
i

The Graphics
Programming

Language

R. A. Green

As accepted by the RAG
Software GPL Macro

Assembler

Edited by Lee Stewart (2016)

ii

Copyright © 1990 by R. A. Green

Table of Contents

1 Introduction..1
2 Graphics memory (GRAM)..2
3 TI 99/4A GROM Operating System...3

 3.1 System Power Up..3
 3.2 GRAM/DSR Headers..3
 3.3 GRAM/DSR Chains...4
 3.4 GPL Callable Subroutines...4
 3.5 Floating Point Numbers..4
 3.6 Automatic Sound Processing..5
 3.7 Automatic Sprite Motion..6
 3.8 Keyboard Input...7

4 CPU RAM PAD...8
 4.1 Memory Map..8
 4.2 GPL Status Byte...9
 4.3 VDP Status Byte...10
 4.4 Floating Point Error Codes...10

5 VDP RAM Usage...11
6 Addressing Modes..12

 6.1 The Six Addressing Modes...12
 6.1.1 Direct Memory Reference...12
 6.1.2 Indirect Memory Reference..12
 6.1.3 Indexed Direct Memory Reference...12
 6.1.4 Indexed Indirect Memory Reference...12
 6.1.5 Immediate Data...12
 6.1.6 VDP Register Direct...12

 6.2 Operand Notations..13
 6.2.1 General Source – gsrc...13
 6.2.2 General Destination – gdest..14
 6.2.3 Special Addresses...14

7 Elements of the Language...16
 7.1 Assembler Statements...16

 7.1.1 Comment..16
 7.1.2 Assembler Directives..16
 7.1.3 Macro Directives...16
 7.1.4 Ordinary Statements..17
 7.1.5 Macro Statements...17

 7.2 Assembler Symbols..17
 7.2.1 Ordinary Symbols...17
 7.2.2 Macro Symbols...17

 7.3 Macro Symbol Substring Notation..18
 7.4 Macro Definitions...19

iii

 7.5 The Location Counter...19
 7.6 Expressions...20
 7.7 Constants..20
 7.8 Definition of Terms...20

8 Assembler Directives..22
 8.1 AORG—Absolute Origin...22
 8.2 BSS—Block Starting with Symbol...22
 8.3 BYTE—Define Byte Data..22
 8.4 COPY—Copy Source from File...23
 8.5 DATA—Define Double Byte Data...23
 8.6 DEF—Define External Name...23
 8.7 DORG—Dummy Origin...24
 8.8 END—End of Assembly...24
 8.9 EQU—Set Symbol Equal to Value...24
 8.10 FLOAT—Define Floating Point Data...25
 8.11 IDT—Identify Object..25
 8.12 LIST—Resume Assembler Listing...25
 8.13 OBJREC—Write Object Record...25
 8.14 PAGE—Start New Listing Page...26
 8.15 REF—External Reference...26
 8.16 STRI—Define ASCII String Constant..26
 8.17 TEXT—Define ASCII Text Constant...27
 8.18 TITL—Define Listing Title..27
 8.19 UNL—Stop Assembler Listing...27

9 Ordinary Statements..28
 9.1 ABS DABS—Absolute Value..28
 9.2 ADD DADD—Add..28
 9.3 ALL—Load Screen...28
 9.4 AND DAND—Logical And...29
 9.5 B—Branch..29
 9.6 BACK—Load Background Colour...29
 9.7 BR—Branch on Reset...30
 9.8 BS—Branch on Set...30
 9.9 CALL—Call Subroutine...30
 9.10 CARRY—Transfer CARRY to COND...31
 9.11 CASE DCASE—Select Case..31
 9.12 CEQ DCEQ—Compare Equal..31
 9.13 CGE DCGE—Compare Greater Than or Equal..32
 9.14 CGT DCGT—Compare Greater Than..32
 9.15 CH DCH—Compare Logical High...33
 9.16 CHE DCHE—Compare Logical High or Equal..33
 9.17 CLOG DCLOG—Compare Logical...33
 9.18 CLR DCLR—Zero Value...34
 9.19 COINC—Coincidence Check...34

iv

 9.20 COL—Set Current Column...35
 9.21 CONT—Continue BASIC..35
 9.22 CZ DCZ—Compare to Zero...35
 9.23 DEC DDEC—Decrement by One...36
 9.24 DECT DDECT—Decrement by Two...36
 9.25 DIV DDIV—Divide..36
 9.26 EX DEX—Exchange..37
 9.27 EXEC—Execute BASIC...37
 9.28 EXIT—Exit from Program...37
 9.29 FEND—End of Formatted Screen Write..38
 9.30 FETCH—Fetch Parameter..38
 9.31 FMT—Formatted Screen Write..38
 9.32 FOR—Begin Formatted Screen Write Loop...39
 9.33 GT—Transfer GT to COND...39
 9.34 H—Transfer H to COND..40
 9.35 HCHA—Display Character Horizontally..40
 9.36 HSTR—Display Character Horizontally...40
 9.37 HTEX—Display String Horizontally..41
 9.38 ICOL—Increment Current Column..41
 9.39 INC DINC—Increment by One..42
 9.40 INCT DINCT—Increment by Two...42
 9.41 INV DINV—Invert Bits..43
 9.42 IO—Special I/O..43
 9.43 IROW—Increment Current Row..45
 9.44 MOVE—Block Move...45
 9.45 MUL DMUL—Multiply...45
 9.46 NEG DNEG—Negate...46
 9.47 OR DOR—Logical OR...46
 9.48 OVF—Transfer OVF to COND..47
 9.49 PARSE—Parse for BASIC Token..47
 9.50 POP—Pop from Data Stack..47
 9.51 PUSH—Push onto Data Stack..47
 9.52 RAND—Generate Random Number...48
 9.53 ROW—Set Current Row..48
 9.54 RTN—Return from Subroutine...49
 9.55 RTNB—Return from BASIC..49
 9.56 RTNC—Return with COND...49
 9.57 SCAN—Scan Keyboard...49
 9.58 SCRO—Set Screen Offset..50
 9.59 SLL DSLL—Shift Left Logical..50
 9.60 SRA DSRA—Shift Right Arithmetically..51
 9.61 SRC DSRC—Shift Right Circular..51
 9.62 SRL DSRL—Shift Right Logical...51
 9.63 ST DST—Store...52

v

 9.64 SUB DSUB—Subtract..52
 9.65 VCHA—Display Character Vertically..52
 9.66 VTEX—Display String Vertically..53
 9.67 XML—Execute Machine Language...53
 9.68 XOR DXOR—Logical Exclusive OR...54

10 Macro Directives...56
 10.1 $END—End of Macro Definition...56
 10.2 $ERROR—Issue Error Message...56
 10.3 $EXIT—Exit from Macro...57
 10.4 $GOTO—Branch within Macro..57
 10.5 $IF—Conditional Branch within Macro...57
 10.6 $LABEL—Define Macro Label..58
 10.7 $MACRO—Begin Macro Definition..58
 10.8 $REM—Macro Reminder...59
 10.9 $SET—Set Macro Symbol..59

 Appendix A GPL Subroutines...60
 A.1 DSRLNK (GRAM Address >0010)...60
 A.2 GSRRTN (GRAM Address >0012)...60
 A.3 SUBCNS (GRAM Address >0014)...60
 A.4 STDCHR (GRAM Address >0016)...61
 A.5 UCCHAR (GRAM Address >0018)..61
 A.6 BWARN (GRAM Address >001A)...61
 A.7 BERR (GRAM Address >001C)..61
 A.8 BEXEC (GRAM Address >001E)...61
 A.9 PWRUP (GRAM Address >0020)...61
 A.10 SUBINT (GRAM Address >0022)...61
 A.11 SUBPWR (GRAM Address >0024)...61
 A.12 SUBSQR (GRAM Address >0026)..62
 A.13 SUBEXP (GRAM Address >0028)..62
 A.14 SUBLOG (GRAM Address >002A)..62
 A.15 SUBCOS (GRAM Address >002C)...63
 A.16 SUBSIN (GRAM Address >002E)..63
 A.17 SUBTAN (GRAM Address >0030)...63
 A.18 SUBATN (GRAM Address >0032)...64
 A.19 BEEP (GRAM Address >0034)...64
 A.20 HONK (GRAM Address >0036)...64
 A.21 BGETSS (GRAM Address >0038)..64
 A.22 BITREV (GRAM Address >003B)..64
 A.23 CASDSR (GRAM Address >003D)...65
 A.24 BPABSS (GRAM Address >003F)..65
 A.25 BSETSU (GRAM Address >0042)..65
 A.26 LCCHAR (GRAM Address >004A)..65

 Appendix B XML Routines...66
 B.1 XML >00 Undefined..66

vi

 B.2 XML >01 Round FAC...66
 B.3 XML >02 Round FAC at ARG..66
 B.4 XML >03 Set STATUS Depending on FAC..66
 B.5 XML >04 Floating Point Underflow/Overflow..66
 B.6 XML >05 Set Floating Point Overflow..66
 B.7 XML >06 Floating Point Add..67
 B.8 XML >07 Floating Point Subtract..67
 B.9 XML >08 Floating Point Multiply...67
 B.10 XML >09 Floating Point Divide..67
 B.11 XML >0A Floating Point Compare..67
 B.12 XML >0B Floating Point Stack Add..67
 B.13 XML >0C Floating Point Stack Subtract..67
 B.14 XML >0D Floating Point Stack Multiply...68
 B.15 XML >0E Floating Point Stack Divide..68
 B.16 XML >0F Floating Point Stack Compare...68
 B.17 XML >10 Convert VDP String to Floating..68
 B.18 XML >11 Convert String to Floating...68
 B.19 XML >12 Convert Floating to Integer..68
 B.20 XML >13 Get BASIC Symbol Table Entry...68
 B.21 XML >14 Get BASIC Symbol Table Value...68
 B.22 XML >15 Assign Value to BASIC Variable..69
 B.23 XML >16 Search BASIC Symbol Table..69
 B.24 XML >17 Push Value onto VDP Stack..69
 B.25 XML >18 Pop Value from VDP Stack...69
 B.26 XML >19 Search DSR ROM Chains...69
 B.27 XML >1A Search GROM Chains..69
 B.28 XML >1B Get Next BASIC Byte...69
 B.29 XML >1C Undefined...69
 B.30 XML >1D Undefined...69
 B.31 XML >1E Undefined...69
 B.32 XML >1F Undefined..69

 Appendix C BASIC Tokens...70
 Appendix D Coincidence ...72
 Appendix E GPL Operation Codes..76

 E.1 GPL Operations..76
 E.2 Format Suboperations...81

 Appendix F General Address Format...82

vii

1 Introduction 1

1 Introduction
This manual describes the GPL language as accepted by the RAG SOFTWARE GPL Macro
Assembler, and as generated by the RAG SOFTWARE GPL Disassembler. Also described is the
structure of the GROM operating system contained in the GROMs in the 99/4A Console.
Additional information about the 9900 hardware, the Video Processor and the file system must be
obtained elsewhere—the TI Editor Assembler Manual being the ultimate authority.

The Graphics Programming Language (GPL) is an “assembly” level language designed by TI for
use in the 99/4A System. The instruction set of the Graphics Programming Language essentially
defines a “virtual” computer. This virtual GPL computer is simulated by 9900 code in the ROM
of the 99/4A. Because GPL is an interpreted language it runs slower than native 9900 code.
However, the GPL language (and its simulated processor) has several features which make it
attractive for writing programs. These are:

 1. Three types of memory are supported

 a. Graphics Memory 64K

 b. CPU Memory 64K

 c. VDP Memory 16K

The graphics memory thus gives the 4A an extra 64K of directly accessible memory.

2. In GPL the three types of memory are handled easily, and in a uniform way.

3. The simulated GPL computer is simple, yet at the same time it has instructions that
perform some very complex tasks.

4. The GPL object code is compact with no boundary alignment requirements. Instructions
perform arithmetic and logical operations on either byte or double byte values.

Learning the GPL language and assembling or disassembling GPL programs is only useful if you
have a GRAM device so that you can load or change GPL programs. Because of this, in the
remainder of this manual, the Graphics Memory will be called GRAM.

2 2 Graphics memory (GRAM)

2 Graphics memory (GRAM)
GPL programs reside in GRAM. Each GRAM block was defined by TI to be 6K bytes within an
8K address block. Some of the available GRAM devices have expanded this so that the full 8K
in each block is available. The GRAM device RAM like the VDP RAM is viewed by the 9900
CPU as a memory mapped I/O device and is accessed one byte at a time through an I/O port as
shown in the table below.

Port GRAM VDP RAM

Write Address >9C02 >8C02

Write Data >9C00 >8C00

Read Address >9802 —

Read Data >9800 >8800

The GRAM address is a 16 bit number allowing an address range of 64K which allows 8 GRAM
blocks of either 6K or 8K bytes. There are 3 GROM blocks in the 4A console (which can be
overridden by some GRAM devices). The following table shows the standard layout of GRAM:

GRAM Base End End
Block Address Address Extended Contents

0 >0000 >17FF >1FFF 4A O/S

1 >2000 >37FF >3FFF TI BASIC

2 >4000 >57FF >5FFF TI BASIC

3 >6000 >77FF >7FFF Cartridge

4 >8000 >97FF >9FFF Cartridge

5 >A000 >B7FF >BFFF Cartridge

6 >C000 >D7FF >DFFF Cartridge

7 >E000 >F7FF >FFFF Cartridge

3 TI 99/4A GROM Operating System 3

3 TI 99/4A GROM Operating System
This section describes the structure of the GROM operating System. This knowledge is required
since the GPL interpreter in the 4A ROM depends upon the structure. TI BASIC is entwined into
this structure as well, with several GPL operations dedicated to BASIC. The explanation of the
TI BASIC interpreter is beyond the scope of this manual and will only be mentioned when
necessary in the description of some other item.

 3.1 System Power Up

When the 9900 CPU of the TI 99/4A begins execution, after power up or a RESET interrupt, it
fetches a workspace pointer and a program counter from CPU address zero. These two values in
the ROM of the 4A force the CPU to begin executing the GPL interpreter with a starting GRAM
address of >0020. From this point on the system is under control of the GPL program that begins
at that GRAM address. This program is the GROM/GRAM operating system.

 3.2 GRAM/DSR Headers

The operating system, through two XML routines (>19 and >1A), defines a header for both
GRAM blocks and DSR ROM blocks (and, in some models of the 4A, cartridge ROM at CPU
address >6000). This header is used in the search for menu items, device names, BASIC
subroutine names, interrupt service routines, and power up routines. The GRAM and ROM
headers are identical. The header format is shown below.

Offset Size Contents

00 1 >AA Identifies Proper Header

01 1 Version Number

02 1 Number of Menu Items

03 1 Reserved for Future Use

04 2 Address of power up Chain

06 2 Address of Menu Chain

08 2 Address of Device Name Chain

0A 2 Address of Subroutine Chain

0C 2 Address of Interrupt Service Chain

0E 2 Reserved for Future Use

Several things should be noted about the header contents.

An address of zero for one of the chains means that no chain exists.

The Version Number has a special function designed by TI for multilingual support. If the
version number is negative on the GRAM at address >6000 then special action is taken. First,
after the colour bar screen is built, but before it is displayed, a subroutine at GRAM address
>6010 is called. Second, after the master menu screen is built, but before it is displayed, a

4 3.2 GRAM/DSR Headers

subroutine at GRAM address >6013 is called. These two locations should contain unconditional
branches to the processing routine. The routines should end with an RTN instruction. These
routines can use the full GPL/System facilities. If these routines modify the screen area of VDP,
then upon return, this modified screen will be displayed. Locations >8300 through >836F in CPU
RAM may be used freely.

The Power Up routines in DSR ROM (at CPU address >4000) are executed first (via XML >19),
then the GRAM power up routines are executed (via XML >1A). The power up routines may not
use XML >19 nor XML >1A. Locations >8304 through >8371 in CPU RAM may be used freely.

Interrupt Service routines exist only in device ROMs.

 3.3 GRAM/DSR Chains

The GRAM and DSR chains are identical in format. The chain format is shown below:

Offset Size Contents

0 2 Address of next chain item

2 2 Routine starting address

4 1 Length of following text

5 n Text for: Menu Item, BASIC
Subroutine Name or Device Name

A chain address of zero indicates no further items in the chain. The text length and the text are
not used for power up or interrupt service chains.

 3.4 GPL Callable Subroutines

The GROM Operating System provides several routines that can be called by GPL programs.
They are called by the GPL CALL statement. All of the routines are located in GROM 0 of the
console. Each is described in Appendix A, “GPL SUBROUTINES”.

