, PAINT, and 
TARGET. The activity LINE is an introduction to the Turtle Mode. 
The activities PAINT and TARGET are aesigned for the child who has 
haa successful experiences with the LINE activity. 

The LINE activity is aesignea for children ages 3 through 7. 
pressing single keys your child moves the Turtle (~) around 
aisplay, creating aesigns. The activity provides your child 
environment for discovering directionality (up, down, right, 
left), letter recognition, ana creative decision-making. 

By 
the 
with an 
and 

The PAINT activity reinforces earlier experiences with the Turtle 
and provides new experiences by letting your child change the color 
of the painting bar, as well as the color of the display. He or she 
may also move the Turtle without drawing a bar of color. This 
combination of options encourages elaborate "paintings" by your 
chilo. 

The TARGET activity emphasizes the concept of estimating the number 
of steps it takes to reach a particular spot. It requires more 
skills since your child must give the Turtle a variable: the degree 
of turn. 

Page 5 
Texas Instruments 



TI LOGO SAMPLER Educational Activities 

Sprite Activities 

The activities available in the Sprite Mode are COLORS, PEOPLE, 
GRID __ , and LISTEN. 

The activity CGLGRS gives your child an opportunity to mix two 
primary colors and see the resulting color. The primary colors are 
red, blue, ana yellow. The blenaed, or secondary, colors are 
orange, purple, and green. 

PEOPLE lets your child build up to four "people" on the display. 
Each "body" has five individual parts which your child moves and 
colors. PEOPLE encourages focusing on a task, making jUdgments 
about how far to move a sprite, ana recognizing letters and colors. 

GRID __ lets your child use a 16-by-16 square grid to design a shape 
for a sprite to carry. As a design is drawn on the grid using the 
arrow keys, a sprite shows your child the actual size of the 
design. There are 11 grids (numbered 15 through 25) available on 
which your child can make designs. 

The LISTEN activity lets your child move his or her design created 
in GRID __ by pressing the arrow keys. 

Page 6 
Texas Instruments 



LINE Activity Instructions 

STEP 1: Be sure EDSAMP has been loaded following the "User 
Instructions." 

STEP 2: when the question mark and cursor appear, your child 
types LINE and presses ENTER. To correct a typing 
error, press ERASE before pressing ENTER to move the 
cursor one place to left. After your child presses 
ENTER, the triangular-shaped Turtle (~) appears in the 
center of the display, a place called HOME. 

STEP 3: Press the following keys to move or turn the Turtle: 

F -- moves the Turtle forward 10 steps. 
R -- turns the Turtle right 45 degrees. 
L -- turns the Turtle left 45 degrees. 

STEP 4: Your chilo can continue giving the Turtle F (forward), R 
(right), and L (left) commands until OUT OF INK appears 
on the display. To stop the activity at any time, your 
child can press Q. 

STEP 5: To play the activity again, type LINE and press ENTER. 

Page 7 
Texas Instruments 



PAl NT Activity Instructions 

STEP 1: Be sure EDSAMP has been loaded following the "User 
Instructions. II 

STEP 2: When the question mark and cursor appear, your child 
types PAINT and presses ENTER. To correct a typing 
error, press ERASE before pressing ENTER to move the 
question mark and cursor one place to the left. After 
ENTER is pressed, the Turtle (~ appears at HOME. 

STEP 3: The following keys move or turn the Turtle: 

F -- moves the Turtle forward 10 steps. 
B -- moves the Turtle back 10 steps. 
R -- turns the Turtle right 45 aegrees. 
L -- turns the Turtle left 45 degrees. 

To move the Turtle without painting a bar of color, your 
child presses N for "nopaint." To paint with the Turtle 
again, he or she presses P for "paint." 

STEP 4: Press the following keys to change the color of the wide 
line or the background: 

S -- changes the color of the wide line. 
C -- changes the color of the background. 

There are 16 color changes available for both the bar 
ana the background. (Note: The same sequence of color 
changes repeats when the SETCOLOR command is used in TI 
LOGO. ) 

STEP 5: Your child can continue to PAINT with the Turtle until 
OUT OF INK appears on the display. To stop the activity 
at any time, your child can press Q for QUIT. 

STEP 6: To play the activity again, type PAINT and press ENTER. 

Page 8 
Texas Instruments 



TARGET Activity Instructions 

STEP 1: Be sure EDSAMP has been loaded following the "User 
Instructions." 