There are a number of subroutines located within the interpreter that can be called via the XML
instruction. Especially useful are the floating point arithmetic routines. The XML routines are
described in Appendix B, “XML ROUTINES”.

 3.5 Floating Point Numbers

The GPL interpreter provides an implementation of floating point arithmetic. The various
routines are accessed via the XML instruction.

Floating point numbers are 8 bytes, a one byte exponent followed by a 7 byte mantissa. The
numbers are in radix 100 form. Each byte in the radix 100 mantissa represents a number from 0
to 99. The seven byte mantissa thus corresponds to 13 or 14 decimal digits.

The radix 100 point is assumed to be after the first digit. The exponent indicates the number of
positions to move the point, either left (negative) or right (positive). The exponent thus
represents a power of 100 by which the mantissa is multiplied. The exponent in the exponent

3 TI 99/4A GROM Operating System 5

byte is biased by 64 (>40). It ranges from +63 (>7F) to -64 (>00) giving a decimal range in
numbers from 1.0E+126 to 1.0E-128.

Floating point numbers are always normalized, that is, the first radix 100 digit is never zero. A
zero value is represented by the exponent and first digit bytes being zero with the remaining 6
bytes having any value. Negative numbers are indicated with the two’s complement of the first
two bytes.

Following are some examples of floating point numbers. The exponent is separated and the radix
100 point is shown (they are not coded this way).

Decimal : 1.0
Floating Point : >40 >01.000000000000

Decimal : -1.0
Floating Point : >BF >FF.000000000000

Decimal : 0.34
Floating Point : >3F >22.000000000000

Decimal : -0.34
Floating Point : >C0 >DE.000000000000

Decimal : 500
Floating Point : >41 >05.000000000000

Decimal : -500
Floating Point : >BE >FB.000000000000

Decimal : 1.345678
Floating Point : >40 >01.22384E000000

Decimal : -1.345678
Floating Point : >BF >FF.22384E000000

Decimal : 1.1
Floating Point : >40 >01.0A0000000000

Decimal : 1.01
Floating Point : >40 >01.010000000000

Decimal : 0.0
Floating Point : >00 >00.xxxxxxxxxxxx

 3.6 Automatic Sound Processing

The GPL interpreter has an interrupt driven sound processing routine which will automatically
“play” a sound list. Once started via the IO instruction, the series of sounds in the sound list will
be played with no further program control necessary.

The sound list has the format shown below.

6 3.6 Automatic Sound Processing

Byte 0 – “n” the number of sound bytes for the first segment to be played,

Byte 1 – first sound byte,

Byte 2 – second sound byte,
 ...

Byte n – last sound byte of segment

Byte n+1 – interrupt count,

Byte n+2 – the number of sound bytes for the next segment to be played,
 ...

The “sound bytes” are moved directly to the sound generator and must be valid data for it. The
“interrupt count” specifies how long before the next segment is played. It is a count of VDP
interrupts which occur at the rate of 60 per second. Thus “interrupt count” is a timer value in
units of 1/60th of a second. The playing of segments continues until a segment with a zero
“number of sound bytes” is found.

Sound list playing is initiated with the IO instruction described later. Sound list processing is
only done if allowed in the System Flags byte, SYSFLG, at address >83C2 in CPU RAM PAD.

 3.7 Automatic Sprite Motion

The GPL interpreter has an interrupt driven automatic sprite motion routine. Automatic sprite
motion is initiated by building a “sprite motion table” in VDP RAM beginning at address >0780,
then setting the number of sprites in motion into SPRNO at CPU RAM PAD address >837A.
Automatic sprite motion is only performed when allowed via bits in SYSFLG at address >83C2
in CPU RAM PAD.

The sprite motion table in VDP RAM has one four byte entry for each sprite in motion. The
entries are in order for sprite 0, 1, 2, ..., 31. Each entry is as shown below.

Byte 1 – Vertical (Y) velocity,

Byte 2 – Horizontal (X) velocity,

Byte 3 – Work area used by the system,

Byte 4 – Work area used by the system,

The velocity bytes are considered to be two’s complement signed numbers. They range from >80
(-128) to >FF (-1) for up or left motion, and from >00 to >7F (+127) for down or right motion. A
value of 1 in the velocity byte will cause the sprite to move one pixel every 16 VDP interrupts, or
one pixel every 16/60th of a second.

The Sprite Attribute Table and the Sprite Pattern Table, required by the VDP hardware, must of
course be set up in order to display sprites.

3 TI 99/4A GROM Operating System 7

 3.8 Keyboard Input

The GPL SCAN instruction and most Assembler Language programs make use of a routine in the
console ROM (at address >000E) to scan the keyboard/joysticks. This KSCAN routine makes
use of tables in GRAM 0 (at addresses >16E0 to >17EF) to translate the keyboard/joystick matrix
into the defined ASCII characters or joystick values.

8 4 CPU RAM PAD

4 CPU RAM PAD
The 256 bytes of memory contained within the 9900 microprocessor at address >8300 to >83FF
may be the only CPU RAM available (in systems without expanded memory). This section of
memory is given the name RAM PAD. The GPL interpreter and the GPL language assumes that
certain parts of RAM PAD are defined and used as shown below. It is recommended that the
names shown below are used to reference the various values, so that in all GPL programs it will
be obvious what values are being used.

 4.1 Memory Map

>834A FAC (8 bytes). Floating Point Accumulator.

>835C ARG (8 bytes). Floating Point Argument.

>8354 ERCODE (1 byte). Floating Point Error Code.

>8356 VPAB (2 bytes). VDP Address of the PAB name length.

>836E VSTACK (2 bytes). Floating Point Value Stack Pointer. The stack is in VDP.

>8370 MAXMEM (2 bytes). Contains the highest available VDP RAM address. This value
is set and used especially by the Disk Peripheral to allocate and find its
buffers in high VDP RAM. Possible contents are:

>3FFF – no disk on system,

>3BE3 – CALL FILES(1)

>39DD – CALL FILES(2)

>37D7 – CALL FILES(3) – Normal

>35D1 – CALL FILES(4)

>2BB3 – CALL FILES(9)

>8372 DATSTK (1 byte). GPL Data Stack Pointer. The data stack is at >83xx where xx is
the value of DATSTK. Initial value is >A0.

>8373 SUBSTK (1 byte). GPL Subroutine Stack Pointer. The subroutine stack is at >83xx
where xx is the value of SUBSTK. Initial value is >80.

>8374 KBNO (1 byte). Keyboard Number. Used by the SCAN instruction.

>8375 KEY (1 byte). Key Code Value. Set by the SCAN instruction.

>8376 JOYY (1 byte). Joystick Y Value. Set by the SCAN instruction.

>8377 JOYX (1 byte). Joystick X Value. Set by the SCAN instruction.

>8378 RANDNO (1 byte). Random Number. Set by the RAND instruction.

>8379 TIMER (1 byte). VDP Interrupt Timer. This value is incremented every 1/60
second by the VDP interrupt routine.

>837A SPRNO (1 byte). Highest Sprite Number in Auto-motion.

>837B VSTAT (1 byte). VDP Status. The VDP status is set on every VDP interrupt.

4 CPU RAM PAD 9

>837C STATUS (1 byte). GPL Status Byte. The GPL status byte is set by most GPL
instructions, and is tested by the conditional branch instructions.

>837D VCHAR (1 byte). VDP Character Buffer. Storing a character at VCHAR causes
the character to be written to the screen at the position defined by VROW
and VCOL.

>837E VROW (1 byte). VDP Screen Row.

>837F VCOL (1 byte). VDP Screen Column.

>8380 (32 bytes). Normal Subroutine Stack.

>83A0 (32 bytes). Normal Data Stack.

>83C0 (32 bytes). Interrupt Workspace. Some fields are defined as shown
below.

>83C0 RSEED (2 bytes). Random Number Seed.

>83C2 SYSFLG System Flags.

Bit 0 = 1, Disable all of the following,

Bit 1 = 1, Disable sprite auto-motion,

Bit 2 = 1, Disable sound processing,

Bit 3 = 1, Disable QUIT key checking,

Bit 4 to 7, Unused.

>83C4 USRINT (2 bytes). User Interrupt Routine Address.

>83CC SNDLST (2 bytes). Sound List Address. Set by the IO instruction.

>83CE SNDCNT (1 byte). Sound List Count. Set by the IO instruction.

>83D4 VDPR1 (1 byte). VDP R1 Contents. Used by the key scan routine to restore the
screen after it has blanked.

>83D6 (2 bytes). Screen Timeout Counter. Incremented on every VDP interrupt.
The screen is blanked when this value is incremented to zero. It is set to
zero on every key press by the key scan routine.

>83E0 (32 bytes). GPL Interpreter Workspace. Some fields are defined as
shown below.

>83FD (1 byte). System Flags.

Bit 6 = 1, Screen is in multi-colour mode.

Bit 7 = 1, Sound list is in VDP; else GRAM.

>83FE (2 bytes). VDP Write Address Port (>8C02).

 4.2 GPL Status Byte

The GPL Status Byte, STATUS, at >837C indicates the results of most GPL instructions. The
status byte is similar to the 9900 microprocessor Status Register. The bits in the status byte are
defined as follows.

10 4.2 GPL Status Byte

Bit 0 H bit. High or Logically greater than [zero]. This bit can be transferred
to the COND bit via the H instruction.

Bit 1 GT bit. Greater than or Arithmetically greater than [zero]. This bit can be
transferred to the COND bit via the GT instruction.

Bit 2 COND bit. Condition or Zero or Equal to [zero]. This bit is tested by the
Branch Set (BS) and Branch Reset (BR) instructions.

Bit 3 CARRY bit. Indicates a carry from the leftmost bit in arithmetic and shift
operations. Represents overflow for logical arithmetic. This bit
can be transferred to the COND bit via the CARRY instruction.

Bit 4 OVF bit. Indicates overflow in two’s complement arithmetic and shift
operations. This bit can be transferred to the COND bit via the
OVF instruction.

 4.3 VDP Status Byte

The VDP status byte, VSTAT, at >837B is a copy of the actual VDP status byte and is set on
every VDP interrupt. The bits are defined as shown below.

Bit 0 Set for every interrupt request.

Bit 1 Fifth Sprite Bit. Set when there are 5 sprites on any line.

Bit 2 Coincidence Bit. Set when there is sprite coincidence.

Bit 3-7 Is the number of the fifth sprite on a line when bit 1 is set.

 4.4 Floating Point Error Codes

The floating point routines and the GRAM 0 GPL Subroutines may set an error code at >8354,
ERCODE. The following is a list of the possible codes.

1 Overflow error

2 Syntax error

3 Integer overflow on conversion

4 Square root of negative number

5 Negative number raised to non-integer power

6 Log of negative number or zero

7 Invalid argument to trig function

5 VDP RAM Usage 11

5 VDP RAM Usage
The GPL instructions that deal directly with displaying data on the video screen assume a
“standard” setup for the VDP. Additionally, some GPL Callable and some XML routines assume
“standard” VDP usage. Below is a memory map of this “standard” setup.

>0000 – Screen Image Table (>300 bytes), VDP R2 = >00.

>0300 – Sprite Attribute Table (>80 bytes), VDP R5 = >06.

>0380 – Colour Table (>20 bytes). VDP R3 = >0E.

>03A0 – Free (>20 bytes).

>03C0 – RAM PAD Save Area (>1A bytes).

>03DA – Free (>3C0 bytes).

>0780 – Sprite Motion Table (>80 bytes).

>0800 – Pattern Table (>800 bytes), VDP R4 = >01.

>1000 – Free.

12 6 Addressing Modes

6 Addressing Modes
The GPL instruction set supports the use of three types of memory: CPU RAM, VDP RAM and
GRAM. It also supports six addressing modes.

 6.1 The Six Addressing Modes

The addressing modes are listed below.

 6.1.1 Direct Memory Reference

In this mode, the instruction contains the memory address to be referenced.

 6.1.2 Indirect Memory Reference

In this mode, the instruction contains a CPU RAM address that in turn contains the memory
address to be referenced. The indirect address for CPU RAM references is a byte value
indicating an address in RAM PAD (>8300 – >83FF). The indirect address for VDP RAM or
GRAM is a double byte value containing the full address.

 6.1.3 Indexed Direct Memory Reference

In this mode, the instruction contains an offset value and the CPU RAM address of a double byte
index value. The offset value is added to the index value to give the memory address to be
referenced. The double byte index must be located in RAM PAD (>8300 to >83FF).

 6.1.4 Indexed Indirect Memory Reference

In this mode, the instruction contains an offset value and the CPU RAM address of a double byte
index value. The offset value is added to the index value to give a CPU RAM address, the value
at that location is the memory address to be referenced. The double byte index must be located in
RAM PAD. The indirect address for CPU RAM references is a byte value indicating an address
in RAM PAD (>8300 – >83FF). The indirect address for VDP RAM or GRAM is a double byte
value containing the full address.

 6.1.5 Immediate Data

In this mode, the instruction contains the data value itself. This addressing mode cannot be used
as a destination operand.

 6.1.6 VDP Register Direct

In this mode, the instruction contains a VDP register number. This mode is used only as the
destination operand of the MOVE instruction.

6 Addressing Modes 13

 6.2 Operand Notations

Not all combinations of memory type and addressing mode are legal, and not all modes are
supported for all instructions. The descriptions of the individual instructions will indicate the
type of addressing supported. The type of addressing is specified by the way the operand is
coded. The various notations are shown below, where “expr” is an Assembler Expression.

Notation Memory Addressed

expr Immediate Data

@expr CPU RAM Direct

V@expr VDP RAM Direct

G@expr GRAM Direct

*expr CPU RAM Indirect

V*expr VDP RAM Indirect

G*expr GRAM Indirect

@expr(@expr) CPU RAM Indexed

V@expr(@expr) VDP RAM Indexed

G@expr(@expr) GRAM Indexed

*expr(@expr) CPU RAM Indexed Indirect

V*expr(@expr) VDP RAM Indexed Indirect

R@expr VDP Register Direct

Since the Branch and Call instructions allow only the GRAM Direct mode of addressing the
notation is modified slightly for these instructions. The target GRAM address may be specified
with or without the “G@” notation. Also, since the index value is always in CPU RAM, it may
be specified with or without the “@”.

It is useful in the description of individual instructions to collect these addressing modes into
groups and to give the groups names.

 6.2.1 General Source – gsrc

This group represents the modes allowable as the source operand of many GPL instructions. It
includes the following addressing modes.

expr Immediate Data

@expr CPU RAM Direct

V@expr VDP RAM Direct

*expr CPU RAM Indirect

V*expr VDP RAM Indirect

14 6.2 Operand Notations

expr Immediate Data

@expr(@expr) CPU RAM Indexed

V@expr(@expr) VDP RAM Indexed

*expr(@expr) CPU RAM Indexed Indirect

V*expr(@expr) VDP RAM Indexed Indirect

 6.2.2 General Destination – gdest

This group represents the modes allowable as the destination operand of many GPL instructions.
It includes the following addressing modes.

@expr CPU RAM Direct

V@expr VDP RAM Direct

*expr CPU RAM Indirect

V*expr VDP RAM Indirect

@expr(@expr) CPU RAM Indexed

V@expr(@expr) VDP RAM Indexed

*expr(@expr) CPU RAM Indexed Indirect

V*expr(@expr) VDP RAM Indexed Indirect

 6.2.3 Special Addresses

There are two special CPU RAM addresses that may be used in instructions. These special
addresses cause data to be accessed that is not at the address specified.

A CPU RAM direct reference to VCHAR at address >837D actually references the data from the
screen image table in VDP RAM at the row and column specified by VROW and VCOL (>837E
and >837F). For example:

DCLR @VROW Row and Col zero

ST 'A',@VCHAR Put "A" at 0,0

INC @VROW

INC @VCOL

ST 'B',@VCHAR Put "B" at 1,1

CEQ >20,@VCHAR Blank at (VROW,VCOL)?

6 Addressing Modes 15

A CPU RAM indirect reference to STATUS at >837C actually references the data on the top of
the data stack and causes the data stack pointer, DATSTK at >8372, to be decremented. For
example:

ST *STATUS,@>8300 Pop data off stack

ST *DATSTK,@>8300 Equivalent

DEC @DATSTK

POP @>8300 Equivalent

16 7 Elements of the Language

7 Elements of the Language
In order to understand and use the GPL assembler language there are a number of definitions and
conventions that must be understood.

 7.1 Assembler Statements

Each line of Assembler code is called a statement. There are five types of statements, each of
which is defined below.

 7.1.1 Comment

These statements provide notes for the person reading the code. The assembler ignores
comments except for printing them in the listing. Comment statements are identified by an
asterisk in position one of the statement.

 7.1.2 Assembler Directives

These statements give the assembler directions on how you want your code assembled.
Assembler directive statements have the following format.

[label] operation operands [comment]

Each of the four fields in the statement are separated by one or more blanks or spaces. The label
and comment fields are always optional. The label if present must begin in position one of the
statement. If no label is coded, at least one blank must precede the operation field. Some
assembler directives have no operands in which case the comment field immediately follows the
operation field. Individual operands within the operands field are separated from each other by
commas. No blanks must occur within the operand field unless the operand is enclosed in quotes.
The operation field names the assembler directive. All the assembler directives are described
later.

 7.1.3 Macro Directives

These statements give the assembler directions on how to interpret and assemble your macros.
Macro directives occur only within a “macro definition”. Macro directives have the format
shown below.

$operation operands [comment]

Each of the three fields in the statement are separated by one or more blanks or spaces. Macro
directives are recognized by the dollar sign coded in position one of the statement. The comment
field is always optional. Some macro directives have no operands, in which case the comment
field immediately follows the operation field. Individual operands within the operands field are
separated from each other by commas. No blanks must occur within the operand field unless the
operand is enclosed in quotes. The operation field names the macro directive. All the macro
directives are described later.

7 Elements of the Language 17

 7.1.4 Ordinary Statements

These statements represent GPL instructions which are to be assembled. The bulk of your code
will be ordinary statements. Ordinary statements have the following format.

[label] operation operands [comment]

Each of the four fields in the statement are separated by one or more blanks or spaces. The label
and comment fields are always optional. The label if present must begin in position one of the
statement. If no label is coded, at least one blank must precede the operation field. Individual
operands within the operands field are separated from each other by commas. No blanks must
occur within the operand field unless the operand is enclosed in quotes. The operation field
names the GPL instruction to be assembled. All of the predefined GPL instructions are described
later. Some GPL instructions have no operands in which case the comment field immediately
follows the operation field.

 7.1.5 Macro Statements

These statements cause a macro to be invoked. Statements “generated” by a macro are assembled
as though they appeared in the source file. Macro statements look just like ordinary statements as
shown below.

[label] operation operands [comment]

The operation field names the macro definition that is to be used. The interpretation of the label
field and the operands field is completely controlled by the macro definition.

 7.2 Assembler Symbols

There are two kinds of assembler symbols.

 7.2.1 Ordinary Symbols

These symbols represent memory addresses or data values. Ordinary symbols are defined by
appearing in the label field of an ordinary statement, an assembler directive statement or in the
operand field of a REF directive. The value of an ordinary symbol is a 16-bit unsigned number.
Unless otherwise specified, the value assigned to a symbol is the current location counter at
which the statement is assembled.

Ordinary symbols are 1 to 6 characters in length. The first character must be a letter, “A” to “Z”.
The second and following characters can be a letter (A-Z), a number (0-9) or one of the characters
“$”, “#”, “%” or “_”. The upper and lower case letters are equivalent.

 7.2.2 Macro Symbols

These are special predefined symbols used within a macro definition. The value of a macro
symbol is a character string with a length of 0 to 60 characters. The names of the macro symbols
are of the form &tn. Where the ampersand identifies a macro symbol. If you wish to code an
ampersand that is not part of a macro symbol name within a macro definition you must code a
pair of ampersands. The “t” in the macro symbol name is the type of symbol. There are four
types of macro symbols: “P” for Parameter macro symbol, “L” for Local macro symbol, “G” for

18 7.2 Assembler Symbols

Global macro symbol and “S” for System macro symbol. The “n” in the macro symbol name is a
single digit from 0 to 9. Thus each type has ten different symbols and there are 40 macro
symbols in total.

Parameter macro symbols have as their values the label field and the operands of the macro
statement that invoked the macro. &P0 contains the label field, &P1 contains the first operand,
&P2 contains the second operand, and so on. A macro statement can therefore have a maximum
of 9 operands.

System macro symbols have values assigned by the assembler. These are:

&S0 = value from the OPTIONS prompt.

&S1 = the number of macros processed so far in the assembly. This value is useful for
generating unique names within macros. The number is represented as a five
character string with leading zeros.

&S2 = the number of operands on the macro statement. The number is represented as a
five character string with leading zeros.

&S3 = a single character, “1” indicating the first pass of the assembler, “2” indicating
the second pass of the assembler and “3” indicating the third pass of the
assembler.

&S4 = the information entered for the ID/DATE prompt.

&S5 = the source file name.

The remainder of the system macro symbols are currently not used and have a null value.

Local macro symbols have values set via the $SET macro directive. All local macro symbols are
reset to null at the beginning of each macro invocation.

Global macro symbols have values set via the $SET macro directive. All global macro symbols
are reset to null at the beginning of each pass of the assembler. Global symbols can be used to
communicate from one macro invocation to another within the same assembler pass.

 7.3 Macro Symbol Substring Notation

Substrings of the macro symbol values are allowed. The general form for a macro symbol with
substring notation is: &tn(s.l). Where “s” is the starting position for the substring and “l” is the
length of the substring. Note that “s” and “l” are separated by a period not a comma.

As is usual for substring notation, if “s” specifies a position past the end of the string a null string
will result. Also, if “l” specifies a length greater than the remainder of the string only the
remainder is used. The “l” and the period are optional. If only “s” is specified then the remainder
of the string is used.

7 Elements of the Language 19

Assume that the macro symbol &L2 has the value 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
then:

&L2(25) has the value 'YZ'

&L2(1.4) has the value 'ABCD'

&L2(24.8) has the value 'XYZ'

&L2(27.8) has the value ''

There are cases where you may want a macro symbol to be followed by a bracketed expression
that is not substring notation (i.e. in an indexed symbolic memory reference). This can be done
by following the macro symbol with a period such as: &L2.(2). In fact any period following a
macro symbol will be considered part of the macro symbol name and will be removed when the
value of the macro symbol is substituted.

 7.4 Macro Definitions

The macro facility gives you a shorthand way of coding GPL programs. It can also be thought of
as providing you with a slightly higher level of language (i.e. a language level somewhere
between pure assembler and, say, BASIC). Usually, coding a single macro statement will cause
several ordinary assembler statements to be generated and assembled into your program.

If you find yourself repeatedly coding the same group or sequence of statements with only slight
differences, these could be coded within a macro definition and then replaced in your source
programs by a single macro statement. This reduction in the number of statements in your
program has several advantages. The source program is smaller thus easier to read and
understand. Once the code generated by the macro is debugged then you need not debug each
occurrence of it in your program. Less statements means less typing and less errors.

Macro definitions can be placed in the macro file or can be placed in the source file. Macro
definitions in the source file must precede the first use of the macro.

A macro definition consists of macro directives, ordinary assembler statements or assembler
directives. No macro statements may occur within a macro definition. During macro processing,
the macro directives are executed by the assembler. Ordinary assembler statements and
assembler directives are scanned and any macro symbols are replaced by their values. After
replacement of macro symbols, the ordinary statements and assembler directives are assembled
just as though they were read from the source file.

A macro definition must begin with the $MACRO macro directive and end with the $END macro
directive.

 7.5 The Location Counter

The GPL Assembler maintains a “location counter” (similar in purpose to the computer's Program
Counter) as it assembles code or data. This location counter is the “address” at which the code or
data will be loaded into GRAM. The location counter value is an absolute value, it is the exact
GRAM address at which the code or data must be loaded.

20 7.5 The Location Counter

The Assembler begins with its location counter at zero. The AORG and DORG Assembler
Directives can be used to assign values to the Assembler's location counter. As symbols are
encountered in the source code, they are assigned values usually based on the location counter.

The value of the Assembler's location counter can be referenced by the special symbol “$”.

 7.6 Expressions

The Assembler allows the use of an arithmetic expression for most operands (“string” operands
are an exception). These expressions can contain ordinary symbols, constants and the operators:
“+”, “-”, “*” and “/”. Expressions are evaluated in strict left to right order with no operator
precedence rules. For example, “2+3*5” evaluates to 25 not to 17 as would a BASIC expression.
Parentheses are not allowed in Assembler expressions.

All expressions are evaluated using 16-bit unsigned arithmetic.

 7.7 Constants

The Assembler allows three types of constants. Decimal integers are written in the usual form.
Hexadecimal numbers are identified by a leading “>” followed by hex digits 0-9 and A-F.
Character constants are identified by enclosing the characters in single quotes “'”. The character
“'” in a character constant is represented by two single quote marks. Note that character constants
can be used in expressions as numbers. The following DATA statements demonstrate the various
types of constants.

DATA 10 Decimal 10

DATA 10*2 Decimal 20

DATA >F Hexadecimal (decimal value 15)

DATA >000F Same as above

DATA 'A' Character (decimal value 65)

DATA 'A'+1 Char (decimal value 65+1=66)

Note that character constants are not the same as strings which are defined later.

 7.8 Definition of Terms

The following terms are used in the descriptions of the Assembler statements in later sections of
this manual.

Value
means a data value or an expression which evaluates to a data value.

Label
is an ordinary symbol in the label field of a statement. Labels begin in position one of the
statement.

Name
is an ordinary symbol used in an operand field.

7 Elements of the Language 21

Destination
is the result field. For example in A=B, A is the destination. Allowable ways of coding
the destination operand is specified in the description of the statement.

Source
is the source field. For example in A=B, B is the source field. Allowable ways of coding
the source operand is specified in the description of the statement.

String
is a string of characters. Strings can be coded in one of three ways. First, the characters
can be enclosed in single quotation marks (a single quote within the string is represented
by two single quotes). Second, the characters can be enclose in double quote marks (a
double quote within the string is represented by two double quotes). Third, by a sequence
of hexadecimal digits preceded by the hex indicator, “>”. The following three strings are
all identical:

'ASDF'

"ASDF"

>41534446

22 8 Assembler Directives

8 Assembler Directives

 8.1 AORG—Absolute Origin

[label] AORG value [comments]

The AORG directive assigns an absolute value to the assembler's location counter. The “label” if
coded is assigned the new value of the location counter. The “value” expression must contain
only previously defined symbols.

Examples:

NEWORG AORG >F000 Absolute code at >F000

AORG NEWORG+>400 Absolute code at >F400

 8.2 BSS—Block Starting with Symbol

[label] BSS value [comment]

The BSS directive reserves a block of GRAM. The “label” if coded is assigned the address of the
first byte of the reserved block of storage. The number of bytes reserved is specified by the
“value” operand. The “value” expression must contain only previously defined symbols.

Examples:

SKIP BSS 10 Reserve 10 bytes

SIZE EQU 25

BSS SIZE*2 Reserve 50 bytes

 8.3 BYTE—Define Byte Data

[label] BYTE value,value,... [comment]

The BYTE directive causes constant data values to be assembled into bytes. A number of byte
values can be specified on a single statement by separating the value expressions by commas.

Examples:

CON1 BYTE 10 One byte value of 10

CON2 BYTE >20,'A',12 Three constants

SIZE EQU 25

NUMBER BYTE SIZE*2

8 Assembler Directives 23

 8.4 COPY—Copy Source from File

[label] COPY string [comment]

The COPY directive causes the file named in the operand field to be read as part of the source
file. The name of the file to be read is specified in the usual way in the “string” operand. Note
that if the forth character of the file name is an asterisk then the disk number of the source file is
substituted. A COPY directive may only occur within the source file and not within a “copy”
file.

Examples:

COPY "DSK1.SRC2" Include 2nd part of source

X COPY 'DSK*.SRC3' SRC3 file from source disk

 8.5 DATA—Define Double Byte Data

[label] DATA value,value,... [comment]

The DATA directive causes double byte data values to be assembled. The “value” may be an
expression or an external symbol. A number of double byte values can be specified on a single
statement by separating the value expressions by commas.

Examples:

CON1 DATA 10 Value of 10

CON2 DATA >20,'AB',12 Three constants

SIZE EQU 25

NUMBER DATA SIZE*2 Value of 50

 8.6 DEF—Define External Name

[label] DEF name,name,... [comment]

The DEF directive specifies that the names in the operand field are “external”, that is, they can be
referenced by other separately assembled programs. The names listed in the operand field must
be defined elsewhere in the program being assembled.

Example:

DEF SUB1,SUB2 Define subroutine entries

24 8.7 DORG—Dummy Origin

 8.7 DORG—Dummy Origin

[label] DORG value [comment]

The DORG directive assigns an absolute value to the assembler's location counter. It also directs
the assembler not to produce object code for the following code. The assembler operates
normally, defining any symbols which occur and producing a listing if required, except that no
object code is written to the object file. The assembler will resume normal operation if an AORG
directive is encountered after the DORG.

If a label is coded in the label field it will be assigned the new location counter value.

Examples:

A DORG 100 Begin dummy code

DORG A+1000

AORG >F000 Resume code

 8.8 END—End of Assembly

[label] END [comment]

The END directive is the last statement in the program being assembled.

Example:

END

 8.9 EQU—Set Symbol Equal to Value

[label]|EQU|value|[comment]

The EQU directive is used to assign a value directly to a symbol. The symbol in the label field is
assigned the value of the expression in the operand field.

Examples:

TEN EQU 10 Symbolic value 10

TWENTY EQU TEN*2

X BSS 2

Y EQU X+1 2nd byte of X

8 Assembler Directives 25

 8.10 FLOAT—Define Floating Point Data

[label] FLOAT value,value,... [comment]

The FLOAT directive causes constant floating point data values to be assembled into 8 bytes. A
number of floating point constants can be specified on a single statement by separating the
constants by commas. Note, floating point expressions are not allowed.

Examples:

TEN FLOAT 10 Floating 10

PI FLOAT 3.1415927,6.28

TENPI FLOAT 3.14E+001

SMALL FLOAT 1.00E-100

 8.11 IDT—Identify Object

[label] IDT string [comment]

The IDT directive causes the 1 to 8 character string to be used in the identification field in the
object code. If more than one IDT directive is used, the last string specified is used.

Example:

IDT 'JONES'

 8.12 LIST—Resume Assembler Listing

[label] LIST [comment]

The LIST directive causes the object listing to be resumed after it has been halted by an UNL
directive. The LIST directive has no operands.

Example:

LIST

 8.13 OBJREC—Write Object Record

{BEFORE }

[label] OBJREC {AFTER },string [comment]

{NOW }

The OBJREC directive allows arbitrary records to be written into the object file. One important
use for this directive could be to add control statements to the object file for use by a linker.

26 8.13 OBJREC—Write Object Record

The first operand is a coded value which tells the assembler where in the object file the record is
to be written: BEFORE the first object record, AFTER the last object record, or NOW at the
current position in the object file.

The OBJREC directives can be placed anywhere in the source program. In particular, the
BEFORE text is collected during pass 1 and written, in order, before pass 3 begins, and the
AFTER text is collected during pass 3 and written, in order, at the end of pass 3. The NOW text
is written as encountered during pass 3 after writing any partial object record that may exist.

The “string” is the text to be placed in the object record. There is a limit to the amount of text
that can be saved for either BEFORE or AFTER.

Examples:

OBJREC BEFORE,'LOAD DSK*.SUBS'

OBJREC AFTER,"ENTRY MAIN"

 8.14 PAGE—Start New Listing Page

[label] PAGE [comment]

The PAGE directive causes the Assembler to start a new page in the listing file.

Example:

PAGE Start new page

 8.15 REF—External Reference

[label] REF name,name,... [comment]

The REF directive defines the names in the operand field to be references to symbols defined in a
separately assembled program. Note that external references may be used only in B, CALL and
DATA statements.

Example:

REF SUB1 Define SUB1 and SUB2

CALL SUB1 Call Subroutine 2

 8.16 STRI—Define ASCII String Constant

[label] STRI string [comment]

The STRI directive assembles a string constant into the program. A string constant has the length
of the text as the first byte. This is similar to the TEXT directive except for the leading length
byte.

8 Assembler Directives 27

Examples:

S1 STRI 'STRING CONSTANT'

S2 STRI "ANOTHER STRING"

S3 STRI >52414720534F465457415245

 8.17 TEXT—Define ASCII Text Constant

[label] TEXT string [comment]

The TEXT directive assembles an ASCII character constant into the program.