STEP 2: When the question mark and cursor appear, your child , 
types TARGET and presses ENTER. To correct a typing 
error, press ERASE before pressing ENTER to move the 
question mark and cursor one place to the left. After 
ENTER is pressed, the Turtle (~ draws a circle and 
then positions itself randomly on the display. 

STEP 3: Your child needs to -tell the Turtle how many steps and 
how large a turn to take to reach the target. F 
(forward) and B (back) commands can use a variable from 
a to 100. R (right) and L (left) commands require a 
variable from a to 360 degrees. A space must be typed 
between the single letter command and the number (for 
example, R 256). 

STEP 4: After the command and number are typed, your child 
presses ENTER. To correct a typing error, press ERASE 
before pressing ENTER to move the cursor one place to 
the left. After your child presses ENTER, the Turtle 
moves or turns according to the command. If a number 
larger than 100 for Forward and Back or 360 for Right 
and Left is used, the Turtle does not move. 

STEP 5: When your child moves the Turtle into the target, the 
background flashes different colors. Your child can 
stop playing TARGET at any time by pressing Q for QUIT. 

STEP 6: To replay this activity, type TARGET and press ENTER. 

Page 9 
Texas Instruments 



COLORS Activity Instructions 

STEP 1: Be sure COLORS has been loaded following the "User 
Instructions. " 

STEP 2: When the question mark and cursor appear, your child 
types COLORS and presses ENTER. To correct a typing 
error, press ERASE before pressing ENTER to move the 
question mark and cursor one place to the left. After 
your child presses E~TER, the display turns black, three 
small boxes appear in the upper left-hand corner, and 
two large white boxes appear in the center. The small 
boxes indicate the color choices available for coloring 
the two large white boxes: R (red), B (blue), and Y 
(yellow) • 

STEP 3: To select a color, your child presses R, B, or Y. The 
top white box turns the indicated color. Next, your 
child selects a second color by pressing the appropriate 
key. The other white box turns that color. 

STEP 4: After the second color selection, the two boxes move 
together, combining the colors of the two boxes into one 
box. Then, the blended color flashes. 

STEP 5: Your child can continue COLORS by pressing the 
appropriate key to select another color. To stop the 
activity when a white box is on the display, press Q for 
QUIT • 

STEP 6: To replay this activity, type COLORS and press ENTER. 

Page 10 
Texas Instruments 



PEOPLE Activity Instructions 

STEP 1: Be sure PECPLE has been loaded following the "User 
Instructions." 

STEP 2: When the question mark and cursor appear, your child 
types PEOPLE and presses ENTER. To correct a typing 
error, press ERASE before pressing ENTER to move the 
question mark and cursor one place to the left. After 
your child presses ENTER, a black face appears at HOME. 

STEP 3: To change the color of the face (or any other part of 
the body), your child presses one of the following keys: 

R -- red 
B -- blue 
Y -- yellow 
W -- white 
o -- orange 
G -- green 
P -- purple 

Your child can change the color of the shape as many 
times as he or she wishes. However, once the color of 
the shape is changed, it cannot be colored black again. 
(Note: All seven colors are available, but depending on 
the developmental level of your child, you may want to 
introduce only the first four color options. When he or 
she has mastered the symbolism and color change 
concepts, introduce the last three color options.) 

STEP 4: The following keys are used to move the face (or any 
part of the body): 

+ -- moves the sprite up 16 steps. 
~ -- moves the sprite left 16 steps. 
~ -- moves the sprite right 16 steps. 
+ -- moves the sprite down 16 steps. 

Your child moves and changes the color of the shape 
until it is placed and colored to his or her liking. 
Since each part of the body appears at HOME initially, 
encourage your child to move the previous part away from 
that spot. 

Page 11 
Texas Instruments 



PEOPLE Activity Instructions 

STEP 5: To see another part of the body, your child presses A 
for "another." A black torso appears at HO~E. Your 
child continues moving and changing the color of the 
torso. To get the next part of the body, an arm, repeat 
the above procedure. The five parts of the body appear 
in the following sequence: head, torso, arm, arm, and 
pair of legs. After four people are built, OUT appears 
in the upper left-hana corner of the display. 

STEP 6: Your child can stop the activity at any time by pressing 
Q for QuIT. 

STEP 7: To play the activity again, type PEOPLE and press ENTER. 

Page 12 
Texas Instruments 



GRID_AND LISTEN Activity Instructions 

STEP 1: Be sure DESIGN has been loaded following the "User 
Instructions." 