Examples:

T1 TEXT 'ASCII CHARACTERS'

T2 TEXT "ARE ASSEMBLED INTO"

T3 TEXT >5448452050524F47414D

 8.18 TITL—Define Listing Title

[label] TITL string [comment]

The TITL directive provides up to 25 characters to be printed in the listing page heading. If TITL
is the first statement in the source file then the string will be printed on the first page of the
listing. The title can be changed during assembly, the new title string will appear on the next
page printed.

Example:

TITL 'NEW PAGE HEADING'

 8.19 UNL—Stop Assembler Listing

[label] UNL [comment]

The UNL directive stops the listing of source and object. The listing can be resumed by the LIST
directive.

Example:

UNL

28 9 Ordinary Statements

9 Ordinary Statements

 9.1 ABS DABS—Absolute Value

[label] ABS destination [comment]

[label] DABS destination [comment]

The destination operand value, which is considered to be a signed number, is made positive. If
the destination value is already positive, no change takes place. The operand value is a single
byte for ABS and a double byte for DABS. STATUS is not affected by this instruction. The
destination operand may be specified in any of the “gdest” forms.

Examples:

X ABS @A Absolute value of byte A

ABS V@>020C Absolute value VDP byte

Y DABS *A Abs of double byte -> to by A

 9.2 ADD DADD—Add

[label] ADD source,destination [comment]

[label] DADD source,destination [comment]

The source operand value is added to the destination operand value, the sum replacing the
destination operand value. The source and destination values are bytes for ADD and double
bytes for DADD. The source operand can be coded as “gsrc” and the destination operand as
“gdest”. The two values may represent either signed or unsigned numbers. The resultant sum is
compared to zero to set STATUS. The CARRY and OVF status bits may be set.

Examples:

X ADD @A,@B B = A + B

ADD V@>100,@B B = Byte at Vaddr >100 + B

DADD 5,V*B Add 5 to VDP dbl byte -> by B

 9.3 ALL—Load Screen

[label] ALL value [comment]

The single byte immediate value is placed in all positions of the screen image table in VDP.
STATUS is not affected.

9 Ordinary Statements 29

Examples:

X ALL >20 Blank screen

ALL >80 Blank screen in BASIC

 9.4 AND DAND—Logical And

[label] AND source,destination [comment]

[label] DAND source,destination [comment]

The logical AND the of source operand value and the destination operand value replaces the
destination operand value. The source and destination values are bytes for AND and double
bytes for DAND. The result is compared to zero to set STATUS. The source operand can be
coded as “gsrc” and the destination operand as “gdest”.

Examples:

X AND >F0,@A Isolate 1st nibble of A

AND V*B,*A

DAND >0F0F,V@C

 9.5 B—Branch

[label] B destination [comment]

Branch to, or continue execution at, the destination address. The destination is specified as a
GRAM direct address. The destination may be a REF symbol. STATUS is not affected.

Examples:

X B G@A Continue at label A

B A Same as above, G@ is optional

REF SUB External routine

A B SUB B to external routine SUB

 9.6 BACK—Load Background Colour

[label] BACK value [comment]

The single byte immediate value is loaded into VDP register 7, setting the foreground and
background colours. STATUS is not affected.

30 9.6 BACK—Load Background Colour

Example:

X BACK >F5 Set colours

 9.7 BR—Branch on Reset

[label] BR destination [comment]

Branch to, or continue execution at, the destination address if the COND bit in STATUS is not
set. The destination is specified as a GRAM direct address. The GRAM address must be within
the same GRAM block as the BR instruction. The COND bit in STATUS is reset.

Examples:

X BR G@A Branch if reset to label A

BR A G@ is optional

 9.8 BS—Branch on Set

[label] BS destination [comment]

Branch to, or continue execution at, the destination address if the COND bit in STATUS is set.
The destination is specified as a GRAM direct address. The GRAM address must be within the
same GRAM block as the BS instruction. The COND bit in STATUS is reset.

Examples:

X BS G@A Branch if COND set to A

BS A G@ is optional

 9.9 CALL—Call Subroutine

[label] CALL destination [comment]

The subroutine at the destination address is called. The current GRAM address is pushed onto
the Subroutine Stack pointed to by SUBSTK so that the called routine can return via the RET or
RETC instructions. The destination is specified as a GRAM direct address. The destination may
be a REF symbol. STATUS is not affected.

Examples:

X CALL G@A Call subroutine A

CALL A The G@ is optional

REF XSUB External subroutine

CALL XSUB Call external sub

9 Ordinary Statements 31

 9.10 CARRY—Transfer CARRY to COND

[label] CARRY [comment]

This instruction transfers the state of the CARRY status bit to the COND bit where it can be
tested with BR or BS. Other status bits are unaffected. Note that there is no operand.

Example:

X CARRY Test for CARRY

BS ISCARY And branch if so

 9.11 CASE DCASE—Select Case

[label] CASE destination [comment]

[label] DCASE destination [comment]

The destination operand value is used as an index to select the case. The destination operand
value is a byte for CASE and a double byte for DCASE. This instruction causes a branch to the
byte following the instruction plus two times the destination value. The COND bit in STATUS is
reset. The CASE or DCASE statement is usually followed by a series of BR instructions. The
destination operand is coded in any of the “gdest” forms.

Examples:

X CASE V@A CASE on VDP byte A

BR CASE0 Select code for CASE

BR CASE1

BR CASE2

BR CASE3

DCASE @DOUBLE

 9.12 CEQ DCEQ—Compare Equal

[label] CEQ source,destination [comment]

[label] DCEQ source,destination [comment]

The destination operand value is compared to the source operand value. The source and
destination values are bytes for CEQ and double bytes for DCEQ. The COND bit in STATUS is
set if the two operands are equal and reset otherwise. The source operand can be coded as “gsrc”
and the destination operand as “gdest”.

32 9.12 CEQ DCEQ—Compare Equal

Examples:

X CEQ @A,@B Is A equal B

BR NOTEQ B no

CEQ V@X,V*B Two VDP bytes equal?

DCEQ >0001,*B Double byte pointed to by B=1?

 9.13 CGE DCGE—Compare Greater Than or Equal

[label] CGE source,destination [comment]

[label] DCGE source,destination [comment]

The destination operand value is compared to the source operand value. The source and
destination values are bytes for CGE and double bytes for DCGE. The COND bit in STATUS is
set if the destination value is arithmetically greater than or equal to the source operand value, and
is reset otherwise. The source operand can be coded as “gsrc” and the destination operand as
“gdest”.

Examples:

X CGE @A,@B B >= to A?

BS BGTEQ B yes

CGE >20,V@Y VDP byte at Y GE >20?

 9.14 CGT DCGT—Compare Greater Than

[label] CGT source,destination [comment]

[label] DCGT source,destination [comment]

The destination operand value is compared to the source operand value. The source and
destination values are bytes for CGT and double bytes for DCGT. The COND bit in STATUS is
set if the destination value is arithmetically greater than the source operand value, and is reset
otherwise. The source operand can be coded as “gsrc” and the destination operand as “gdest”.

Examples:

X DCGT @A,@B B > A?

BS BGTA B yes

CGT >20,V@Y VDP byte at Y GT >20?

9 Ordinary Statements 33

 9.15 CH DCH—Compare Logical High

[label] CH source,destination [comment]

[label] DCH source,destination [comment]

The destination operand value is compared to the source operand value. The source and
destination values are bytes for CH and double bytes for DCH. The COND bit in STATUS is set
if the destination value is logically greater than the source operand value, and is reset otherwise.
The source operand can be coded as “gsrc” and the destination operand as “gdest”.

Examples:

X DCH @A,@B B L> A?

BS BHIGH B yes

CH >20,V@Y VDP byte at Y H >20?

 9.16 CHE DCHE—Compare Logical High or Equal

[label] CHE source,destination [comment]

[label] DCHE source,destination [comment]

The destination operand value is compared to the source operand value. The source and
destination values are bytes for CHE and double bytes for DCHE. The COND bit in STATUS is
set if the destination value is logically greater than or equal to the source operand value, and is
reset otherwise. The source operand can be coded as “gsrc” and the destination operand as
“gdest”.

Examples:

X CHE @A,@B B L>= A?

BS BHIEQ B yes

DCHE >2000,V@Y VDP double byte at Y H> 2000?

 9.17 CLOG DCLOG—Compare Logical

[label] CLOG source,destination [comment]

[label] DCLOG source,destination [comment]

The source operand value and the destination operand value are Logically ANDed bit by bit. The
source and destination values are bytes for CLOG and double bytes for DCLOG. The COND bit
in STATUS is set if the result of the AND is zero, and is reset otherwise. Neither the source nor
the destination operand is changed. This operation can be thought of as a “test bits” operation.
The source operand can be coded as “gsrc” and the destination operand as “gdest”.

34 9.17 CLOG DCLOG—Compare Logical

Examples:

X DCLOG >8000,@B Test first bit of B

BS NOBIT B if not one

CLOG >E0,V@PAB+1 Any error bits on?

 9.18 CLR DCLR—Zero Value

[label] CLR destination [comment]

[label] DCLR destination [comment]

The destination operand value is set to zero. The destination operand value is a byte for CLR and
a double byte for DCLR. STATUS is not affected by this instruction. The destination operand
may be specified in any of the “gdest” forms.

Examples:

X CLR @A Zero A

CLR V@>020C(@A) Zero VDP byte >20C indexed by A

Y CLR *A Zero byte pointed to by A

 9.19 COINC—Coincidence Check

[label] COINC source,destination [comment]

This instruction checks for coincidence of the source operand object and the destination operand
object. The COND bit of STATUS is set if the objects are in coincidence, otherwise it is reset.
Both the source and destination operands are coded in the “gdest” form. Both operand values
specify a vertical and horizontal coordinate pair. The coordinates are each a byte specifying the
vertical and horizontal location of the objects that are to be checked for coincidence. Coordinates
are measured in units from the upper left corner.

The COINC instruction must be followed by two data values. The first parameter is a byte
“mapping value”. Mapping value 0 gives 1 unit (pixel) resolution, value 1 gives 2 unit resolution
and value 2 gives 4 unit resolution. The second parameter following the COINC instruction is a
GRAM address that specifies the location of the coincidence table. See APPENDIX D for details
of the construction of the coincidence table.

Example:

COINC V@>300,V@>304 Coinc of Sprite 0 and 1

BYTE 0 1 pixel resolution

DATA CTABLE Addr of Coinc table

BS HIT Branch if coincident

9 Ordinary Statements 35

 9.20 COL—Set Current Column

[label] COL value [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The “value” operand is an
assembler expression that specifies the screen column number for the next screen write. The
current column number, VCOL, at CPU RAM PAD location >837F is set. The column number
value must be in the range 0 to 255. STATUS is unaffected by this instruction. Although a
“label” is allowed, it is illegal to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

ROW 10 Row 10

COL 1 Col 1

···

FEND End formatted write

 9.21 CONT—Continue BASIC

[label] CONT [comment]

This instruction is used only in the TI BASIC interrupter. This instruction has no operands.

 9.22 CZ DCZ—Compare to Zero

[label] CZ destination [comment]

[label] DCZ destination [comment]

The destination operand value is compared to zero. The destination operand value is a byte for
CZ and a double byte for DCZ. The COND bit of STATUS is set if the destination operand value
is zero, and is reset otherwise. The destination operand may be specified in any of the “gdest”
forms.

Examples:

X DCZ @A Is A zero?

BS ISZERO Branch yes

Y CZ V*A Is byte pointed to by A zero?

36 9.23 DEC DDEC—Decrement by One

 9.23 DEC DDEC—Decrement by One

[label] DEC destination [comment]

[label] DDEC destination [comment]

The destination operand value is decremented by one. The destination value is a byte for DEC
and a double byte for DDEC. The destination operand may be specified in any of the “gdest”
forms. The result is compared to zero to set STATUS. The CARRY and OVF status bits may be
set.

Examples:

X DEC @A Decrement value of A

BS ZERO B if result is zero

DDEC V@>020C Decr value VDP double byte

Y DEC *A Decr byte pointed to by A

 9.24 DECT DDECT—Decrement by Two

[label] DECT destination [comment]

[label] DDECT destination [comment]

The destination operand value is decremented by two. The destination value is a byte for DECT
and a double byte for DDECT. The destination operand may be specified in any of the “gdest”
forms. The result is compared to zero to set STATUS. The CARRY and OVF status bits may be
set.

Examples:

X DDECT @A Decrement value of A by 2

BS ZERO B if result is zero

DECT V@>020C Sub 2 from VDP byte

Y DECT *A Byte pointed to by A - 2

 9.25 DIV DDIV—Divide

[label] DIV source,destination [comment]

[label] DDIV source,destination [comment]

The source operand value is divided into the destination operand value, the destination operand
value is replaced by the quotient and remainder. For DIV, the source is a byte value and the
destination a double byte value. For DDIV, the source is a double byte value and the destination
a four byte value. The source operand can be coded as “gsrc” and the destination operand as

9 Ordinary Statements 37

“gdest”. The divide is of the signed type. The resultant quotient is compared to zero to set
STATUS. The OVF status bit may be set.

Examples:

X DCLR @B Prepare for divide

DDIV @A,@B B=quotient, B+2=remainder

DIV 5,V*B Divide 5 into VDP byte -> by B

 9.26 EX DEX—Exchange

[label] EX source,destination [comment]

[label] DEX source,destination [comment]

The source operand value and the destination operand value are exchanged. The source and
destination operand values are bytes for EX and double bytes for DEX. STATUS is not affected
by this instruction. The source operand can be coded as “gdest” and the destination operand as
“gdest”. Note: the source operand cannot be an immediate value.

Examples:

X EX @A,@B Exchange bytes at A and B

DEX @A,V*B Exchange double byte values

 9.27 EXEC—Execute BASIC

[label] EXEC [comment]

This instruction is used only by the BASIC interpreter. The instruction has no operands.

 9.28 EXIT—Exit from Program

[label] EXIT [comment]

This instruction causes an exit from a program to the “Power Up” routine. This instruction has
no operands.

Example:

X EXIT ABANDON SHIP

38 9.29 FEND—End of Formatted Screen Write

 9.29 FEND—End of Formatted Screen Write

[label] FEND [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction. The FEND instruction terminates a FOR group if one is active, or the FMT
instruction. The instruction has no operands. STATUS is unaffected by this instruction.
Although a “label” is allowed, it is illegal to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

··· Suboperands

FEND End of formatted write

 9.30 FETCH—Fetch Parameter

[label] FETCH destination [comment]

This instruction will fetch an inline one byte parameter after a CALL instruction. The byte is
fetched from the return GRAM address on the subroutine stack (pointed to by SUBSTK). The
return address on the subroutine stack is incremented by one. The fetched byte is placed at the
destination which may be coded as “gdest”. STATUS is not affected by this instruction.

Example:

X CALL G@A Call subroutine A

BYTE >08 Inline parameter

···

···

···

A FETCH @Z Fetch parameter to Z

 9.31 FMT—Formatted Screen Write

[label] FMT [comment]

This instruction initiates a formatted write to the screen. The statements following indicate the
type of formatting. The formatted write is ended with an FEND instruction. Only “format
suboperation” instructions are allowed between the FMT and corresponding FEND instruction.
STATUS is not affected by this instruction nor by any of the format suboperations.

9 Ordinary Statements 39

Example:

X FMT Format screen

ROW 3 Set to row 3

COL 2 Column 2

HTEX "R3 C2" Display text

FEND End format screen

 9.32 FOR—Begin Formatted Screen Write Loop

[label] FOR value [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The FOR instruction begins
a group of suboperations that are to be executed repeatedly. The next FEND suboperation defines
the end of the group. The “value” operand is an assembler expression that specifies the number
of times the group is to be repeated. The repetition count must be in the range 1 to 16. STATUS
is unaffected by this instruction. Although a “label” is allowed, it is illegal to branch to a
formatted write suboperation.

Example:

FMT Formatted screen write

···

FOR 10 Loop 10 times

···

FEND End of FOR loop

···

FEND End of formatted write

 9.33 GT—Transfer GT to COND

[label] GT [comment]

This instruction transfers the state of the GT status bit to the COND bit where it can be tested
with BR or BS. Other status bits are unaffected. Note that there is no operand field.

Example:

X GT Transfer GT bit

BS ISGT Branch if greater

40 9.34 H—Transfer H to COND

 9.34 H—Transfer H to COND

[label] H [comment]

This instruction transfers the state of the H status bit to the COND bit where it can be tested with
BR or BS. Other status bits are unaffected. Note that there is no operand field.

Example:

X H Transfer high bit

BS ISHIGH Branch if logical high

 9.35 HCHA—Display Character Horizontally

[label] HCHA count,char [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The HCHA instruction
displays the “char” on the screen “count” times beginning at the current row and column. The
row and column are advanced by the number of characters written. The “count” operand is an
assembler expression that specifies the number of times the character is to be written, it must be
in the range 1 to 32. The “char” operand is an assembler expression that specifies the character to
be written. STATUS is unaffected by this instruction. Although a “label” is allowed, it is illegal
to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

HCHA 10,'A' 10 A's on the screen

···

FEND End of formatted write

 9.36 HSTR—Display Character Horizontally

[label] HSTR count,source [comment]

[LES: I think this one ought to be “Display String Horizontally”,
which copies count characters of string from source.]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The HSTR instruction
displays the character at “source” on the screen “count” times beginning at the current row and
column. The row and column are advanced by the number of characters written. The “count”
operand is an assembler expression that specifies the number of times the character is to be
written, it must be in the range 1 to 27. The “source” operand is written in any of the “gesd”

9 Ordinary Statements 41

forms. STATUS is unaffected by this instruction. Although a “label” is allowed, it is illegal to
branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

HSTR 10,@A Char at A, 10 times

···

FEND End of formatted write

 9.37 HTEX—Display String Horizontally

[label] HTEX string [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The HSTR instruction
displays the “string” on the screen beginning at the current row and column. The row and
column are advanced by the number of characters written. STATUS is unaffected by this
instruction. Although a “label” is allowed, it is illegal to branch to a formatted write
suboperation.

Example:

FMT Formatted screen write

···

HTEX 'HI THERE' Display message

HTEX >01020304 Display characters

···

FEND End of formatted write

 9.38 ICOL—Increment Current Column

[label] ICOL value [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The “value” operand is an
assembler expression that specifies the increment to be added to the current column number. The
current column number, VCOL, at CPU RAM PAD location >837F is set. The increment value
must be in the range 1 to 32. STATUS is unaffected by this instruction. Although a “label” is
allowed, it is illegal to branch to a formatted write suboperation.

42 9.38 ICOL—Increment Current Column

Example:

FMT Formatted screen write

···

ICOL 2 Column number + 2

···

FEND End formatted write

 9.39 INC DINC—Increment by One

[label] INC destination [comment]

[label] DINC destination [comment]

The destination operand value is incremented by one. The destination value is a byte for INC and
a double byte for DINC. The destination operand may be specified in any of the “gdest” forms.
The result is compared to zero to set STATUS. The CARRY and OVF status bits may be set.

Examples:

X INC @A Increment value of A

BS ZERO B if result is zero

DINC V@>020C Incr value VDP double byte

Y INC *A Incr byte pointed to by A

 9.40 INCT DINCT—Increment by Two

[label] INCT destination [comment]

[label] DINCT destination [comment]

The destination operand value is incremented by two. The destination value is a byte for INCT
and a double byte for DINCT. The destination operand may be specified in any of the “gdest”
forms. The result is compared to zero to set STATUS. The CARRY and OVF status bits may be
set.

Examples:

X DINCT @A Increment value of A by 2

BS ZERO B if result is zero

INCT V@>020C Add 2 to VDP byte

Y INCT *A Byte pointed to by A + 2

9 Ordinary Statements 43

 9.41 INV DINV—Invert Bits

[label] INV destination [comment]

[label] DINV destination [comment]

The destination operand value bits are inverted. This is the ones complement. The destination
value is a byte for INV and a double byte for DINV. The destination operand may be specified in
any of the “gdest” forms. STATUS is not affected by this instruction.

Examples:

X INV @A Complement value of A

DINV V@>020C Invert VDP dble byte

Y INV *A Invert byte -> to by A

 9.42 IO—Special I/O

[label] IO source,destination [comment]

This instruction is used to control a variety of special Input/Output devices including cassette,
sound and CRU. The destination operand gives the address of a parameter list whose format
depends upon the type of I/O specified by the single byte source operand value. STATUS is not
affected by this instruction. The source operand can be coded as “gsrc” and the destination
operand as “gdest”. Note: the form of the operands may be restricted by the type of Special I/O,
but the Assembler does not check for the restrictions.

The supported values for the source operand which specifies the type of I/O are:

0 = Start Auto Sound List in GRAM

1 = Start Auto Sound List in VDP RAM

2 = CRU Input

3 = CRU Output

4 = Cassette Write

5 = Cassette Read

6 = Cassette Verify

For I/O types 0 and 1, sound processing, the destination operand gives the CPU address of a
double byte area which contains the “sound list” address.

Example:

X DST >0475,@>8358 Sound list pointer to >8358

IO >00,@>8358 Start SL in GRAM at >0475

44 9.42 IO—Special I/O

For I/O types 2 and 3, CRU input and output, the destination operand points to a four byte block
in RAM PAD. The block contains:

Bytes 0,1 – Starting CRU bit number. This value is doubled by the interpreter to give
the CRU address.

Byte 2 – The number of bits to input or output, in the range 1 to 16.

Byte 3 – The one byte offset within RAM PAD (i.e. address is >83xx) of a one or
two byte area to write from or read into. If the number of bits to read or
write is 8 or less then the area is a byte. If the number of bits is greater than
8 then the area is two bytes and must be an even address (i.e. a 9900 word
address). The bits are right justified in the byte or word. Note: CRU bits
are read or written least significant bit first.

Example:

* IO parameter block at >834A

* 834A = >0880 CRU address >1100 (the disk DSR ROM)

* 834C = >01 Number of bits to output

* 834D = >4E Offset to the bits to output

* 834E = >01 The bit to output

*

X DST >0880,@>834A Set CRU bit number

DST >014E,@>834C Set # bits and offset

ST >01,@>834E The bit to output

IO >03,@>834A Turn DSK DSR ROM on

*

WAIT SCAN Wait for key press

BR WAIT

*

ST >00,@>834E The bit to output

IO >03,@>834A Turn DSK DSR ROM off

For I/O types 4, 5 and 6, Cassette input and output, the destination operand points to a four byte
parameter list in CPU RAM PAD which contains:

Bytes 0,1 – Length of the data in the buffer,

Bytes 2,3 – Address of the buffer in VDP RAM.

9 Ordinary Statements 45

 9.43 IROW—Increment Current Row

[label] IROW value [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The “value” operand is an
assembler expression that specifies the increment to be added to the current row number. The
current row number, VROW, at CPU RAM PAD location >837E is set. The increment value
must be in the range 1 to 32. STATUS is unaffected by this instruction. Although a “label” is
allowed, it is illegal to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

IROW 2 Row number + 2

···

FEND End formatted write

 9.44 MOVE—Block Move

[label] MOVE length,source,destination [comment]

Data is moved from the source operand to the destination operand. The number of bytes moved is
specified by the length operand value. The source operand may be specified using any of the
addressing modes except “immediate data” and “VDP Register direct”. The destination operand
may be specified in any of the addressing modes except “immediate data”. The length operand
double byte value may be specified in any of the “gsrc” forms. STATUS is unaffected by this
instruction.

Examples:

X MOVE 10,G@DATA,V@>1000 Move 10 from GROM to VDP

STD 10,@>8300 Set length

MOVE @>8300,V@>1000,G@DATA Move it back

MOVE 7,G@VREGS,R@1 Set VDP regs 1 to 7

 9.45 MUL DMUL—Multiply

[label] MUL source,destination [comment]

[label] DMUL source,destination [comment]

The source operand value is multiplied by the destination operand value, the destination operand
value is replaced by the double length result. For MUL the source and the destination values are

46 9.45 MUL DMUL—Multiply

a byte and the result is a double byte value. For DMUL the source and the destination values are
double byte values and the result is a four byte value. The source operand can be coded as “gsrc”
and the destination operand as “gdest”. The multiply is of the unsigned type. STATUS is
unaffected by this instruction.

Examples:

X MUL 10,@B B=B*10

ST @B+1,@B Truncate double result

DMUL @A,@B B=B*A

DST @B+2,@B Truncate double result

 9.46 NEG DNEG—Negate

[label] NEG destination [comment]

[label] DNEG destination [comment]

The destination operand value is negated. This is the two’s complement. The destination value is
a byte for NEG and a double byte for DNEG. The destination operand may be specified in any of
the “gdest” forms. STATUS is not affected by this instruction.

Examples:

X NEG @A Negative value of A

DNEG V@>020C Neg value VDP double byte

Y NEG *A Neg byte pointed to by A

 9.47 OR DOR—Logical OR

[label] OR source,destination [comment]

[label] DOR source,destination [comment]

The logical OR of the source operand value and the destination operand value replaces the
destination operand value. The source and destination operands are byte values for OR and
double byte values for DOR. The source operand can be coded as “gsrc” and the destination
operand as “gdest”. The result is compared to zero to set STATUS.

Examples:

X OR >F0,@B B=B OR >F0

DOR @A,@B OR double byte values

BS ZERO B if both A and B zero

9 Ordinary Statements 47

 9.48 OVF—Transfer OVF to COND

[label] OVF [comment]

The OVF bit in the status byte is transferred to the COND bit where it can be tested via the BS or
BR instruction. Other bits in STATUS are not affected. Note this instruction has no operands.

Example:

X OVF Test for overflow

BS OVER B if overflow

 9.49 PARSE—Parse for BASIC Token

[label] PARSE value [comment]

This instruction is used only in the BASIC environment. The value operand is a one byte BASIC
token.

 9.50 POP—Pop from Data Stack

[label] POP destination [comment]

The data byte from the top of the Data Stack is stored at the destination operand location. The
Data Stack pointer, DATSTK, in CPU RAM PAD is decremented. The destination operand may
be specified in any of the “gdest” forms. STATUS is not affected by this instruction. Note that
the POP instruction is assembled as “ST *>837C,gdest”.

Example:

X POP @A Pop off Data Stack to A

* The following is equivalent

ST *>837C,@A Pop off Data Stack to A

* The following is equivalent

ST *DATSTK,@A Top of Data Stack to A

DEC @DATSTK Decrement Data Stack Pointer

 9.51 PUSH—Push onto Data Stack

[label] PUSH source [comment]

The source operand value byte is put onto the Data Stack. The Data Stack pointer, DATSTK, in
CPU RAM PAD is pre-incremented. The source operand may be specified in any of the “gdest”
forms. STATUS is not affected by this instruction.

48 9.51 PUSH—Push onto Data Stack

Example:

X PUSH @A Put A on data stack

* The following is equivalent

INC @DATSTK Pre-increment stack ptr

ST @A,*DATSTK Put A on data stack

 9.52 RAND—Generate Random Number

[label] RAND value [comment]

This instruction generates a random number between zero and the operand value specified. The
operand value is a byte value. The resulting random number is stored in RANDNO at CPU RAM
PAD address >8378. STATUS is not affected by this instruction.

Example:

X RAND 5 Random between 0 and 5

ST @RANDNO,@A Random number to A

 9.53 ROW—Set Current Row

[label] ROW value [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The “value” operand is an
assembler expression that specifies the screen row number for the next screen write. The current
row number, VROW, at CPU RAM PAD location >837E is set. The row number value must be
in the range 0 to 255. STATUS is unaffected by this instruction. Although a “label” is allowed,
it is illegal to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

ROW 10 Row 10

COL 1 Col 1

···

FEND End formatted write

9 Ordinary Statements 49

 9.54 RTN—Return from Subroutine

[label] RTN [comment]

This instruction causes an return from a CALLed GPL subroutine. The return address is popped
off the “Subroutine Stack” pointed to by SUBSTK at CPU RAM PAD address >8373. The
COND bit in STATUS is reset. This instruction has no operands.

Example:

X RTN Return to caller

 9.55 RTNB—Return from BASIC

[label] RTNB [comment]

This instruction is used only by the BASIC interpreter. The instruction has no operands.

 9.56 RTNC—Return with COND

[label] RTNC [comment]

This instruction causes an return from a CALLed GPL subroutine. The return address is popped
off the “Subroutine Stack” pointed to by SUBSTK at CPU RAM PAD address >8373. The
COND bit in STATUS is left unchanged. This instruction has no operands.

Example:

X CZ @A Set COND

RTNC Return to caller with COND

 9.57 SCAN—Scan Keyboard

[label] SCAN [comment]

This instruction causes a scan of the keyboard. The keyboard number, KBNO, at CPU RAM
PAD address >8374 specifies the scan mode. The key pressed is returned at KEY in CPU RAM
PAD >8375. The joystick values are returned at JOYY and JOYX in CPU RAM PAD at
addresses >8376 and >8377. The COND bit in STATUS is set if a new key is pressed otherwise
it is reset. Note that there is no operand field.

Note that the SCAN routine uses the GPL subroutine stack pointed to by SUBSTK at CPU RAM
PAD address >8372.

50 9.57 SCAN—Scan Keyboard

Example:

X SCAN Look for key press

BS ISKEY Branch if new key

 9.58 SCRO—Set Screen Offset

[label] SCRO source [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The SCRO instruction sets
the screen offset value for the remainder of this formatted write. The screen offset value is added
to each character before writing the character to the screen. The screen offset operand, “source”
may be specified in any of the “gsrc” forms. STATUS is unaffected by this instruction.
Although a “label” is allowed, it is illegal to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

SCRO >60 Offset for BASIC screen

···

SCRO @>8302 Screen offset from >8302

···

FEND End of formatted write

 9.59 SLL DSLL—Shift Left Logical

[label] SLL count,destination [comment]

[label] DSLL count,destination [comment]

The destination operand value is shifted left the number of bits specified by the count operand
value. This is a “logical” shift, the vacated bits are filled with zeros. The destination and count
values are bytes for SLL and double bytes for DSLL. The destination operand may be specified
in any of the “gdest” forms. The count operand may be specified in any of the “gsrc” forms.
STATUS is not affected by this instruction.

Examples:

X SLL @A,@B Shift B by amount in A

DSLL 2,V@>0780 Shift VDP double byte 2 left

9 Ordinary Statements 51

 9.60 SRA DSRA—Shift Right Arithmetically

[label] SRA count,destination [comment]

[label] DSRA count,destination [comment]

The destination operand value is shifted right the number of bits specified by the count operand
value. This is an “arithmetic” shift, the “sign” bit is propagated through all vacated bits. The
destination and count values are bytes for SRA and double bytes for DSRA. The destination
operand may be specified in any of the “gdest” forms. The count operand may be specified in
any of the “gsrc” forms. STATUS is not affected by this instruction.

Examples: [LES: Corrected example comments.]

X SRA @A,V@B Shift B by amount in A

DSRA 2,@X(@I) Shift double byte 2 right

 9.61 SRC DSRC—Shift Right Circular

[label] SRC count,destination [comment]

[label] DSRC count,destination [comment]

The destination operand value is shifted right the number of bits specified by the count operand
value. The vacated bits on the left end are filled with the bits shifted out of the right end of the
value. The destination and count values are bytes for SRC and double bytes for DSRC. The
destination operand may be specified in any of the “gdest” forms. The count operand may be
specified in any of the “gsrc” forms. STATUS is not affected by this instruction.

Examples: [LES: Corrected example comments.]

X SRC V@A,@B Shift B by amount in A

DSRA 2,@X(@I) Shift double byte 2 right circularly

 9.62 SRL DSRL—Shift Right Logical

[label] SRL count,destination [comment]

[label] DSRL count,destination [comment]

The destination operand value is shifted right the number of bits specified by the count operand
value. This is a “logical” shift, the vacated bits are filled with zeros. The destination and count
values are bytes for SRL and double bytes for DSRL. The destination operand may be specified
in any of the “gdest” forms. The count operand may be specified in any of the “gsrc” forms.
STATUS is not affected by this instruction.

52 9.62 SRL DSRL—Shift Right Logical

Examples: [LES: Corrected example comments.]

X SRL @A,@B Shift B by amount in A

DSRL 2,V@>0780 Shift VDP double byte 2 right

 9.63 ST DST—Store

[label] ST source,destination [comment]

[label] DST source,destination [comment]

The source operand value is stored into the destination operand location. The source and
destination operands are byte values for ST and double byte values for DST. STATUS is
unaffected by this instruction. The source operand may be specified in any of the “gsrc” forms
and the destination operand may be specified in any of the “gdest” forms.

Examples:

X ST >F0,@B B=>F0

DST @A,@B Double byte B=A

ST @A,V@B(@I) Store into VDP indexed

 9.64 SUB DSUB—Subtract

[label] SUB source,destination [comment]

[label] DSUB source,destination [comment]

The source operand value is subtracted from the destination operand value. The result of the
subtraction replaces the destination operand value. The source and destination operands are byte
values for SUB and double byte values for DSUB. The source operand can be coded as “gsrc”
and the destination operand as “gdest”. The result is compared to zero to set STATUS. The OVF
and CARRY bits of STATUS may be set.