STEP 2: when the question mark and cursor appear, your child 
types GRID, a space, and a number from 15 to 25 (for 
example, GRID 19). Then he or she presses ENTER. To 
correct a typing error, press ERASE before pressing 
ENTER to move the cursor one place to the left. After 
your child presses ENTER, the screen turns green and a 
16-by-16 square grid appears on the display with a 
flashing black cursor in the upper left-hand corner. 

STEP 3: Your chilo moves the cursor with the arrow keys. To 
blacken a square, hold down the SHIFT key on the TI-99/4 
console and press an arrow key, or on the TI-99/4A 
console, hold down the FCTN key and press an arrow key. 
The square the cursor leaves remains black. To move the 
cursor without coloring a square, press an arrow key 
without holding oown SHIFT or FCTN. As your child 
draws, the design appears to the right of the grid. 

To erase the grio, press CLEAR. 

STEP 4: After your child finishes drawing, press BACK to return 
to the blue screen. Your child can now use the new 
design with the activity LISTEN. 

STEP 5: when the question mark and cursor reappear, your child 
types LISTEN ana presses ENTER. To correct a typing 
error, press ERASE before pressing ENTER to move the 
cursor one place to the left. After your child presses 
ENT~R, the last sprite made with the GRID activity is 
ready to listen to forward, back, right, and left 
commands. 

STEP 6: The arrow keys are usea to move a sprite. 

t-- moves the sprite up 8 steps. 
~-- moves the sprite left 8 steps. 
~-- moves the sprite right 8 steps. 
+ -- moves the sprite down 8 steps. 

STEP 7: Your child continues moving the sprite with the arrow 
keys. To stop the activity at any time, press Q for 
QuIT • 

Page 13 
Texas Instruments 



TI LOGO SAMPLER Loading Cassettes 

Copies of all programs listed on the cassette tape label are located 
on both sides of the tape. If for any reason you experience trouble 
loading or accidentally erase a program, another copy is available 
on the other side of the tape. 

To attach ana operate your cassette recorder, refer to the User's 
Reference Guide. Follow these instructions carefully, and the 
programs should load easily. 

However, if your recorder does not respond when you press E~TER 
while loading the package, your cassette recorder's drive motor may 
not be compatible with the computer's circuitry. Although the 
computer may not be able to operate the recorder automatically, you 
may be able to operate your recorder manually. Connect the red and 
white plugs to the recoraer unit as described in the User's 
Reference Guide, but do not connect the black plug. Follow the 
procedure for loading data as described. When the message "PRESS 
CASSETTE PLAY" is displayed, press the E~TER key immediately after 
pressing the recorder's PLAY key. If the data loads successfully, 
you may continue to operate the cassette manually. 

Follow these steps to determine the exact location of all programs: 

STEP 1: Rewind your tape ana reset the counter to zero. 

STEP 2: Disconnect the computer-to-cassette cable from the 
cassette player. You now can hear what is on the tape 
as it plays. 

STEP 3: Press PLAY. 

STEP 4: The programs in the T1 LOGO Sampler package are listed 
on the cassette tape in the following order: 

FUNSAMP 
EDSAMP 
COLORS 
PEOPLE 
DESIGN 
ELEPHANT 
FISH 
FROG 
HORSE 
SPRING 

Page 14 
Texas Instruments 



TI LOGO SAMPLER Loading Cassettes 

A blank section of tape precedes each program. When you 
hear program oata, write the tape counter position 
besioe the program name above. You may wish to subtract 
1 or 2 from the counter reading to ensure that, when you 
loao the program, the beginning of your program loads 
properly. 

STEP 5: use these counter settings in the future to quickly load 
cassette tape programs. 

NOTE: This process can be speeOed by alternating 
between PLAY and FAST FORWARD as you listen. 

Page 15 
Texas Instruments 



TI LOGO SAMPLER In Case of Difficulty 

1. Be sure that the diskette or cassette you are using is the 
correct one. For a diskette, use the Catalog command on your 
Disk Manager Command Module to check for the correct program; 
for a cassette tape, check the label. 

2. Be sure that you have inserted the TI LOGO Command Module 
into the slot on the console. 

3. If your computer ooes not respond to the RECALL command, be 
sure you have selected TI LOGO. If so, follow the instructions 
that appear on the display and press "BACK" to return to TI 
LOGO. Then retype RECALL and press ENTER. 

4. Ensure that your cassette recorder or disk system is 
properly connected and turned on. Be certain that you have 
turned on all peripheral devices before you turn on the computer. 