Examples:

X SUB >F0,@B B=B - >F0

DSUB @A,@B Sub double byte values

BS ZERO B if result is zero

 9.65 VCHA—Display Character Vertically

[label] VCHA count,char [comment]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The VCHA instruction

9 Ordinary Statements 53

displays the “char” on the screen “count” times vertically, beginning at the current row and
column. The row and column are advanced by the number of characters written. The “count”
operand is an assembler expression that specifies the number of times the character is to be
written, it must be in the range 1 to 32. The “char” operand is an assembler expression that
specifies the character to be written. STATUS is unaffected by this instruction. Although a
“label” is allowed, it is illegal to branch to a formatted write suboperation.

Example:

FMT Formatted screen write

···

VCHA 10,'A' 10 'A's vertically

···

FEND End of formatted write

 9.66 VTEX—Display String Vertically

[label] VTEX string [comment]

[LES: Corrected “VSTR” in paragraph and code below to “VTEX”]

This instruction is a suboperation of the formatted screen write instruction and is only valid after
an FMT instruction and before the corresponding FEND instruction. The VTEX instruction
displays the “string” on the screen beginning at the current row and column. The row and
column are advanced by the number of characters written. STATUS is unaffected by this
instruction. Although a “label” is allowed, it is illegal to branch to a formatted write
suboperation.

Example:

FMT Formatted screen write

···

VTEX 'HI THERE' Display message vertically

VTEX >01020304 Display characters vertically

···

FEND End of formatted write

 9.67 XML—Execute Machine Language

[label] XML value [comment]

This instruction causes execution of a 9900 machine language routine. The address of the
machine language routine is found by doing a double table lookup. “Value” is a one byte
immediate value that specifies the table and entry to use. The first nibble of “value” specifies the

54 9.67 XML—Execute Machine Language

table number, 0 to 15, and the second nibble specifies the entry within that table, 0 to 15. The
setting of STATUS is dependent upon the machine language routine.

Some XML routines are provided as part of the GPL interpreter and are described in APPENDIX
B. The 16 XML tables are located in CPU RAM at addresses coded in a ROM table as shown
below. The addresses marked with an asterisk may vary depending upon the model of the
console.

Table # Address Note

0 >0D1A* Floating Point Routines

1 >12A0* Conversion and BASIC Routines

2 >2000 In Low Memory Expansion

3 >3FC0 In Low Memory Expansion

4 >3FE0 In Low Memory Expansion

5 >4010 In DSR Address Space

6 >4030 In DSR Address Space

7 >6010 In Cartridge Address Space

8 >6030 In Cartridge Address Space

9 >7000 In Cartridge Address Space

10 >8000 No RAM in 4A

11 >A000 In High Memory Expansion

12 >B000 In High Memory Expansion

13 >C000 In High Memory Expansion

14 >D000 In High Memory Expansion

15 >8300 In CPU RAM PAD

Example:

MOVE 8,G@A,@FAC FAC = A

MOVE 8,V@B,@ARG ARG = B

ADD XML >06 Floating FAC=A+B

 9.68 XOR DXOR—Logical Exclusive OR

[label] XOR source,destination [comment]

[label] DXOR source,destination [comment]

The logical Exclusive OR of the source operand value and the destination operand value replaces
the destination operand value. The source and destination operand values are bytes for XOR and
double bytes for DXOR. The source operand can be coded as “gsrc” and the destination operand
as “gdest”. The result is compared to zero to set STATUS.

9 Ordinary Statements 55

Examples:

X XOR >F0,@B B=B OR >F0

DXOR @A,@B OR double byte values

BS ZERO B if A XOR B is zero

56 10 Macro Directives

10 Macro Directives

Macro directives are used to define macros. Macro definitions may be placed in the source file or
in the macro library file. Macro directive statements have a different form than the other
Assembler statements. There is no label field on macro directives and the directive operator must
begin in position one of the statement. All macro directive operators begin with a dollar sign so
that all macro directive statements begin with a dollar sign in position one. The macro directives
are described in the following sections.

 10.1 $END—End of Macro Definition

$END [comment]

A macro definition must end with the $END directive. There are no operands on this directive.

Example:

$MACRO BNE Begin macro definition

·

·

·

$END End of definition

 10.2 $ERROR—Issue Error Message

$ERROR string [comment]

This directive causes an assembler error message to be printed. The operand field contains the
message string to be inserted into the standard assembler error message line. Any macro symbols
in the string are replaced by their values. The maximum length of an assembler error message is
20 characters. This directive is useful for issuing diagnostics when the parameters to a macro are
not correct.

Examples:

$ERROR '&P1 OPERAND INVALID'

$ERROR 'INCORRECT VALUE'

10 Macro Directives 57

 10.3 $EXIT—Exit from Macro

$EXIT [comment]

The $EXIT macro indicates the end of macro generation. Note that the $END directive which
defines the physical end of a macro definition also indicates the end of macro generation. The
$EXIT directive has no operands.

 10.4 $GOTO—Branch within Macro

$GOTO label [comment]

This directive causes a GOTO within a macro definition. The operand field contains the target
label which must appear on a $LABEL directive. The operand field is scanned and any macro
symbols are replaced by their value before the search for the label is begun.

Examples:

$GOTO XYZ

$GOTO &L2

$GOTO X&G3

$GOTO &P1(1.2)

 10.5 $IF—Conditional Branch within Macro

$IF expr1,relop,expr2,label [comment]

This directive causes a conditional branch within the macro definition. The two expressions are
evaluated in the same way as the expression on a $SET directive. The two results are then
compared as character strings. If the relation specified by the relational operator, “relop”, is true
then a $GOTO is executed to the label specified as the fourth operand. The relational operators
are:

EQ – equal

NE – not equal

GT – greater than

GE – greater than or equal

LT – less than

LE – less than or equal

If the two strings being compared are different lengths and are the same up to the length of the
shorter, then the shorter string is less than the longer. For example, 'XYZ' is less than 'XYZA'.

58 10.5 $IF—Conditional Branch within Macro

Examples:

$IF '&P1',EQ,'XYZ',ISXYZ

$IF &P2,LT,3,L21

$IF '&P3',NE,'&G1&G2',NEW

$IF '&P4',GE,'A123',&G5

 ···

$LABEL ISXYZ

 ···

$LABEL L21

 ···

$LABEL NEW

 10.6 $LABEL—Define Macro Label

$LABEL label [comment]

This directive defines a label which may be the target of a $GOTO or $IF directive. The operand
field contains the label. The label must be 1 to 6 characters, the first of which is a letter. No
macro symbols are allowed.

Examples:

$LABEL XYZ

$LABEL A12345

 10.7 $MACRO—Begin Macro Definition

$MACRO name [comment]

A macro definition must begin with the $MACRO directive. The “name” specified is the macro
name and is used as an operation code to invoke the macro. The name must be from 1 to 6
characters the first of which must be a letter. Macro names must be different from any predefined
instruction operation code or assembler directive operation code.

Examples:

$MACRO BNE

$MACRO TEST23

10 Macro Directives 59

 10.8 $REM—Macro Reminder

$REM [comment]

This directive provides comments within a macro definition.

Examples:

$REM &P1 IS LENGTH

$REM LENGTH MUST BE LESS THAN 20

 10.9 $SET—Set Macro Symbol

$SET symbol,value [comment]

This directive is used to set the value of local and/or global macro symbols. (The values of
parameter and system macro symbols are set by the assembler.) The first operand of the $SET
directive names the macro symbol whose value is being set. The second operand is the
expression which defines the value the macro symbol is to have.

The expression is scanned and any macro symbols are replaced by their values before the
expression is evaluated. The expression may be a quoted string or a numeric expression. If the
expression is a numeric expression, it is evaluated then converted to a string of length 5, with
leading zeros. NOTE: all arithmetic in the Assembler is done to 16 bits, that is, numbers range
from 0 to 65536 with no negative numbers. In most statements, this is not a problem but it must
be kept in mind when coding $SET and $IF macro directives.

Examples:

$SET &L1,'XYZ' &L1='XYZ'

$SET &L2,2 &L2='00002'

$SET &G3,&L2+1 &G3='00003'

$SET &G4,'&L1ABC' &G4='XYZABC'

$SET &G5,'&L1&L2' &G5='XYZ00002'

$SET &L6,'&L1(2.1)' &L6='Y'

$SET &L7,'&L1.(2.1)' &L7='XYZ(2.1)'

$SET &G8,'&L2+1' &G8='00002+1'

60 Appendix A GPL Subroutines

 Appendix A GPL Subroutines

 A.1 DSRLNK (GRAM Address >0010)

This routine searches for and links to device service routines and subroutines defined in both
GRAM and device ROMs.

Input: One parameter byte is FETCHed. This byte is the offset within the header at which
searching is to begin.

>08 for Device Service Link

>0A for Subroutine Link

VPAB (>8356) contains the VDP RAM address of the name string. The name string is a
one byte length followed by the name. For device links VPAB would point to the
PAB+9.

Example: MOVE 32,G@PAB,V@>1000
DST >1009,@VPAB
CALL DSRLNK
BYTE >08

Notes: GRAM device/subroutine routines should return by calling the GSRRTN routine.

 A.2 GSRRTN (GRAM Address >0012)

This routine is used to return from a GRAM device service routine or subroutine which was
called by DSRLNK or GSRLNK.

 A.3 SUBCNS (GRAM Address >0014)

This routine converts a floating point number into a string.

Input: FAC (>834A) contains the radix 100 floating point number to be converted.

FAC+11 (>8355) contains a flag to indicate the mode of the output string.

FAC+11=0. Output string is in scientific notation.

FAC+11=non-zero. Output string is in normal decimal point form.

FAC+12 (>8356) is the number of significant digits.

FAC+13 (>8357) is the number of digits to the right of the decimal point.

Output: FAC is modified.

FAC+11 (>8355) contains a one byte displacement from >8300 to the result string. That
is, the output string is at address >83xx, where xx is the contents of >8355.

FAC+12 (>8356) contains the one byte length of the output string.

 Appendix A GPL Subroutines 61

 A.4 STDCHR (GRAM Address >0016)

This routine loads the large size upper case character set. This is the character set used on the
master selection menu. Patterns are loaded for characters >20 (blank) to >5F.

Input: FAC (>834A) contains the VDP RAM address for the >20 character pattern.

 A.5 UCCHAR (GRAM Address >0018)

This routine loads the normal upper case character set. Patterns are loaded for characters >20
(blank) to >5F.

Input: FAC (>834A) contains the VDP RAM address for the >20 character pattern.

 A.6 BWARN (GRAM Address >001A)

This routine issues a TI BASIC warning message.

 A.7 BERR (GRAM Address >001C)

This routine issues a TI BASIC error message.

 A.8 BEXEC (GRAM Address >001E)

This routine begins execution of a TI BASIC program in GRAM.

Input: Four bytes are FETCHed. The first two specify the GRAM address of the first byte of
the line number table. The second two bytes specify the GRAM address of the last byte
of the line number table.

 A.9 PWRUP (GRAM Address >0020)

This routine initializes the system, then presents the “colour bar screen” and the master selection
menu.

 A.10 SUBINT (GRAM Address >0022)

This routine calculates the greatest integer from a floating point number.

Input: FAC (>834A) contains the radix 100 floating point number.

Output: FAC (>834A) contains the double byte integer value.

 A.11 SUBPWR (GRAM Address >0024)

This routine raises a floating point number to a floating point power.

Input: FAC (>834A) contains the radix 100 floating point power.

ARG (>835C) contains the floating point number.

62 A.11 SUBPWR (GRAM Address >0024)

Output: FAC (>834A) contains the result.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.12 SUBSQR (GRAM Address >0026)

This routine calculates the square root of a floating point number.

Input: FAC (>834A) contains the radix 100 floating point number.

Output: FAC (>834A) contains the resulting square root.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.13 SUBEXP (GRAM Address >0028)

This routine calculates “e” (the natural log base) to a floating point power. This is the inverse
natural log.

Input: FAC (>834A) contains the radix 100 floating point power.

Output: FAC (>834A) contains the resulting power of e.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.14 SUBLOG (GRAM Address >002A)

This routine calculates the natural log of a floating point number.

Input: FAC (>834A) contains the radix 100 floating point number.

Output: FAC (>834A) contains the resulting natural log.

 Appendix A GPL Subroutines 63

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.15 SUBCOS (GRAM Address >002C)

This routine calculates the cosine of a floating point number representing an angle in radian
measure.

Input: FAC (>834A) contains the radix 100 floating point angle.

Output: FAC (>834A) contains the resulting cosine value.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.16 SUBSIN (GRAM Address >002E)

This routine calculates the sine of a floating point number representing an angle in radian
measure.

Input: FAC (>834A) contains the radix 100 floating point angle.

Output: FAC (>834A) contains the resulting sine value.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.17 SUBTAN (GRAM Address >0030)

This routine calculates the tangent of a floating point number representing an angle in radian
measure.

Input: FAC (>834A) contains the radix 100 floating point angle.

64 A.17 SUBTAN (GRAM Address >0030)

Output: FAC (>834A) contains the resulting tangent value.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.18 SUBATN (GRAM Address >0032)

This routine calculates the arctangent of a floating point number.

Input: FAC (>834A) contains the radix 100 floating point number.

Output: FAC (>834A) contains the resulting angle in radians.

STATUS (>837C) is set according to the value of the result.

ERCODE (>8354), the floating point error code may be set.

VSTACK (>836E), the pointer to the VDP floating point stack is used.

RAM PAD locations >8375 and >8376 are used as a work area.

RAM PAD locations >8310 to >832A are used as a work area, their contents is written to
VDP RAM at address >03C0 and restored.

 A.19 BEEP (GRAM Address >0034)

This routine issues an accept tone.

 A.20 HONK (GRAM Address >0036)

This routine issues a reject tone.

 A.21 BGETSS (GRAM Address >0038)

This routine allocates VDP RAM within the TI BASIC environment.

 A.22 BITREV (GRAM Address >003B)

This routine produces a mirror image of a byte.

Input: FAC (>834A) contains the VDP RAM address of the bytes to be reversed.

FAC+2 (>834C) contains the double byte number of bytes to reverse.

Output: The bytes in VDP RAM are reversed.

RAM PAD locations >8310 to >8340 are destroyed.

 Appendix A GPL Subroutines 65

 A.23 CASDSR (GRAM Address >003D)

This routine searches for and executes GRAM DSR routines (especially the cassette DSR).

Input: The PAB in VDP RAM.

FAC (>834A) contains the device name.

RAM PAD location >8354 contains the double byte length of the device name.

RAM PAD location >8356 contains the VDP RAM address of the first character after the
name in the PAB.

RAM PAD location >836D must be set to >08 to indicate a DSR call.

STATUS (>837C) must be set to zero.

RAM PAD location >83D0 and >83D1 should be set to zero.

 A.24 BPABSS (GRAM Address >003F)

This routine is used in the TI BASIC environment to allocate VDP RAM space for PABs.

 A.25 BSETSU (GRAM Address >0042)

This routine is used in the TI BASIC environment to fetch the next byte from a BASIC statement.

 A.26 LCCHAR (GRAM Address >004A)

This routine loads the normal lower case character set. Patterns are loaded for characters >60 to
>7F.

Input: FAC (>834A) contains the VDP RAM address for the >60 character pattern.

66 Appendix B XML Routines

 Appendix B XML Routines
The XML Routines described in this appendix are contained in the 99/4A ROM as part of the
GPL interpreter.

 B.1 XML >00 Undefined

There is no defined function for this XML routine.

 B.2 XML >01 Round FAC

The nine byte floating point number in FAC is rounded to an 8 byte floating point number. The
floating point error code, ERCODE, may be set to >01 to indicate overflow. STATUS is set
according to the value in FAC.

 B.3 XML >02 Round FAC at ARG

The floating point number in FAC is incremented by one at the radix 100 digit number specified
by the byte in ARG. This routine could be used as part of a rounding routine. The floating point
error code, ERCODE, may be set to >01 to indicate overflow. STATUS is set according to the
value in FAC.

 B.4 XML >03 Set STATUS Depending on FAC

The double byte value in FAC is used to set STATUS. Note that because of the method of
implementing floating point numbers, this routine works for both fixed point double byte and
floating point numbers.

 B.5 XML >04 Floating Point Underflow/Overflow

The sign of the byte at >8376 determines whether underflow or overflow has occurred. If the
byte at >8376 is negative then underflow has occurred and FAC is set to zero. If the byte at
>8376 is not negative then overflow has occurred and FAC is set to the maximum number with
the same sign as the byte at >8375. If overflow has occurred the floating point error code,
ERCODE, is set to >01. STATUS is set according to the result in FAC.

 B.6 XML >05 Set Floating Point Overflow

The floating point error code, ERCODE, is set to >01 and FAC is set to the maximum number
with the same sign as the byte at >8375. STATUS is set according to the result in FAC.

 Appendix B XML Routines 67

 B.7 XML >06 Floating Point Add

The floating point number in FAC is added to the floating point number in ARG, the result
replacing FAC. The floating point error code, ERCODE, may be set to >01 to indicate overflow.
STATUS is set according to the result in FAC.

 B.8 XML >07 Floating Point Subtract

The floating point number in FAC is subtracted from the floating point number in ARG, the result
replacing FAC. The floating point error code, ERCODE, may be set to >01 to indicate overflow.
STATUS is set according to the result in FAC.

 B.9 XML >08 Floating Point Multiply

The floating point number in FAC is multiplied by the floating point number in ARG, the result
replacing FAC. The floating point error code, ERCODE, may be set to >01 to indicate overflow.
STATUS is set according to the result in FAC.

 B.10 XML >09 Floating Point Divide

The floating point number in FAC is divided into the floating point number in ARG, the result
replacing FAC. The floating point error code, ERCODE, may be set to >01 to indicate overflow.
STATUS is set according to the result in FAC.

 B.11 XML >0A Floating Point Compare

The floating point number in ARG is compared to the floating point number in FAC to set
STATUS. The COND bit is set if the two numbers are equal, The GT bit is set if ARG is greater
than FAC.

 B.12 XML >0B Floating Point Stack Add

The floating point number in FAC is added to the floating point number on the VDP stack
pointed to by VSPTR, the result replacing FAC. The stack pointer, VSPTR, is decremented by 8.
The floating point error code, ERCODE, may be set to >01 to indicate overflow. STATUS is set
according to the result in FAC.

 B.13 XML >0C Floating Point Stack Subtract

The floating point number in FAC is subtracted from the floating point number on the VDP stack
pointed to by VSPTR, the result replacing FAC. The stack pointer, VSPTR, is decremented by 8.
The floating point error code, ERCODE, may be set to >01 to indicate overflow. STATUS is set
according to the result in FAC.

68 B.14 XML >0D Floating Point Stack Multiply

 B.14 XML >0D Floating Point Stack Multiply

The floating point number in FAC is multiplied by the floating point number on the VDP stack
pointed to by VSPTR, the result replacing FAC. The stack pointer, VSPTR, is decremented by 8.
The floating point error code, ERCODE, may be set to >01 to indicate overflow. STATUS is set
according to the result in FAC.

 B.15 XML >0E Floating Point Stack Divide

The floating point number in FAC is divided into the floating point number on the VDP stack
pointed to by VSPTR, the result replacing FAC. The stack pointer, VSPTR, is decremented by 8.
The floating point error code, ERCODE, may be set to >01 to indicate overflow. STATUS is set
according to the result in FAC.

 B.16 XML >0F Floating Point Stack Compare

The floating point number on the VDP stack pointed to by VSPTR is compared to the floating
point number in FAC to set STATUS. The COND bit is set if the two numbers are equal, The
GT bit is set if stack number is greater than FAC. The stack pointer, VSPTR, is decremented by
8.

 B.17 XML >10 Convert VDP String to Floating

The ASCII string in VDP RAM at the address contained in >8356 is converted to a floating point
number. The result is returned in FAC. The conversion processes characters from the VDP until
a character not legal in a floating point number is found. The VDP address of the last character
processed is left in >8356. The floating point error code, ERCODE, may be set to >01 to indicate
overflow.

 B.18 XML >11 Convert String to Floating

This routine is the same as XML >10 except that the ASCII string may be in either VDP RAM or
GRAM. If the byte at >8389 is zero the string is in VDP RAM, otherwise it is in GRAM.

 B.19 XML >12 Convert Floating to Integer

The floating point number in FAC is converted to a double byte integer, the result replacing FAC.
The floating point error code, ERCODE, may be set to >01 to indicate overflow.

 B.20 XML >13 Get BASIC Symbol Table Entry

This routine is used by the TI BASIC interpreter.

 B.21 XML >14 Get BASIC Symbol Table Value

This routine is used by the TI BASIC interpreter.

 Appendix B XML Routines 69

 B.22 XML >15 Assign Value to BASIC Variable

This routine is used by the TI BASIC interpreter.

 B.23 XML >16 Search BASIC Symbol Table

This routine is used by the TI BASIC interpreter.

 B.24 XML >17 Push Value onto VDP Stack

This routine is used by the TI BASIC interpreter.

 B.25 XML >18 Pop Value from VDP Stack

This routine is used by the TI BASIC interpreter.

 B.26 XML >19 Search DSR ROM Chains

This routine is used to search DSR ROM headers and chains. The byte value at >836D is the
offset into the header for the chain to be searched. The byte value at >8355 is the length of the
name to search. The name to be searched is in FAC.

 B.27 XML >1A Search GROM Chains

This routine is the same as XML >19 except that GRAM headers and chains are searched.

 B.28 XML >1B Get Next BASIC Byte

This routine is used by the TI BASIC interpreter.

 B.29 XML >1C Undefined

There is no defined function for this XML routine.

 B.30 XML >1D Undefined

There is no defined function for this XML routine.

 B.31 XML >1E Undefined

There is no defined function for this XML routine.

 B.32 XML >1F Undefined

There is no defined function for this XML routine.

70 Appendix C BASIC Tokens

 Appendix C BASIC Tokens
The following table gives all the BASIC tokens. Those marked with an asterisk are for Extended
BASIC only.

>80 128 —— >B0 176 THEN >E0* 224 MIN

>81 129 ELSE >B1 177 TO >E1* 225 RPT$

>82* 130 :: >B2 178 STEP >E2 226 ——

>83* 131 ! >B3 179 , (comma) >E3 227 ——

>84 132 IF >B4 180 ; (semi) >E4 228 ——

>85 133 GO >B5 181 : (colon) >E5 229 ——

>86 134 GOTO >B6 182) >E6 230 ——

>87 135 GOSUB >B7 183 (>E7 231 ——

>88 136 RETURN >B8 184 & >E8* 232 NUMERIC

>89 137 DEF >B9 185 —— >E9* 233 DIGIT

>8A 138 DIM >BA* 186 OR >EA* 234 UALPHA

>8B 139 END >BB* 187 AND >EB* 235 SIZE

>8C 140 FOR >BC* 188 XOR >EC* 236 ALL

>8D 141 LET >BD* 189 NOT >ED* 237 USING

>8E 142 BREAK >BE 190 = >EE* 238 BEEP

>8F 143 UNBREAK >BF 191 < >EF* 239 ERASE

>90 144 TRACE >C0 192 > >F0* 240 AT

>91 145 UNTRACE >C1 193 + >F1 241 BASE

>92 146 INPUT >C2 194 - >F2 242 ——

>93 147 DATA >C3 195 * >F3 243 VARIABLE

>94 148 RESTORE >C4 196 / >F4 244 RELATIVE

>95 149 RANDOMIZE >C5 197 Power >F5 245 INTERNAL

>96 150 NEXT >C6 198 —— >F6 246 SEQUENTIAL

>97 151 READ >C7 199 "string" >F7 247 OUTPUT

>98 152 STOP >C8 200 string >F8 248 UPDATE

>99 153 DELETE >C9 201 Stmt # >F9 249 APPEND

>9A 154 REM >CA 202 EOF >FA 250 FIXED

>9B 155 ON >CB 203 ABS >FB 251 PERMANENT

>9C 156 PRINT >CC 204 ATN >FC 252 TAB

>9D 157 CALL >CD 205 COS >FD 253 # (files)

>9E 158 OPTION >CE 206 EXP >FE* 254 VALIDATE

>9F 159 OPEN >CF 207 INT >FF 255 ——

>A0 160 CLOSE >D0 208 LOG

 Appendix C BASIC Tokens 71

>A1 161 SUB >D1 209 SGN

>A2 162 DISPLAY >D2 210 SIN

>A3* 163 IMAGE >D3 211 SQR

>A4 164 ACCEPT >D4 212 TAN

>A5* 165 ERROR >D5 213 LEN

>A6* 166 WARNING >D6 214 CHR$

>A7* 167 SUBEXIT >D7 215 RND

>A8* 168 SUBEND >D8 216 SEG$

>A9 169 RUN >D9 217 POS

>AA* 170 LINPUT >DA 218 VAL

>AB 171 —— >DB 219 STR$

>AC 172 —— >DC 220 ASC

>AD 173 —— >DD* 221 PI

>AE 174 —— >DE 222 REC

>AF 175 —— >DF* 223 MAX

72 Appendix D Coincidence

 Appendix D Coincidence
The COINC instruction is designed to detect the coincidence of two sprites. Its function is
general enough, however, to detect the coincidence of any two objects, given their Y and X
positions and a coincidence table. All measurements are in units (that may be pixels) relative to
the top left corner.

The coincidence table is an array of bits which indicate coincidence for the various positions of
the objects when they are in contact. To construct the coincidence table for mapping value zero
for two objects, the source (S) and destination (D), with dimensions (Vs, Hs) and (Vd, Hd), you
must imagine the 2 rectangles with the given dimensions just touching at the lower right corner of
S and the upper left corner of D.

 Hs

┌───────┐
│ │
│ S │ Vs
│ │
└───────┼──────────┐
 │ │
 │ │
 │ D │ Vd
 │ │
 │ │
 └──────────┘
 Hd

Beginning with this position then moving right across the columns then down the rows until:

 ┌──────────┐
 │ │
 │ │
 │ D │ Vd
 │ │
 │ │
 └──────────┼───────┐
 Hd │ │
 │ S │ Vs
 │ │
 └───────┘
 Hs

A one bit is put into the coincidence table for each position for which coincidence is true and a
zero otherwise. This will give a sequence of Hs+Hd+1 bits in each of Vs+Vd+1 rows. The
coincidence table is then constructed as shown below.

 Appendix D Coincidence 73

BYTE # of rows of bits less 1

BYTE # of bits in a row less 1

BYTE Vs

BYTE Hs

BYTE the bits packed into bytes with padding if necessary

As an example, consider the two objects shown below which we will say are in coincidence when
any two pixels overlap.

┌───┐ ┌───┐
│ │ │ │
│ │ │ │
├ └───┐ ┌───┘ └───┐
│ S │ │ D │
│ │ │ │
└───┴───┘ └───┴───┴───┘

Then Vs = 2, Hs = 2 and Vd = 2, Hd = 3. The 5 rows of bits then are derived as shown below.

Row 0 gives 6 bits “000000”.

┌───┐ ┌───┐
│ │ │ │
│ │ │ │
├ └───┐ ├ └───┐
│ S │ ======> │ S │
│ │ ====== > │ │
└───┴───┘ ┌───┐ ======> ┌───┐ └───┴───┘
 │ │ │ │
 │ │ │ │
 ┌───┘ └───┐ ┌───┘ └───┐
 │ D │ │ D │
 │ │ │ │
 └───┴───┴───┘ └───┴───┴───┘

Row 1 gives 6 bits “001100”.

┌───┐ ┌───┐
│ │ │ │
│ │ │ │
├ └───┐ ┌───┐ ┌───┐ ├ └───┐
│ S │ │ │ ======> │ │ │ S │
│ │ │ │ ====== > │ │ │ │
└───┴───┼───┘ └───┐ ======> ┌───┘ └───┼───┴───┘
 │ D │ │ D │
 │ │ │ │
 └───┴───┴───┘ └───┴───┴───┘

74 Appendix D Coincidence

Row 2 gives 6 bits “011110”.

┌───┐ ┌───┐ ┌───┐ ┌───┐
│ │ │ │ │ │ │ │
│ │ │ │ ======> │ │ │ │
├ └───┬───┘ └───┐ ====== > ┌───┘ └───┤ └───┐
│ S │ D │ ======> │ D │ S │
│ │ │ │ │ │
└───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┘

Row 3 gives 6 bits “001110”.

 ┌───┐ ┌───┐
 │ │ │ │
 │ │ │ │
┌───┐ ┌───┘ └───┐ ┌───┘ └───┬───┐
│ │ │ D │ ======> │ D │ │
│ │ │ │ ====== > │ │ │
├ └───┼───┴───┴───┘ ======> └───┴───┴───┤ └───┐
│ S │ │ S │
│ │ │ │
└───┴───┘ └───┴───┘

Row 4 gives 6 bits “000000”.

 ┌───┐ ┌───┐
 │ │ │ │
 │ │ │ │
 ┌───┘ └───┐ ┌───┘ └───┐
 │ D │ ======> │ D │
 │ │ ====== > │ │
┌───┐ └───┴───┴───┘ ======> └───┴───┴───┼───┐
│ │ │ │
│ │ │ │
├ └───┐ ├ └───┐
│ S │ │ S │
│ │ │ │
└───┴───┘ └───┴───┘

Then the Bit Table is:

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 1 1 0 0

2 0 1 1 1 1 0

3 0 0 1 1 1 0

4 0 0 0 0 0 0

 Appendix D Coincidence 75

and the coincidence table is:

BYTE 4 # of rows less 1

BYTE 5 # of bits less 1

BYTE 2 Vs

BYTE 2 Hs

BYTE >00,>C7 The 30 bits

BYTE >8E,>00 Plus pad of 2 bits

To construct the coincidence table for mapping value one, first construct the bit table for mapping
value 0 as shown above. Then beginning at row Vs and column Hs in the table mark the table off
in 2 bit wide rows and columns.

 Mapping Value 0 Mapping Value 1

 Hs

0 1 2 3 4 5 0 1 2

0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 1 0 1 1

Vs 2 0 1 1 1 1 0 2 0 0 0

3 0 0 1 1 1 0

4 0 0 0 0 0 0

Then output one bit for each group of bits in the table. Note that some groups may have only 2
bits. In our example, the coincidence table for mapping value 1 would be:

BYTE 2 # of rows less 1

BYTE 2 # of bits less 1

BYTE 2 Vs

BYTE 2 Hs

BYTE >4C,>00 The 9 bits plus padding

Note that the coincidence table for two normal sprites at mapping value 0 is the same as for the
sprites magnified at mapping value 1.

To construct the coincidence table for mapping value 2 use the same procedure as for mapping
value 1 except that the bits are grouped into 4 by 4 groups.