5. If your program does not appear to be working correctly, 
press BACK and remove the diskette from the disk drive or press 
CLEAR and remove the cassette from the recorder. Reinsert the 
oiskette or the cassette, and follow the "User Instructions" 
carefully. If the program still does not appear to be working 
properly, remove the cassette from the recorder or the diskette 
from the disk drive, turn the computer off, wait several 
secondS, and turn it on again. Then load the program again. 

6. If you are having difficulty in operating your Home Computer 
or are receiving error messages, refer to the "Maintenance and 
Service Information" and "Error Messages" appendices in your 
User's Reference Guide for additional help. 

7. If you continue to have difficulty with your Texas 
Instruments computer or the TI LOGO SAMPLER package, please 
contact the dealer from whom you purchased the unit or package 
for service directions. 

Page 16 
Texas Instruments 



TI LOGO SAMPLER 

THREE-MONTH LIMITED wARRANTY 
COMPUTER SOFTWARE MEDIA 

Limited Warranty 

Texas Instruments Incorporated extends this consumer warranty 
only to the original consumer purchaser. 

WARRANTY COVERAGE 

This warranty covers the case components of the software 
package. The components include all cassette tapes, diskettes, 
plastics, containers, ana all other hardware contained in this 
software package ("the Hardware"). This limited warranty does 
not extend to the programs contained in the software media and 
in the accompanying book materials ("the Programs"). 

The Hardware is warrantea against malfunction due to defective 
materials or construction. THIS WARRANTY IS VOID IF THE 
HARDWARE HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, 
NEGLECT, IMPROPER SERVICE OR OTHER CAUSES NOT ARISING OUT OF 
DEFECTS IN MATERIAL OR CONSTRUCTION. 

wARRANTY DURATION 

The Hardware is warranted for a period of three months from the 
date of original purchase by the consumer. 

WARRANTY DISCLAIMERS 

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT 
NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE 
ABOVE THREE-MONTH PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABlE 
FOR LOSS OF USE OF THE HARDWARE OR OTHER INCIDENTAL OR 
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE 
CONSUMER OR ANY OTHER USER. 

Some states do not allow the exclusion or limitation of implied 
warranties or consequential damages, so the above limitations or 
exclusions may not apply to you in those states. 

LEGAL RE~DIES 

This warranty gives you specific legal rights, and you may also 
have other rights that vary from state to state. 

Page 17 
Texas Instruments 



TI LOGO SAMPLER Limited Warranty 

PERFORMANCE BY TI uNDER WARRANTY 

During the three-month warranty perioo, defective Hardware will 
be replaceo when it is returned postage prepaid to a Texas 
Instruments Service Facility listeo below. The replacement 
Hardware will be warranteo for a period of three months from 
oate of replacement. TI strongly recommends that you insure the 
Hardware for value prior to mailing. 

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES 

Texas Instruments Service Facility 
P. O. Box 2500 
Lubbock, Texas 79408 

Geophysical Services Incorporated 
41 Shelley Road 
Richmond Hill, Ontario, Canada L4C5G4 

Consumers in California and Oregon may contact the following 
Texas Instruments offices for additional assistance or 
information. 

Texas Instruments Exchange Center 
831 South Douglas Street 
El Segunao, California 90L45 
(213) 973-1803 

Texas Instruments Consumer Service 
6700 Southwest 105th 
Kristen Square, Suite 110 
Beaverton, Oregon 97005 
(503) 643-6758 

Page 18 
Texas Instruments 



TI LOGO SAMPLER Limited Warranty 

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS 

The following should be read and understood before purchasing 
and/or using the software media. 

TI ooes not warrant the Programs will be free from error or will 
meet the specific requirements of the consumer. The consumer 
assumes complete responsibility for any decisions made or 
actions taken based on information obtained using the Programs. 
Any statements made concerning the utility of the Programs are 
not to be construed as express or implied warranties. 

TEXAS INSTRUMENTS MAKES NO wARRANTY, EITHER EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO ANY IMPLIED wARRANTIES OF 
MERChANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING 
THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN liAS 
IS" bASIS. 

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR 
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN 
CONNECTION wITh OR ARISING OUT OF THE PURCHASE OR USE uF THE 
PROGRAMS AND ThE SOLE AND EXCLUSIVE LIABILITY OF TEXAS 
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED 
THE PURCHASE PRICE OF THE SOFTwARE MEDIA. MOREOVER, TEXAS 
INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND 
WhATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE PROGRAMS. 

Some states dO not allow the exclusion or limitation of implied 
warranties or consequential damages, so the above limitations or 
exclusions may not apply to you in those states. 

Page 19 
Texas Instruments 






	TI LOGO
	TI LOGO Sampler
	f
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	b