76 Appendix E GPL Operation Codes

 Appendix E GPL Operation Codes
The following table lists the GPL operation codes in numeric order. The operands are described
as:

IMB – Immediate Byte

IMD – Immediate Double Byte

GRAM – GRAM Direct

GDEST – General Destination, “gdest”

 E.1 GPL Operations

Opcode Instruction Operands Function

00 RTN none Return from subroutine

01 RTNC none Return from subroutine

02 RAND IMB Generate random number

03 SCAN none Scan keyboard

04 BACK IMB Load VDP R7

05 B GRAM Branch

06 CALL GRAM Call subroutine

07 ALL IMB Fill screen

08 FMT none Formatted screen write

09 H none HIGH bit to COND

0A GT none GT bit to COND

0B EXIT none Exit from program

0C CARRY none CARRY bit to COND

0D OVF none OVF bit to COND

0E PARSE IMB Parse BASIC

0F XML IMB Execute machine language

10 CONT none Continue BASIC

11 EXEC none Execute BASIC

12 RTNB none Return to BASIC

2x MOVE CNT,FROM,TO Block move to GRAM

3x MOVE CNT,FROM,TO Block move to CPU or VDP

4x BR GRAM Branch COND reset

5x BR GRAM Branch COND reset

6x BS GRAM Branch COND set

 Appendix E GPL Operation Codes 77

Opcode Instruction Operands Function
7x BS GRAM Branch COND set

80 ABS GDEST Absolute value

81 DABS GDEST Absolute value

82 NEG GDEST Negative value

83 DNEG GDEST Negative value

84 INV GDEST Invert bits

85 DINV GDEST Invert bits

86 CLR GDEST Set to zero

87 DCLR GDEST Set to zero

88 FETCH GDEST Fetch parameter byte

89 —— —— Undefined

8A CASE GDEST Select case

8B DCASE GDEST Select case

8C PUSH GDEST Push onto data stack

8D —— —— Undefined

8E CZ GDEST Compare to zero

8F DCZ GDEST Compare to zero

90 INC GDEST Increment by one

91 DINC GDEST Increment by one

92 DEC GDEST Decrement by one

93 DDEC GDEST Decrement by one

94 INCT GDEST Increment by two

95 DINCT GDEST Increment by two

96 DECT GDEST Decrement by two

97 DDECT GDEST Decrement by two

98 —— —— Undefined

99 —— —— Undefined

9A —— —— Undefined

9B —— —— Undefined

9C —— —— Undefined

9D —— —— Undefined

9E —— —— Undefined

9F —— —— Undefined

A0 ADD GDEST,GDEST Two’s complement add

A1 DADD GDEST,GDEST Two’s complement add

78 E.1 GPL Operations

Opcode Instruction Operands Function
A2 ADD IMB,GDEST Two’s complement add

A3 DADD IMD,GDEST Two’s complement add

A4 SUB GDEST,GDEST Two’s complement subtract

A5 DSUB GDEST,GDEST Two’s complement subtract

A6 SUB IMB,GDEST Two’s complement subtract

A7 DSUB IMD,GDEST Two’s complement subtract

A8 MUL GDEST,GDEST Multiply

A9 DMUL GDEST,GDEST Multiply

AA MUL IMB,GDEST Multiply

AB DMUL IMD,GDEST Multiply

AC DIV GDEST,GDEST Divide

AD DDIV GDEST,GDEST Divide

AE DIV IMB,GDEST Divide

AF DDIV IMD,GDEST Divide

B0 AND GDEST,GDEST Logical AND

B1 DAND GDEST,GDEST Logical AND

B2 AND IMB,GDEST Logical AND

B3 DAND IMD,GDEST Logical AND

B4 OR GDEST,GDEST Logical OR

B5 DOR GDEST,GDEST Logical OR

B6 OR IMB,GDEST Logical OR

B7 DOR IMD,GDEST Logical OR

B8 XOR GDEST,GDEST Logical exclusive OR

B9 DXOR GDEST,GDEST Logical exclusive OR

BA XOR IMB,GDEST Logical exclusive OR

BB DXOR IMD,GDEST Logical exclusive OR

BC ST GDEST,GDEST Store

BD DST GDEST,GDEST Store

BE ST IMB,GDEST Store

BF DST IMD,GDEST Store

C0 EX GDEST,GDEST Exchange

C1 DEX GDEST,GDEST Exchange

C2 —— —— Undefined

C3 —— —— Undefined

C4 CH GDEST,GDEST Compare logical high

 Appendix E GPL Operation Codes 79

Opcode Instruction Operands Function
C5 DCH GDEST,GDEST Compare logical high

C6 CH IMB,GDEST Compare logical high

C7 DCH IMD,GDEST Compare logical high

C8 CHE GDEST,GDEST Compare logical high or equal

C9 DCHE GDEST,GDEST Compare logical high or equal

CA CHE IMB,GDEST Compare logical high or equal

CB DCHE IMD,GDEST Compare logical high or equal

CC CGT GDEST,GDEST Compare greater than

CD DCGT GDEST,GDEST Compare greater than

CE CGT IMB,GDEST Compare greater than

CF DCGT IMD,GDEST Compare greater than

D0 CGE GDEST,GDEST Compare greater than or equal

D1 DCGE GDEST,GDEST Compare greater than or equal

D2 CGE IMB,GDEST Compare greater than or equal

D3 DCGE IMD,GDEST Compare greater than or equal

D4 CEQ GDEST,GDEST Compare equal

D5 DCEQ GDEST,GDEST Compare equal

D6 CEQ IMB,GDEST Compare equal

D7 DCEQ IMD,GDEST Compare equal

D8 CLOG GDEST,GDEST Compare logical

D9 DCLOG GDEST,GDEST Compare logical

DA CLOG IMB,GDEST Compare logical

DB DCLOG IMB,GDEST Compare logical

DC SRA GDEST,GDEST Shift right algebraic

DD DSRA GDEST,GDEST Shift right algebraic

DE SRA IMB,GDEST Shift right algebraic

DF DSRA IMD,GDEST Shift right algebraic

E0 SLL GDEST,GDEST Shift left logical

E1 DSLL GDEST,GDEST Shift left logical

E2 SLL IMB,GDEST Shift left logical

E3 DSLL IMD,GDEST Shift left logical

E4 SRL GDEST,GDEST Shift right logical

E5 DSRL GDEST,GDEST Shift right logical

E6 SRL IMB,GDEST Shift right logical

E7 DSRL IMD,GDEST Shift right logical

80 E.1 GPL Operations

Opcode Instruction Operands Function
E8 SRC GDEST,GDEST Shift right circular

E9 DSRC GDEST,GDEST Shift right circular

EA SRC IMB,GDEST Shift right circular

EB DSRC IMD,GDEST Shift right circular

EC —— —— Undefined

ED COINC GDEST,GDEST Coincidence detection

EE —— —— Undefined

EF —— —— Undefined

F0 —— —— Undefined

F1 —— —— Undefined

F2 —— —— Undefined

F3 —— —— Undefined

F4 IO GDEST,GDEST Special input/output

F5 —— —— Undefined

F6 IO IMB,GDEST Special input/output

F7 —— —— Undefined

F8 —— —— Undefined

F9 —— —— Undefined

FA —— —— Undefined

FB —— —— Undefined

FC —— —— Undefined

FD —— —— Undefined

FE —— —— Undefined

FF —— —— Undefined

 Appendix E GPL Operation Codes 81

 E.2 Format Suboperations

Opcodes Instruction Assembled as

0x - 1x HTEX >00+(count-1),text

2x - 3x VTEX >20+(count-1),text

4x - 5x HCHA >40+(count-1),char

6x - 7x VCHA >60+(count-1),char

8x - 9x ICOL >80+(count-1)

Ax - Bx IROW >80+(count-1)

Cx - Dx FOR >C0+(count-1)

Ex HSTR >E0+(count-1),gsrc

FB FEND >FB {End of FMT}

FB FEND >FB,GGGG {End of FOR}

FC SCRO >FC,IMB

FD SCRO >FC,gsrc

FE ROW >FE,row

FF COL >FE,col

82 Appendix F General Address Format

 Appendix F General Address Format
The general address, “gdest”, is variable in length depending upon the address, the type of
addressing and the type of memory. CPU RAM addresses are biased by >8300. That is, >8300 is
added to the address in the instruction by the interpreter to get the actual CPU RAM address.
Indirection is always through CPU RAM. The index for the indexed form of addressing is always
a double byte value in CPU RAM at address >83ii.

>00 to >7F CPU RAM direct, >8300 to >837F

>8000 to >8EFF CPU RAM direct, >8300 to >91FF

>8Fxxxx CPU RAM direct, >8300+xxxx

>9000 to >9EFF CPU RAM indirect, >8300 to >91FF

>9Fxxxx CPU RAM indirect, >8300+xxxx

>A000 to >AEFF VDP RAM direct, >0000 to >0EFF

>AFxxxx VDP RAM direct, xxxx

>B000 to >BEFF VDP RAM indirect

>BFxxxx VDP RAM indirect

>C000ii to >CEFFii CPU RAM indexed

>CFxxxxii CPU RAM indexed

>D000ii to >DEFFii CPU RAM indexed indirect

>DFxxxxii CPU RAM indexed indirect

>E000ii to >EEFFii VDP RAM indexed

>EFxxxxii VDP RAM indexed

>F000ii to >FEFFii VDP RAM indexed indirect

>FFxxxxii VDP RAM indexed indirect

	1 Introduction
	2 Graphics memory (GRAM)
	3 TI 99/4A GROM Operating System
	3.1 System Power Up
	3.2 GRAM/DSR Headers
	3.3 GRAM/DSR Chains
	3.4 GPL Callable Subroutines
	3.5 Floating Point Numbers
	3.6 Automatic Sound Processing
	3.7 Automatic Sprite Motion
	3.8 Keyboard Input

	4 CPU RAM PAD
	4.1 Memory Map
	4.2 GPL Status Byte
	4.3 VDP Status Byte
	4.4 Floating Point Error Codes

	5 VDP RAM Usage
	6 Addressing Modes
	6.1 The Six Addressing Modes
	6.1.1 Direct Memory Reference
	6.1.2 Indirect Memory Reference
	6.1.3 Indexed Direct Memory Reference
	6.1.4 Indexed Indirect Memory Reference
	6.1.5 Immediate Data
	6.1.6 VDP Register Direct

	6.2 Operand Notations
	6.2.1 General Source – gsrc
	6.2.2 General Destination – gdest
	6.2.3 Special Addresses

	7 Elements of the Language
	7.1 Assembler Statements
	7.1.1 Comment
	7.1.2 Assembler Directives
	7.1.3 Macro Directives
	7.1.4 Ordinary Statements
	7.1.5 Macro Statements

	7.2 Assembler Symbols
	7.2.1 Ordinary Symbols
	7.2.2 Macro Symbols

	7.3 Macro Symbol Substring Notation
	7.4 Macro Definitions
	7.5 The Location Counter
	7.6 Expressions
	7.7 Constants
	7.8 Definition of Terms

	8 Assembler Directives
	8.1 AORG—Absolute Origin
	8.2 BSS—Block Starting with Symbol
	8.3 BYTE—Define Byte Data
	8.4 COPY—Copy Source from File
	8.5 DATA—Define Double Byte Data
	8.6 DEF—Define External Name
	8.7 DORG—Dummy Origin
	8.8 END—End of Assembly
	8.9 EQU—Set Symbol Equal to Value
	8.10 FLOAT—Define Floating Point Data
	8.11 IDT—Identify Object
	8.12 LIST—Resume Assembler Listing
	8.13 OBJREC—Write Object Record
	8.14 PAGE—Start New Listing Page
	8.15 REF—External Reference
	8.16 STRI—Define ASCII String Constant
	8.17 TEXT—Define ASCII Text Constant
	8.18 TITL—Define Listing Title
	8.19 UNL—Stop Assembler Listing

	9 Ordinary Statements
	9.1 ABS DABS—Absolute Value
	9.2 ADD DADD—Add
	9.3 ALL—Load Screen
	9.4 AND DAND—Logical And
	9.5 B—Branch
	9.6 BACK—Load Background Colour
	9.7 BR—Branch on Reset
	9.8 BS—Branch on Set
	9.9 CALL—Call Subroutine
	9.10 CARRY—Transfer CARRY to COND
	9.11 CASE DCASE—Select Case
	9.12 CEQ DCEQ—Compare Equal
	9.13 CGE DCGE—Compare Greater Than or Equal
	9.14 CGT DCGT—Compare Greater Than
	9.15 CH DCH—Compare Logical High
	9.16 CHE DCHE—Compare Logical High or Equal
	9.17 CLOG DCLOG—Compare Logical
	9.18 CLR DCLR—Zero Value
	9.19 COINC—Coincidence Check
	9.20 COL—Set Current Column
	9.21 CONT—Continue BASIC
	9.22 CZ DCZ—Compare to Zero
	9.23 DEC DDEC—Decrement by One
	9.24 DECT DDECT—Decrement by Two
	9.25 DIV DDIV—Divide
	9.26 EX DEX—Exchange
	9.27 EXEC—Execute BASIC
	9.28 EXIT—Exit from Program
	9.29 FEND—End of Formatted Screen Write
	9.30 FETCH—Fetch Parameter
	9.31 FMT—Formatted Screen Write
	9.32 FOR—Begin Formatted Screen Write Loop
	9.33 GT—Transfer GT to COND
	9.34 H—Transfer H to COND
	9.35 HCHA—Display Character Horizontally
	9.36 HSTR—Display Character Horizontally
	9.37 HTEX—Display String Horizontally
	9.38 ICOL—Increment Current Column
	9.39 INC DINC—Increment by One
	9.40 INCT DINCT—Increment by Two
	9.41 INV DINV—Invert Bits
	9.42 IO—Special I/O
	9.43 IROW—Increment Current Row
	9.44 MOVE—Block Move
	9.45 MUL DMUL—Multiply
	9.46 NEG DNEG—Negate
	9.47 OR DOR—Logical OR
	9.48 OVF—Transfer OVF to COND
	9.49 PARSE—Parse for BASIC Token
	9.50 POP—Pop from Data Stack
	9.51 PUSH—Push onto Data Stack
	9.52 RAND—Generate Random Number
	9.53 ROW—Set Current Row
	9.54 RTN—Return from Subroutine
	9.55 RTNB—Return from BASIC
	9.56 RTNC—Return with COND
	9.57 SCAN—Scan Keyboard
	9.58 SCRO—Set Screen Offset
	9.59 SLL DSLL—Shift Left Logical
	9.60 SRA DSRA—Shift Right Arithmetically
	9.61 SRC DSRC—Shift Right Circular
	9.62 SRL DSRL—Shift Right Logical
	9.63 ST DST—Store
	9.64 SUB DSUB—Subtract
	9.65 VCHA—Display Character Vertically
	9.66 VTEX—Display String Vertically
	9.67 XML—Execute Machine Language
	9.68 XOR DXOR—Logical Exclusive OR

	10 Macro Directives
	10.1 $END—End of Macro Definition
	10.2 $ERROR—Issue Error Message
	10.3 $EXIT—Exit from Macro
	10.4 $GOTO—Branch within Macro
	10.5 $IF—Conditional Branch within Macro
	10.6 $LABEL—Define Macro Label
	10.7 $MACRO—Begin Macro Definition
	10.8 $REM—Macro Reminder
	10.9 $SET—Set Macro Symbol

	Appendix A GPL Subroutines
	A.1 DSRLNK (GRAM Address >0010)
	A.2 GSRRTN (GRAM Address >0012)
	A.3 SUBCNS (GRAM Address >0014)
	A.4 STDCHR (GRAM Address >0016)
	A.5 UCCHAR (GRAM Address >0018)
	A.6 BWARN (GRAM Address >001A)
	A.7 BERR (GRAM Address >001C)
	A.8 BEXEC (GRAM Address >001E)
	A.9 PWRUP (GRAM Address >0020)
	A.10 SUBINT (GRAM Address >0022)
	A.11 SUBPWR (GRAM Address >0024)
	A.12 SUBSQR (GRAM Address >0026)
	A.13 SUBEXP (GRAM Address >0028)
	A.14 SUBLOG (GRAM Address >002A)
	A.15 SUBCOS (GRAM Address >002C)
	A.16 SUBSIN (GRAM Address >002E)
	A.17 SUBTAN (GRAM Address >0030)
	A.18 SUBATN (GRAM Address >0032)
	A.19 BEEP (GRAM Address >0034)
	A.20 HONK (GRAM Address >0036)
	A.21 BGETSS (GRAM Address >0038)
	A.22 BITREV (GRAM Address >003B)
	A.23 CASDSR (GRAM Address >003D)
	A.24 BPABSS (GRAM Address >003F)
	A.25 BSETSU (GRAM Address >0042)
	A.26 LCCHAR (GRAM Address >004A)

	Appendix B XML Routines
	B.1 XML >00 Undefined
	B.2 XML >01 Round FAC
	B.3 XML >02 Round FAC at ARG
	B.4 XML >03 Set STATUS Depending on FAC
	B.5 XML >04 Floating Point Underflow/Overflow
	B.6 XML >05 Set Floating Point Overflow
	B.7 XML >06 Floating Point Add
	B.8 XML >07 Floating Point Subtract
	B.9 XML >08 Floating Point Multiply
	B.10 XML >09 Floating Point Divide
	B.11 XML >0A Floating Point Compare
	B.12 XML >0B Floating Point Stack Add
	B.13 XML >0C Floating Point Stack Subtract
	B.14 XML >0D Floating Point Stack Multiply
	B.15 XML >0E Floating Point Stack Divide
	B.16 XML >0F Floating Point Stack Compare
	B.17 XML >10 Convert VDP String to Floating
	B.18 XML >11 Convert String to Floating
	B.19 XML >12 Convert Floating to Integer
	B.20 XML >13 Get BASIC Symbol Table Entry
	B.21 XML >14 Get BASIC Symbol Table Value
	B.22 XML >15 Assign Value to BASIC Variable
	B.23 XML >16 Search BASIC Symbol Table
	B.24 XML >17 Push Value onto VDP Stack
	B.25 XML >18 Pop Value from VDP Stack
	B.26 XML >19 Search DSR ROM Chains
	B.27 XML >1A Search GROM Chains
	B.28 XML >1B Get Next BASIC Byte
	B.29 XML >1C Undefined
	B.30 XML >1D Undefined
	B.31 XML >1E Undefined
	B.32 XML >1F Undefined

	Appendix C BASIC Tokens
	Appendix D Coincidence
	Appendix E GPL Operation Codes
	E.1 GPL Operations
	E.2 Format Suboperations

	Appendix F General Address Format

